
SEMANTICS BASED RECONCILIATON 
FOR COLLABORATIVE ONTOLOGY EVOLUTION  

Georgios M. Santipantakis and George A. Vouros  
Dept. of Information and Communication Systems Eng, University of the Aegean, Karlovassi, 83200, Samos, Greece 

Keywords: Ontology evolution, Collaborative ontology engineering, Reconciliation, Validity rules. 

Abstract: The objective of this paper is to present the SR-COE (“Semantics-based Reconciliation in Collaborative 
Ontology Development and Evolution”) system for supporting knowledge workers/engineers to the 
synchronous and asynchronous collaborative ontology development and evolution: This system provides the 
necessary generic infrastructure for enhancing the deployment of any ontology development tool in 
distributed settings with concurrent workers, and for applying any collaborative ontology engineering 
method effectively. SR-COE exploits the semantics of the modification actions performed from the 
different, concurrent contributing parties so as to actively support them to reach mutual agreed ontologies.   

1 INTRODUCTION 

Exploitation of knowledge represented by means of 
ontologies aims to facilitate the knowledge 
management processes within and across 
organizations. To obtain a global view of a domain, 
often people need to express their perspectives, in a 
collaborative manner. However, it is likely to 
happen that different persons provide conflicting 
specifications for ontology elements. It is important 
to locate the implied conflicts and provide support 
for these persons to resolve them towards reaching 
an agreement. Aiming to actively support knowledge 
workers and engineers to shape a commonly 
accepted conceptualization of a domain, this paper 
presents the “Semantics-based Reconciliation for 
Collaborative Ontology Development and 
Evolution” (SR-COE) system: SR-COE exploits the 
semantics of the modification actions performed by 
knowledge engineers and workers, who act 
concurrently on a single ontology. The system 
detects actions with conflicting effects and 
reconciles them, proposing alternative and conflicts-
free ontology versions. Semantics are being captured 
by means of constraints/dependencies between the 
effects of modification actions.  

2 RELATED WORK 
AND MOTIVATION 

Methodologies towards the collaborative 
development of ontologies propose concrete 
methodological steps for facilitating collaboration 
and reaching consensus. A wide range of approaches 
is available, featuring techniques for locking 
ontologies’ versions (Farquhar et al, 1996), centrally 
accessible shared spaces (Kotis, Vouros, 2006), 
and/or require collaborative parties to provide 
arguments on the developed versions via 
participating in argumentation dialogues (Tempich 
et al 2005).  

Several tools have been presented in the 
collaborative ontology development domain (Sure et 
al, 2002), (Arprez et al, 2001), (Bozsak et al, 2002), 
(Domingue, 1998), (Ceusters et al, 2001), (Hotho et 
al, 2006), (Tummarello et al 2006), (Sunagawa et al. 
2003), (Auer et al, 2006) (Tudorache et al, 2008). 
However, to the best of our knowledge, there is not 
any tool that allows collaborative parties to 
simultaneously and jointly modify the same 
ontology version without any restriction (as far as 
the creation and access to any version is concerned), 
actively supporting people to locate and reconcile 
conflicting specifications and views.  

To facilitate collaborators’ awareness on the 
status of the evolving ontology, some of the 
methodologies/tools focus on providing a central 
repository. Different versions of the same ontology 
can be stored in this repository, possibly escorted 

153
M. Santipantakis G. and A. Vouros G. (2009).
SEMANTICS BASED RECONCILIATON FOR COLLABORATIVE ONTOLOGY EVOLUTION .
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 153-158
DOI: 10.5220/0002290501530158
Copyright c© SciTePress



 

with arguments concerning changes made. Locking 
and shared-space methods have inherent limitations: 
(a) They do not conserve against conflicts that may 
appear between versions, (b) they confine real 
collaboration, as each user modifying an ontology is 
the only one connected to it, and (c) they do not 
actively support collaborative parties to inspect all 
possible conflicts and reconcile different 
perspectives.   

To a greater extent than current tools/environ-
ments for ontology development/evolution we 
require a system that shall facilitate collaboration by: 

 Imposing the minimum possible restrictions on 
the collaboration and multi-party deve-
lopment/evolution process: The evolution, 
creation and access to different versions of 
ontologies needs to be made seamlessly, for all 
participants, without directly affecting each 
other. 
 Actively supporting the detection of conflicts for 
each ontology version, and facilitating the 
reconciliation of conflicts by exploiting the 
semantics of the actions performed. 
 Being methodology-independent, therefore 
generically applicable.  
 Facilitating the deployment of ontology 
engineering tools in distributed settings, so as to 
support collaboration.  
 Being seamlessly combined with any 
argumentation framework. 

We need to emphasize that the implementation of 
such a generic system, acting as an infrastructure for 
collaborative ontology development and evolution, 
will allow the transfer of ontology engineering tools 
from their “classic” standalone mode, to their 
deployment in distributed settings.  

To address these issues we have implemented 
SR-COE. It actively supports people to collaborate 
while being either connected or disconnected: Each 
user holds a replica of an ontology, which is being 
developed/evolved by using any preferred tool. 
Modifications performed by remote and concurrent 
collaborators on their local replicas need to be 
merged: As local replicas may diverge, possible 
conflicts between them must be detected and 
reconciled. As a result of this reconciliation, all 
users are aware of (a) the modifications made by 
others, (b) of the possible conflicts that arise, and (c) 
of the possible, alternative conflicts-free versions of 
the ontology. We have to point out that the system 
has to be able to support any state of the art 
methodology that accentuate the active participation 
of  knowledge workers in the ontology  engineering 
lifecycle, (e.g. HCOME and DILIGENT). 

3 BACKGROUND KNOWLEDGE 

3.1 Semantics based Reconciliation via 
Telex 

The work presented in (Shapiro et al, 2004) 
introduced a formalism for maintaining consistency 
in distributed systems for data sharing. Based on this 
formalism, work done in Telex (Benmouffok et al., 
2009) enables collaborative and distributed 
development and evolution of “documents”. A 
document may be of any form and format, 
containing formal or informal specifications. In the 
context of our work, a document is an evolving 
ontology.  

An application is a “middleware” between the 
user and Telex (Shapiro et al, 2004). Telex is 
instantiated in each collaborating site. Users by 
means of their applications can modify their local 
replicas of documents, either being online or offline, 
while Telex takes the hard responsibility to merge 
replicas. To do this, applications need to update 
Telex with fragments of actions and constraints. 
Then, Telex exploits the semantics of modification 
actions which are being captured by constraints. 
Constraints are application-specific invariants that 
parameterize Telex. The types of constraints are 
presented in the paragraphs that follow. 

Telex takes care of replication, consistency, 
storage and access control; collecting, transmitting 
and persisting actions; detecting conflicts and 
computing high-quality schedules. 

Telex in each site maintains an Action-Constraint 
Graph (ACG), where nodes are actions, and arcs 
constraints between them. The actions represent 
operations that users apply to replicas of a document 
via their applications, and arcs represent constraints 
between these operations. Constraints enable the 
computation of possible, alternative schedules. The 
ACG is formed by the union of all operations 
performed in all sites: When a local update occurs, 
the system replicates every action to the other 
collaborating sites.  

Table 1 shows the set of available types of 
constraints (Benmouffok et al., 2009). The constraint 
NotAfter indicates that an ordering between the 
actions A and B must be maintained, such that no 
schedule that commits to the execution of both 
actions executes B before A. The constraint 
Enables is an implication between the 
corresponding actions. If a schedule commits to 
execute B, then it must also commit to execute A  
without considering any ordering between the 
actions. 

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

154



 

Table 1: Constraint types.  

 

In case that A is aborted in a schedule this constraint 
forces B to be aborted as well. Combining these 
primitive constraints, the Atomic, Casual 
Dependence and Antagonism constraints are 
generated. The Casual Dependence constraint 
defines that action B depends on A, and a schedule 
commits to it iff it commits to A. The Antagonism 
constraint identifies a conflict between actions A and 
B. This constraint defines that when a schedule 
commits to execute action A, it aborts B and vice-
versa.  

A set of actions is said to be in conflict, if they 
form a “→” (NotAfter) cycle. This means that no 
sound schedule can commit to the execution of all 
these actions. The Antagonism constraint is a 
special case of such as cycle between the actions A 
and B. 

As shown in Figure 1, Telex comprises the 
Scheduler, the Agreement module, the Logger and 
the Transmitter. Each detected conflict triggers the 
generation of schedules from Scheduler, which 
“marks” each action to be either “aborted” or 
“committed” in each schedule. For instance, the 
detection of a pair of antagonistic actions drives 
Telex to construct two alternative schedules, where 
each of the antagonistic actions is either aborted or 
committed.  

A schedule may be selected by the local 
application and be provided to the agreement 
module as a proposal. Because of the asynchronous 
communication, proposals may be different. The 
agreement module is responsible though to help sites 
reach an agreement. It is possible that some 
applications require the selection of proposals based 
on application specific criteria and/or policies. Telex 
provides the freedom to developers to implement the 
algorithm they need. The basic algorithm relies on 
voting, so that user preferences are to be taken into 
account. It is important to be mentioned that each 
Telex module is instantiated per each locally “open” 
document. We refer the interested reader to (Shapiro 
et al, 2004) for further details. 

3.2 Ontology Evolution via Validity 
Rules 

Considering the problem of ontology evolution in 
the face of modification actions, authors in 
(Konstandinidis et al., 2008) devise a framework and 
algorithm for determining the effects and side-
effects of any such action.  Although the framework 
proposed is general, authors focus in a fragment of 
RDF/S. To abstract from the underlying language 
and develop a uniform framework, RDF is mapped 
to First-Order Logic (FOL) expressions. The 
representation of ontological facts by means of First 
Order Logic predicates is shown in table 2 
(Konstandinidis et al., 2008).  

Table 2: Ontological facts as First Order Logic predicates. 

 

The semantics of specifications are captured via 
validity rules, which introduce a validity model. 
Validity rules are encoded in the form: 

),()( ,...,1 iiini vuQvuPu ∃∨→∀ =
  

where iv,u are tuples of variables, P and Qi are 
conjunctions of relational atoms of the form 
R(w1,...,wn), and equality atoms of the form (wk=wm), 
where w1,...,wn, wk,wm, are variables or constants.  
An example of a validity rule is the following: 

( ) ( ) ( )wx,InstCwz,Domainzy,x,PI _→∧  
This rule states that given an instance (x z y) of a 
property z whose domain is w, then x must be an 
instance of w. All validity rules are specified in 
(Konstandinidis et al., 2008).  

The FOL specifications are equipped with closed 
semantics, i.e., CWA (closed world assumption). 
This means that, for two formulas p, q, if p⊬q, then 
p⊢¬q. Abusing notation, for two sets of ground facts 
U, V,  we will say that U implies V (U⊢V ) to denote 
that U⊢ p for all p in V. Any expression of the form 
P(x1,…,xk) is called a positive ground fact where P is 
a predicate of arity k and x1,…,xk are constant 
symbols. Any expression of the form ¬P(x1,…,xk) is 
called a negative ground fact iff P(x1,…,xk) is a 
positive ground fact. L denotes the set of all well-
formed formulae that can be formed in this FOL. We 
denote by L+ the set of positive ground facts, and L- 

SEMANTICS BASED RECONCILIATON FOR COLLABORATIVE ONTOLOGY EVOLUTION

155



 

the set of negative ground facts. An evolving 
ontology is a set K ⊆ L+. In simple words, an 
ontology is any set of positive ground facts. An 
update is any set of positive or negative ground 
facts. The application of any modification action to 
an evolving ontology should result in a set of effects. 
Each effect is a ground fact.   

By definition, ontologies have two properties: (a) 
they are always consistent (in the purely logical 
sense) and (b) they imply only the positive ground 
facts that are already in the ontology. The above two 
properties together with the CWA semantics, imply 
that (a) P(x)∈ K ⇔ K ⊢ P(x)⇔  K ⊬¬P(x)  and 

 (b) P(x)∉ K ⇔  K ⊢¬P(x)⇔  K ⊬P(x) 
An application of these properties is that, applying a 
modification action with effect ¬P(x) to the ontology 
K corresponds to removing P(x) from K. On the 
other hand, updating an ontology with positive 
ground facts corresponds to adding facts in K. 

With the aim to specify and compute conflicts 
using validity rules, following (Konstandinidis et al., 
2008), we use component sets. The component set 
that corresponds to a validity rule c with respect to 
some tuple of constants x  is defined as  

}}:,1|),(

...),(),({}0|)({{),( 21

constantznizxQ

zxQzxQkjxPxcComp

im

iij

≤≤∧

∧∧∪≤<¬=  
 

For example, for the rule  
( ) ( ) ( )wx,InstCwz,Domainzy,x,PI _→∧  

the derived component set would be  
{{¬PI(x,y,z)}, {¬Domain(z,w)},{C_Inst(x,w)}} 

As proposed in (Konstandinidis G. et al., 2008), a 
ground fact P(x) which is added in an ontology K, 
would violate a rule c, iff there is some set V and 
tuple of constants u  for which ¬P(x)∈V and 
V∈ ( )uc,Comp  and for all V'∈ ( )uc,Comp , V≠V', it 

holds that K ⊬V'. 
Let us for instance consider the following 

scenario that exemplifies the above and reveals our 
considerations for collaborative ontology evolution: 
Let us consider George who performs an action that 
adds the fact PI(x,y,z) in his ontology replica, and 
Peggy who performs an action with effect 
Domain(z,w), in her own replica. Then, none of 
these     replicas    violate      the        validity       rule     

  ( ) ( ) ( )wx,InstCwz,Domainzy,x,PI _→∧ , 
according to the above mentioned definition (given 
that C_Inst(x,w) does not hold in any of the 
replicas). This is indeed so, since, given the 
component set of this rule, the fact ¬Domain(z,w) 
(respectively, ¬PI(x,y,z)) validates the rule for 
George (respectively Peggy). However, when the 
two replicas are combined, the rule is violated, given 

that in the merged version PI(x,y,z) and Domain(z,w) 
hold but C_Inst(x,w) does not hold. Notice that if 
C_Inst(x,w) holds, then both local views are 
consistent, as well as the global view. However, it is 
obvious that users cannot be “forced” to insert the 
fact C_Inst(x,w) in their replicas to assure the 
validity of the merged version. In the merged 
version this must be done to maintain consistency, or 
else, alternative schedules must be constructed 
where either PI(x,y,z) or Domain(z,w) is aborted.  

4 COLLABORATIVE 
ONTOLOGY EVOLUTION  

In order to apply the semantic-based reconciliation 
method to the domain of ontology evolution, 
possible modification actions and their constraints 
must be defined.  

Table 3 shows the constraints that derive from 
the validity rules. The first column provides a 
reference name, the second one contains the 
component sets derived from the validity rules, and 
the third one provides the corresponding constraints. 
At this point it is important to notice two things:  

(a) Constraints concern the effects of 
modification actions, rather than the actions 
themselves: Therefore, for SR-COE, nodes in ACG 
are labelled with predicates from Table 2 and 
conjunctions of them. Subsequently, when we refer 
to actions we actually refer to their effects. Given a 
schedule as described above, provided by Telex, we 
can create a new ontology version from the schedule 
itself. The generated version incorporates the effects 
of actions performed by the different collaborating 
parties and it provides a “landmark” for ontology 
developers to proceed towards an agreed 
conceptualization. This landmark is called a 
“checkpoint”. Checkpoints give the ability to the 
users to “roll back”, i.e. to undo modifications.  

(b) Some of the constraints in Table 3 have a 
compound side, something which is not inherently 
supported by Telex. For this purpose we introduce 
the notion of the compound (complex) action. A 
compound action is formed by a conjunction of 
actions. Its status, as it is determined by the Telex 
scheduler, depends on the status of the actions it 
consists of: If any atomic action contained in some 
compound action is aborted, the compound is 
aborted as well. A compound action is also 
represented as an action in the ACG, along with the 
constraints that bound it to the atomic actions it 
consists of. For instance, given a compound action 
“x_and_y”,  the   constraints   x_and_y""x"" ◁

→    and 

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

156



 

x_and_y""y"" ◁
→  are added to ACG. 

Table 3: Derived constraints from component sets. 

 
Considering again our example, the constraint 
corresponding to the “Property instance and 
Domain” rule will not be violated in any of the 
replicas where PI(x,y,z) or Domain(z,w) hold, but a 
conflict will be detected in the merged version, 
where both PI(x,y,z) and Domain(z,w) hold and 
C_Inst(x,w) does not hold. 

Each of the collaborators modifies a local replica 
of an ontology: The effects of modifications label 
the nodes in ACG. Telex replicates and schedules 
these effects to all sites. Any user may create a 
checkpoint from a generated schedule and continue 
evolving it. A checkpoint is published to remote 
users as a new ontology version, by the time the user 
who created it, starts modifying it.  The set of shared 
checkpoints defines the versioning tree: Users may 
select to evolve any checkpoint created by any of the 
collaborating parties, creating a new set of 
checkpoints, and so on. The depth and breadth of 
this tree is subject to the rules and policies that the 
collaborating community sets.   

5 SR-COE ARCHITECTURE  

An overview of the SR-COE architecture is 
presented in figure 1.  
Assuming that the user modifies a locally stored 
ontology version, then, the following events occur: 
 The ontology parser detects new modifications 

(the diff) and calls the validity checker. These 
effects will not directly affect other replicas. 
Doing so, it allows users to modify the same 
ontology with no restriction, concurrently.   

 The validity checker generates a new fragment 
that is sent to Telex. 

 
Figure 1: The overall architecture of SR-COE. 

 Telex takes control, to handle new fragments 
appropriately. Modifications that do not raise 
conflicts in schedules are appended to these. 
Otherwise, alternative schedules are provided, if 
possible. 

 The ontology updater module informs the user 
for any new schedule and updates the locally 
stored ontology model, on user’s request.  
The paragraphs that follow present each SR-COE 

module in detail.  
The Ontology Parser module is responsible to 
monitor the selected ontology version and retrieve 
the effects of modification actions performed. When 
a change occurs, the module identifies the elements 
added or removed and provides them to the validity 
checker module. This module is also responsible to 
creating a checkpoint upon user’s request.  
Given the new facts retrieved by the ontology parser, 
the validity checker module is triggered to infer new 
facts (i.e. inherited properties and transitivity of 
subsumption relations), to produce constraints and to 
validate the changes in the local replica.  

In case that removed elements are detected, the 
validity checker constructs antagonism constraints 
between these facts and their negations. Constraints 
generated by the validity rules are initially exploited 
locally, to check for local conflicts. If no conflicts 
are found, the validity checker proceeds to the 
generation of a fragment containing new facts and 
corresponding constraints to be sent to Telex. 
Otherwise, the validity checker generates 
antagonism constraints between the conflicting facts, 
driving the computation of alternative schedules. 
Doing so, users can continue modifying the locally 
stored file, even if a conflict has occurred.  
The Scheduler and Agreement modules of Telex 
provide global consistency (given sound 
constraints), and provide assistance towards 
reaching an agreed conceptualization (Benmouffok 

SEMANTICS BASED RECONCILIATON FOR COLLABORATIVE ONTOLOGY EVOLUTION

157



 

et al., 2009).  Each user “runs” an instance of SR-
COE, and thus of Telex, that operates locally. Telex 
is responsible to maintain the ACG, given the 
fragments generated from validity checker module. 
When the graph is updated by new nodes and the 
corresponding constraints, the scheduler computes 
new schedules, which are provided to the ontology 
updater module.  

The ontology updater connects the GUI of the 
corresponding ontology engineering tool and SR-
COE. In our prototype implementation, it provides 
information on the available schedules, as well as 
information about modification actions (issuer, 
action, effects) performed in the concurrent 
collaborating sites. It notifies users about conflicts 
detected and schedules built, without requiring users 
to take any particular immediate action. However, 
users may request to view a schedule and create a 
new checkpoint which is added to the versioning 
tree. Subsequently, the user can access this new file 
via SR-COE, making this version available to the 
rest of the community. Users proceed by choosing 
the version to modify, creating new checkpoints, and 
so on, until they reach an agreed conceptualization. 

It is important to be mentioned that ontologies 
comprise only positive facts that correspond to 
committed actions in a schedule. Negative facts are 
incorporated as nodes in ACG so as conflicts 
between replicas to be detected. 

6 CONCLUSIONS 

To a greater extent than current tools/environments 
for ontology development we have built a system 
that facilitates collaborative ontology development 
and evolution by: (a) Imposing the minimum 
possible restrictions on the collaboration and multi-
party development/evolution  process, allowing the 
creation of different versions of ontologies and the 
seamless access to these versions. (b) Actively 
supporting the detection and reconciliation of 
conflicts, by exploiting the semantics of the actions 
performed. (c) Being methodology-independent, 
therefore generically applicable. (d) Facilitating the 
deployment of current ontology engineering tools in 
distributed settings, supporting collaboration. 

As described above, the validity rules presented 
support the development and evolution of 
lightweight ontologies using a rather simple model. 
However, SR-COE can be easily customised by 
incorporating any set of validity rules, to deal with 
more expressive ontology languages. 

An important step to be made concerns the study 
of using SR-COE in conjunction with different 
ontology engineering tools, maybe in the context of 
different methodologies.  

REFERENCES 

Farquhar, A. et al, 1997. The Ontolingua Server: A tool 
for collaborative ontology construction. Intl. J. 
Human-Computer Studies 46, pp. 707–728 . 

Kotis, K., Vouros, G., 2006. Human-centered ontology 
engineering: The HCOME methodology, In KAIS, 10, 
pp. 109-131. 

Tempich, C. et al, 2005. An Argumentation Ontology for 
Distributed, Loosely-controlled and evolvInG 
Engineering processes of oNTologies (DILIGENT). 
ESWC 2005, LNCS 3532, pp. 241–256 . 

Sure, Y., et al 2002. OntoEdit: Collaborative Ontology 
Development for the Semantic Web. ISWC 2002, 
LNCS 2342, pp. 221–235 . 

Arprez, J.C., at al, 2001. WebODE: a scalable workbench 
for ontological engineering. K-CAP’01 . 

Bozsak, E., et al, 2002. KAON - Towards a Large Scale 
Semantic Web. 3rd Intl. Conf. on e-Commerce and 
Web Technologies, LNCS 2455, pp. 304–313. 

Domingue, J., 1998. Tadzebao and WebOnto: Discussing, 
Browsing, and Editing Ontologies on the Web. 
KAW’98, Banff, Canada. 

Ceusters, W., et al, 2001. LinkFactory: an Advanced 
Formal Ontology Management System. KCAP-2001, 
Victoria, Canada. 

Tudorache, T., et al, 2008. Collaborative Protege: 
Enabling Community-based Authoring of Ontologies, 
In Proc. Of the Workshop on Social and Collaborative 
Construction of Structured Knowledge, ISWC 2008, 
Banff, Canada. 

Seidenberg, J., Rector, A., 2007. A Methodology for 
Asynchronous Multi-User Editing of Semantic Web 
Ontologies. K-CAP'07, pp. 127–134.  

Hotho, A., et al, G., 2006. BibSonomy: A social bookmark 
and publication sharing system. Conceptual Structures 
Tool Interoperability Workshop at the 14th Int. Conf. 
on Conceptual Structures, pp. 87-102. 

Tummarello, G., et al., 2006. Enabling semantic web 
communities with DBin: an overview. ISWC 06, 
LNCS 4273, pp. 943–950. 

Sunagawa, E., et al, 2003. An environment for distributed 
ontology development based on dependency 
management. ISWC’03, LNCS 2870, pp. 453-468. 

Auer, S., et al, 2006. OntoWiki a tool for social, semantic 
collaboration. ISWC, LNCS 4273, pp. 736-749. 

Shapiro, M., et al, 2004. A constraint-based formalism for 
consistency in Replicated Systems. OPODIS 04, 
LNCS 3544, pp. 331-345. 

Benmouffok, L., et al, 2009. Telex: A Platform for 
Decentralised Sharing. In EuroSys 2009. 

Konstandinidis G., et al, 2008. A Formal Approach for 
RDF/S Ontology Evolution. ECAI-08, pp. 70-74. 

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

158


