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Abstract: Over one million papers are published annually in life sciences. Bioinformatics and knowledge discovery 
fields aim to help researchers conduct scientific discovery using the existing published knowledge. Existing 
literature-based discovery methods and tools mainly use text-mining techniques to extract non-specified 
relationships between two concepts. We present an approach that uses semantic web techniques to measure 
the relevance between two relationships with specified types that involve a particular entity. We consider 
two highly relevant relationships as a relationship association. Relationship associations could help 
researchers generate scientific hypotheses or create computer-interpretable semantic descriptors for their 
papers. The relationship association extraction process is described and the results of experiments for 
extracting relationship associations from 392 semantic graphs representing MEDLINE papers are presented. 

1 INTRODUCTION 

The field of life sciences is one of the fastest 
growing academic disciplines (Marrs and Novak, 
2004). More than one million papers are published 
each year in a wide range of biology and medicine 
journals (King and Roberts, 1986). Recent progress 
in genomics and proteomics has generated large 
volumes of data on expression, function, and 
interactions of gene products. As a result, there is an 
overwhelming amount of experimental data and 
published scientific information, much of which is 
available online. Researchers in the bioinformatics 
and knowledge discovery fields have been studying 
how to use the existing literature to discover novel 
knowledge or generate novel hypotheses.  

Scientific discovery is a type of human 
intellectual activity. Based on observations and 
theory, researchers define hypotheses that they test 
experimentally. However, due to the explosive 
growth of the literature, individual scientists cannot 
study all of the experimental data and scientific 
information that is available.  

Computational methods have been used to help 
scientists generate hypotheses (Langley, 2000; 
Racunas et al., 2004). For example, several attempts 
have been reported to develop informatics tools that 
replicate Swanson’s discovery in 1986 that fish oil 

may benefit patients with Raynaud’s disease solely 
from studying the literature (Swanson and 
Smalheiser, 1997; Weeber et al., 2005; Hristovski et 
al., 2005; Srinivasan, 2004). The possibility of 
linking different scientific disciplines through 
intermediate, or shared, interests has commonly 
been described as Swanson’s ABC model. Most of 
these literature-based discovery methods employ 
text-mining techniques to find relationships of 
unspecified type between two domain-related 
concepts that are implied by the literature.  

In this paper, we present a technique for 
literature-based discovery of hypotheses based on 
measuring the assocation between two relationships 
of specified type that involve a particular entity or 
concept. We call this a relationship association. A 
relationship association is a special kind of 
association rule that states “if concept A has 
relationship R1 with concept B, then it is likely that 
concept A has relationship R2 with concept C.”  

Most scientific papers describe relationships 
between concepts from the study domain, which 
have been identified through research. A relationship 
is essentially a semantic statement that predicates the 
way in which one concept modifies the other 
semantically. Our goal is to discover interesting 
association rules between these relationships.  
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Figure 1: The Semantic graph of a paper from MEDLINE. Boxes show instances of classes from the domain ontology. The 
colour of the box indicates the subsuming major upper class: blue instances are processes, red instances are physical entities, 
yellow instances are investigative techniques, and gray instances are attributes. The text above the line in a box is the 
instance label. The text in bold type below the line in a box is the class name of that instance. Arrows show properties 
expressing the asserted relationships between instances. 

Text mining techniques cannot extract 
relationships between concepts with semantics that 
are sufficiently precise for this kind of analysis 
(Kraines 2009). We use semantic web techniques 
and ontologies to define semantic relationships 
described in a scientific paper as follows. First, we 
create a descriptor for each paper in the form of a 
semantic graph. The nodes in a semantic graph 
consist of instances of particular concepts defined in 
the ontology that represent entities described in the 
paper. The edges in a semantic graph are the specific 
relationships that the paper describes between those 
entities (an example is shown in figure 1).  For 
example, “a Flagellum called chlamydomonas 
flagellum has as a structure part a Cytoskeleton 
called axoneme” is a relationship forming one arc in 
the semantic graph shown in figure 1. Then, all pairs 
of relationships from the semantic graphs that share 
a common entity, e.g. all chains with three nodes and 
two arcs, are candidates for relationship associations.  

We envisage two primary usages of relationship 
associations. One is helping biological scientists to 
generate novel hypotheses. For example, the 
relationship association that “if some kind of cellular 
structure is part of some kind of flagellum, then it is 
likely that the cellular structure binds to a specific 
biological entity” might inspire a biologist studying 
a particular kind of cellular structure, such as a 
microtubule, that is part of a flagellum to generate 
the hypothesis that the cellular structure binds to a 
particular biological entity in the studied cell.  

Relationship associations could also help users to 
create computer-interpretable descriptors of their 
papers in some knowledge sharing system, such as 
EKOSS (Kraines et al., 2006). For example, when 
the user creates a relationship describing how one 
instance is modified by another, and this relationship 
appears in one part of a relationship association, then 
the system could automatically suggest a new 
relationship and target instance to add to the instance  
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based on the other part of the association.  
Our approach is based on two assumptions. First, 

because relationship associations describe 
associations of relationships between classes of 
entities, we assume that similar entities have similar 
relationships. Second, because we use semantic 
graphs from a small part of the scientific literature to 
extract the relationship associations, we assume that 
if one relationship association appears in the sample 
data with a high probability, then it will also appear 
in the whole literature with a similar probability.  

This paper is organized as follows. In Section 2, 
we describe our work that forms the background for 
this paper. In Section 3, we present our approach to 
extract the relationship associations. In Section 4, we 
describe experiments using 392 semantic graphs for 
papers from MEDLINE to obtain relationship 
associations. The presentation and experimental 
application of the algorithm for extracting 
relationship associations are the main contributions 
of this paper. In Section 5, we discuss related work.  

2 PRELIMINARY WORK 

Many applications of semantic web technologies in 
the life sciences have appeared recently, including 
several large ontologies for annotating scientific 
abstracts, such as the Open Biomedical Ontologies 
(OBO) and the Unified Medical Language System 
(UMLS) Semantic Network. In order to describe a 
paper from MEDLINE as a semantic graph, we 
developed the UoT ontology based on a subset of the 
Medical Subject Headings (MeSH) vocabulary.  

EKOSS (Expert Knowledge Ontology-based 
Semantic Search) (Kraines et al., 2006) is a web-
based knowledge-sharing system that enables users 
to create semantic graphs describing their knowledge 
resources, such as scientific papers, using ontologies. 
Figure 1 shows a semantic graph created to describe 
a paper from MEDLINE (Aoyama and Kamiya, 
2005). The semantic graph contains 19 instances of 
classes from the UoT ontology together with 23 
relationships between the instances. 

In  preliminary  work, we  have  used  EKOSS to  
create these kinds of semantic graphs for 392 papers 
selected from MEDLINE (unpublished material). 

3 RELATIONSHIP ASSOCIATION 
EXTRACTION 

There are three main aspects to extracting 
relationship associations: the data structure, the 

method for determining if a relationship association 
appears in a particular semantic graph, and the 
algorithm for extracting the relationship associations 
from a set of semantic graphs.  

3.1 Semantic Graphs 

The data structure determines the extracting 
algorithm. Our approach uses an ontology to 
represent papers semantically and unambiguously. 
We use one semantic graph to represent one 
MEDLINE paper. The nodes of a semantic graph are 
instances of ontology classes, and the edges are 
relationships between the instances that are specified 
by properties also defined in the ontology. Each 
instance can have a descriptive text label. Semantic 
graphs, such as the one shown in figure 1, act to 
structure the knowledge contained in the MEDLINE 
papers for extracting relationship associations. 

3.2 Semantic Matching 

Matching semantic graphs is different from text 
matching, such as calculating the similarity of two 
strings (Cohen et al., 2003). Semantic matching 
techniques compare two data structures at a semantic 
level, often by using some logic inference methods.  

We use a description logics reasoner software, 
RacerPro (www.racer-systems.com), to evaluate the 
match between a search semantic graph and a target 
semantic graph through a combination of logic and 
rule-based inference. First, we add the target graph 
to the reasoner’s knowledge base together with the 
ontology used to create the graph. Then, we convert 
the search graph into a set of semantic queries by 
creating sub graphs of the search graph that contain a 
specified number of properties and instances. In 
most cases, this is one property and two instances, i.e. 
a semantic triple. Queries are created by replacing 
the instances in the sub graphs with class variables. 
Rules for replacing instance classes with super 
classes and properties with super properties can be 
applied to increase matching recall. Finally, we ask 
the reasoner how many of the queries match the 
target graph, where a query matches if instances in 
the target graph binding to each of the class variables 
in the query subject to the specified relationship(s) 
can be found. The fraction of matching queries gives 
the semantic similarity between the two graphs. A 
simple example is shown in Figure 2. Details are 
given in (Guo and Kraines, 2008). 

3.3 Extraction Process 

The  process  of  extracting  relationship associations  
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takes the set of semantic graphs as the input. The 
output is a set of linked pairs of semantic 
relationships, where each relationship is defined as a 
triple consisting of a subject or “domain” class, an 
object or “range” class, and a directed property 
specifying the relationship between the two classes. 
A linked pair of semantic relationships is a pair of 
semantic relationships that share one class in 
common. We refer to these linked pairs of semantic 
relationships as relationship associations. 

3.3.1 Generating Triple Queries 

A semantic triple – consisting of a domain instance, 
a range instance, and a property between them – is 
the minimum unit of a semantic graph. One semantic 
graph contains several semantic triples. The 
definitions are formalized as follows: 

Graph = {Triple*} 
Triple = {domain,property,range} 
First, for each triple in a semantic graph, we 

create one triple query, defined as follows: 
TripleQuery = { domain class variable, 
   property, range class variable} 
In a triple query the instances of the triple are 

converted to variables with the same classes. Thus, a 
triple query converts the asserted relationship 
between two specific entities made by the triple into 
a generalized relationship between ontology classes. 

There may be some duplicate triple queries 
generated from the set of semantic graphs. However, 
because we only want to link two triple queries 
whose triples both appear in the same semantic 
graph and share a common entity, we keep all of the 
generated triple queries at this point.  

3.3.2 Matching Triple Queries 

We use RacerPro to infer matches between queries 
and graphs via both logical and rule-based reasoning. 
The logic is built into the ontology using formalisms 
provided by the description logic that is supported by 
the ontology specification we used (OWL-DL). The 
rules are pre-defined for a particular ontology by 
domain experts. Details are given in (Kraines et al.,  
2006; Guo and Kraines, 2008).  

If the reasoner can find a pair of instances in a 
particular semantic graph meeting the class and 
relationship constraints of a triple query Query1, 
then we say that the triple Triple1 represented by 
Query1 appears in the semantic graph. By using both 
logical and rule-based reasoning, we can get 
matching results that are implied at a semantic level 
because the reasoner can infer relationships between 
instances that are not explicitly stated in the semantic 
graph. For example, consider the segment of the 

semantic graph in figure 1 between the instance of 
Flagellum called chlamydomonas flagellum and the 
instance of Cell Movement called tip-directed 
movement. The triple query “find some instance of a 
Flagellum that is the location of some instance of 
Cell Movement” does not actually occur in the graph 
because there is no property between 
chlamydomonas flagellum and tip-directed 
movement. However, figure 2 shows that the query 
matches with the semantic graph because the 
relationship is implied by the relationships specified 
with the instance of Cytoskeleton called frayed 
axonemes. This match is a result of the rule “If A has 
structure part B and B is location of C, then A is 
location of C” together with the transitivity of the 
“location of” relationship. 

 
Figure 2: An example of semantic matching. Instances are 
indicated with boxes where the first line of text gives the 
instance name and the second line of text gives the 
instance class. Properties are shown by directed arrows 
labelled with the property name. The part in outlined in 
black is from the semantic graph. The part in outlined in 
gray is the query. 

Using the reasoner, we match all triple queries 
with all semantic graphs. We then calculate the 
frequency that each triple query occurs in the 
semantic graphs. If a triple query only occurs in the 
semantic graphs a few times, then it is not likely to 
be involved in a relationship association. Therefore, 
we use a user-specified threshold value to filter the 
triple queries. Queries with frequencies less than the 
threshold value are removed, and the rest are used to 
create association queries in the next step. 

3.3.3 Generating Association Queries 

Now, we  have  a  set  of  triple queries together with  
the frequencies in which they occur in a set of 
semantic graphs. In this step, we create association 
queries from this set of triple queries.  

For each graph, we find all pairs of triples that 
share one instance and therefore comprise two 
connected arcs of the semantic graph; that is, they 
form a connected segment with three instances and 
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two properties. If both of the corresponding triple 
queries are in the set of triple queries generated in 
3.3.2, then the pair of triples is a candidate for 
creating an association query.  

We create an association query from each triple 
pair meeting the conditions above. However, to 
decrease the computational load of matching them 
with the set of graphs, we remove duplicate 
association queries in the next step.  

3.3.4 Removing Duplicate Queries 

Because we use semantic matching to match an 
association query with a semantic graph, two queries 
with same semantic meaning will get the same 
matching results. By removing association queries 
with the same semantic meaning, we can reduce the 
number of reasoning tasks that must be performed.  

The graphs are directed, so even if two queries 
have the same classes and properties, if the 
directions of the properties are different, then the 
queries are different. Therefore, we must consider 
the three types of association queries shown in 
Figure 3. 

 
Figure 3: Three types of association queries. 

We use three rules to remove duplicate 
association queries. The rules are presented using a 
query with type (a) as the original query Q1 (queries 
with types (b) and (c) are similar):  

Q1 = {v11 -> p11 -> v12; v12 -> p12 -> v13} 
Each rule compares Q1 to a second query Q2 to 

determine whether or not to remove Q2.  
Rule 1, if Q1 and Q2 meet the following 

conditions at the same time, then Q2 is removed.  
 Q2 = {v21 -> p21 -> v22; v22 -> p22 -> v23} 
 The class of v2i is the same as or subsumes 

the class of v1i (i = 1, 2, or 3). 
 The property of p2i is the same as or 

subsumes the property of p1i (i = 1 or 2). 
Rule 2, if Q1 and Q2 meet the following 

conditions at the same time, then Q2 is removed.  
 Q2 = {v21 -> p21 -> v22; v23 -> p22 -> v22} 
 The class of v2i is the same as or subsumes 

the class of v1i (i = 1, 2, or 3). 
 The property of p21 is the same as or 

subsumes the property of p11.  

 The inverse property of p22 is the same as or 
subsumes the property of p12. 

Rule 3, if Q1 and Q2 meet the following 
conditions at the same time, then Q2 is removed.  

 Q2 = {v22 -> p21 -> v21; v22 -> p22 -> v23} 
 The class of v2i is the same as or subsumes 

the class of v1i (i = 1, 2, or 3). 
 The property of p22 is the same as or 

subsumes the property of p12. 
 The inverse property of p21 is the same as or 

subsumes the property of p11. 
As a result of this step we get a set of association 

queries with unique semantics.  

3.3.5 Matching Association Queries 

The matching method described in Step 3.3.2 is used 
to match the association queries with each of the 
graphs and calculate the frequencies in which they 
occur. Association queries whose frequency is less 
than a given threshold are removed. The rest of the 
queries are candidates for relationship associations. 

3.3.6 Calculating Probabilities 

From the previous steps, we get a set of association 
queries meeting a specified frequency. In order to 
help users find useful relationship associations, we 
calculate two conditional probabilities for each 
association query from the frequencies of occurrence 
for the two triples that make up the association 
query: 

The probability that the second triple appears if 
the first triple appears, prob1-2 = P (t2 | t1). 

The probability that the first triple appears if the 
second triple appears, prob2-1 = P (t1 | t2). 

Generally, a high value of prob1-2 (prob2-1) means 
that if the first (second) triple appears in a semantic 
graph, then it is likely that the second (first) triple 
will also appear. If both probabilities are high, then it 
is likely that the two triples will only appear at the 
same time.  

3.4 Relationship Associations  

As a result of the extraction process described above, 
we get a set of association queries together with their 
probabilities of occurrence. However, this 
information can be difficult for users to understand. 
So we use templates and simple natural language 
generation algorithms to create natural language 
expressions of the relationship associations from the 
association queries. The users can examine these 
relationship associations to identify those that are 
most reasonable and interesting. These final 
relationship associations can be used to generate 
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scientific hypotheses or to help users to create new 
semantic graphs.  

4 EXPERIMENTS 

Using the process described above, we have 
conducted experiments to obtain relationship 
associations from a set of 392 MEDLINE papers. In 
this section, we report the results of this experiment 

As described in section 2, semantic graphs were 
created for 392 papers selected from MEDLINE 
using the UoT ontology that we have developed in 
other work. The UoT ontology has 1,762 classes and 
151 properties. We used those classes and properties 
to create 392 semantic graphs. On average, each 
semantic graph has 26 instances and 34 properties. 
The entire set of graphs contains 10,186 instances 
and 13,283 properties. 

We created 13,283 triple queries from the 392 
semantic graphs and then used the reasoner to 
determine how many semantic graphs contain each 
triple. We removed all triple queries that only 
matched with one semantic graph, since that was the 
graph from which the triple was obtained.  As a 
result, there were 8,200 triple queries available for 
creating association queries. 

We created 18,704 association queries based on 
the 8,200 triple queries and 392 graphs. We removed 
duplicates using the method from 3.3.4. We also 
removed highly general queries. For example, the 
property “associated with” in UoT ontology is the 
top-level of the property hierarchy. Therefore, a 
query containing that property does not give us any 
information about the relationship type. Other highly 
general “stop list” queries can be added as required. 
The result is 3,483 association queries from the 392 
semantic graphs. 

We matched these association queries with all of 
the semantic graphs using the reasoner and removed 
all queries that only appeared once. This resulted in a 
total of 1,215 association queries appearing in at 
least two of the semantic graphs. 

Next, we calculated the two probabilities prob1-2 
and prob2-1 for each of the 1,215 association queries. 
There are 629 association queries whose prob1-2 is 
greater than 0.5. There are 639 association queries 
whose prob2-1 is greater than 0.5. There are 891 
association queries, for which at least one probability 
(prob1-2 or prob2-1) is greater than 0.5. 

Finally, we converted the association queries into 
natural language expressions, and we asked an 
expert in life sciences to identify the most interesting 
relationship associations. 

 
Figure 4: An example of a relationship association. 

One example of a relationship association that 
was extracted in this experiment is shown in figure 4.  
The natural language representation is: “If a 
Cytoplasmic Structure is part of a Flagellum, then 
the probability that there is a Physical Object that 
interacts with the Cytoplasmic Structure is very 
high.” 

This relationship association appears in five 
papers in our experiment: 

 “Eukaryotic flagellum is a Flagellum that has as 
a part some Cellular Structure called flagellar 
axoneme. The flagellar axoneme has as a part some 
Microtubule called doublet microtubule that 
interacts with a Dynein ATPase called dynein 
arms.” (Morita and Shingyoji, 2004) 

 “There is a Flagellum that has as a part some 
Cellular Structure called axoneme. Sliding 
disintegration is a molecular process that consumes 
the axonome and that is regulated by some Ion 
called Ca(2+).” (Nakano et al., 2003) 

 “Chlamydomonas flagellum is a Flagellum that 
has as a part a Cytoskeleton called axoneme. The 
axoneme has as a part some Microtubule called a 
pair of doublet microtubules that participates in 
some binding process called dyein-microtubule 
interaction. The dyein-microtubule interaction has as 
a participant a Dynein ATPase called dynein.” 
(Aoyama and Kamiya 2005) The semantic graph for 
this paper is shown in figure 1. 

 “Flagellar is a Flagellum that has as a part 
some Cytoplasmic Structure called axoneme. There 
is a Microtubule that is part of the axoneme. There 
is a molecular process that has as an actor the 
Microtubule and that is regulated by some molecule 
part called dynein arm.” (Yanagisawa and Kamiya, 
2004) 

 “There is a Flagellum that has as a part some 
Cytoplasmic Structure called axoneme. Glass 
substrate is a physical object that binds to the 
axoneme.” (Sakakibara et al., 2004) 

5 RELATED WORK 

The goal of the work presented in this paper is to 
discover new knowledge or hypotheses from the 

Physical Objects
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has structure part 
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Flagella

DISCOVERING RELATIONSHIP ASSOCIATIONS IN LIFE SCIENCES USING ONTOLOGY AND INFERENCE

15



 

literature. There are several previous attempts to 
attain this goal as we mentioned in Section 1.  

Swanson presented one of the first literature-
based hypotheses that fish oil may have beneficial 
effects in patients with Raynaud’s disease (Swanson, 
1986). His original discoveries were based on an 
exhaustive reading of the literature. Swanson 
described the process of his literature-based 
hypotheses discovery with his ABC model: if A and 
B are related, and B and C are related, he suggested 
that A and C might be indirectly related.  

The text analysis scripts developed from 
Swanson’s initial work evolved into the Arrowsmith 
system (Swanson and Smalheiser, 1997). The 
Arrowsmith system considers the titles of papers 
from MEDLINE. If two concepts co-occur in a title, 
then they are considered to be related. Therefore, the 
Arrowsmith system uses the relationships of co-
occurrence of concepts in titles to infer the implicit 
relationships between two concepts. 

Gordon and Lindsay developed a methodology 
for replicating Swanson’s discovery based on lexical 
statistics. They used different word frequency-based 
statistics, including words and multiword phrases 
from entire MEDLINE records in addition to title 
words (Gordon and Lindsay, 1996; Lindsay and 
Gordon, 1999).  

Weeber and colleagues used the Unified Medical 
Language System (UMLS) Metathesaurus to identify 
biomedically interesting concepts in MEDLINE 
titles and abstracts. They also exploited the semantic 
categorisation that is included in the UMLS 
framework (Weeber et al., 2003, 2005). 

Hristovski and colleagues used the manually 
assigned MeSH terms rather than the natural 
language text from MEDLINE citations. Their tool 
BITOLA computes association rules between MeSH 
terms. They used association rules to measure the 
relationship between MeSH term concepts in the 
form X -> Y (confidence, support). They used 
concept co-occurrence as an indication of a 
relationship between concepts, but they did not try to 
identify the kind of relationship. Therefore, although 
their association rule method determines whether or 
not there is implicit relationship between two 
concepts, it cannot identify the specific type of 
relationships that are associated. Their association 
rules are between two concepts, not two 
relationships (Hristovski et al., 2001, 2005).  

All these existing approaches focus on extracting 
non-specified relationships between two concepts in 
the target domain. In contrast, our approach tries to 
discover an implicit association between a pair of 
relationships, each of which predicates the specific 
way that one concept modifies another.  We call a 
pair of relationships that are found to be relevant a 

relationship association. Our approach uses semantic 
web techniques to enable this kind of discovery of 
implied associations between relationships. 
Although Hristovski et al. suggested that MeSH 
terms represent more precisely what a particular 
document is about than plain text, MeSH terms 
cannot represent the relationships between the 
entities that are described. Our approach uses 
concepts and properties specified in an ontology that 
logically structures a set of MeSH terms in order to 
represent the relationships between entities described 
in a MEDLINE paper, which we believe provides a 
more precise representation of that paper.  

6 CONCLUSIONS 

How to help researchers make scientific discoveries 
using the existing published knowledge is an 
important problem in bioinformatics and knowledge 
discovery fields. Recently, many literature-based 
discovery methods and tools have been proposed for 
solving this problem. These approaches mainly use 
text-mining techniques to discover non-specified 
relationships between two concepts.  

We have presented an approach based on 
semantic web techniques to discover the association 
of pairs of specified relationships, which we call 
relationship associations. These relationship 
associations could help researchers generate 
scientific hypotheses and also assist in the creation 
of semantic graphs describing scientific documents 
in a computer-interpretable way.  

We first reviewed our preliminary work for 
creating semantic graphs using an ontology 
developed from a subset of the MeSH vocabulary. 
Then, we described the process of extracting 
relationship associations from those semantic graphs. 
First, we generate triple queries from the semantic 
graphs and calculate their frequencies of occurrence 
by matching them with the set of semantic graphs 
using logical and rule-based inference. Next, we 
generate association queries from the triple queries 
whose frequencies of occurrence are larger than a 
specified threshold. We remove association queries 
that specify the same semantic relationships and 
match the remaining association queries with the set 
of semantic graphs to get their frequencies of 
occurrence. Finally, we convert the association 
queries whose frequencies exceed the given 
threshold to relationship associations expressed in 
natural language.  

We discussed the results of an experiment to 
apply the approach to a set of 392 semantic graphs 
based on papers from MEDLINE.  The relationship 
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associations that were created from these semantic 
graphs were examined and several interesting ones 
were identified. 

The relationship association extraction method 
presented here can be used in other knowledge 
domains. In future work, we plan to apply the 
method to extract relationship associations from a set 
of semantic graphs that have been created to express 
failure events in the field of engineering.  
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