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Abstract.  Described are the motivation and a method for combining readings 
of RFID tags placed in static locations in a plant environment using a mobile 
reader attached to a forklift and inertial measurements of the motion of the 
forklift to track its position and ultimately the positions of containers it moves 
within the plant.  Strengths and limitations of RFID-based and inertial-based 
methods are presented along with an algorithm for postprocessing and 
combining the readings of each.  The accuracy of the resulting position 
estimates are shown to be on the same order as the accuracy of RFID reader 
range variation. 

1 Introduction 

Desire for real-time visibility of inventory and assets across the supply chain is 
driving fast adoption of advanced information technology for location tracking.  
Location information eliminates the need for non-value added inventory search 
activities and creates a foundation to further optimize the operational efficiency of 
business units [1].  While the integration of RFID, GPS, and wireless communication 
is already common for the logistics industry to track products in routes between 
supply chain sites [2], tracking within indoor environments such as plants and 
warehouses is still a challenging problem. 
 Advancements in RFID technology have facilitated locating tagged assets 
indoors [3].  In particular, the field of Real Time Locating Systems (RTLS) is rapidly 
growing, primarily employing active RFID.  Existing RTLS solutions differ in 
operating frequency, methods, granularity, accuracy, and the resulting cost of 
infrastructure and operation.  Despite significant development, RTLS is presently 
prohibitive for commodity item tracking due to the substantial cost of active RFID 
and is typically employed only for tracking personnel and expensive resources. 
 Tracking commodity inventory or containers is usually accomplished using 
passive RFID and fixed readers operating at "choke points", providing zoning 
location of a given inventory item.  For a large area, the infrastructure cost can be 
very high, and often fixed readers are installed only at shipping and receiving doors, 
providing inventory information but not location.  The recent introduction of forklift-
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mounted mobile RFID readers [4] addresses the problem of limited visibility into 
inventory locations associated with choke points.  In this case the locations of the 
inventory items can be recorded from the location of the RFID reader at the point of 
unloading.  Provided that these items will be moved using only vehicles equipped 
with the reader and the location of the reader is known, this method can offer 
relatively reliable location records.  A number of different approaches have been 
proposed for localization of mobile readers.  In addition to the RFID-based RTLS 
mentioned above [5, 6], other technologies include Wi-Fi, Ultrasonic, and Infrared.  
Often these network-centric approaches are hampered by the need for a substantial 
initial investment in infrastructure to ensure the required coverage and accuracy.  An 
alternative approach relies on sensors and instrumentation installed on the delivery 
vehicle to track its location.   

There is a substantial body of knowledge related to vehicle-centric localization 
methods developed within the field of robotics [7] and successfully applied in 
industrial settings [8].  The most common approaches are dead reckoning and the use 
of landmarks.  Dead reckoning is a method of finding the relative position of a mobile 
device from a previous known position using inertial measurements or odometry.  
Challenges with this method include the need to know the original position and the 
accumulation of errors requiring continuous resetting of position using other sensors.  
Landmark-based localization determines the absolute position of the device through 
the recognition of predetermined distinct natural or artificial features of the 
environment.  Artificial landmarks are location reference markers attached to walls, 
ceiling, or floor that can be easily recognized by vehicle-mounted instrumentation and 
can be relatively inexpensive to install.  Examples include special visual patterns [9], 
infrared light-emitting diodes [10], and RFID tags [11-13].   

Although both dead reckoning and landmark-based methods are error-prone, 
fusion of the two can result in relatively reliable localization.  Several localization 
methods have been proposed that deal with uncertainty of the measurement data and 
provide data fusion from different noisy sources such as dead reckoning and 
landmarks.  The Kalman Filter is a widely used method to compensate for noise and 
is applicable to the localization problem [14].  Monte-Carlo or Particle Filter 
localization [15] and fuzzy logic [16] have also been considered.  In this paper we 
present an algorithm for the fusion of RFID-based localization and inertial 
measurement to obtain an accurate location of a delivery vehicle (forklift).  With the 
forklift already equipped with a mobile RFID reader, it is logical to consider the use 
of passive RFID labels to create static location references in the environment.  Since 
the application considered does not require instantaneous knowledge of an asset's 
location, the data from both inertial measurements and RFID are fused using post-
processing. 
 This paper describes the automotive part stamping environment and the need for 
container tracking.  Passive RFID and inertial-based localization are then presented 
with strengths and weaknesses of each individually.  The synergistic fusion of the two 
methods is shown to eliminate the weaknesses of each and is further improved by 
post-processing.  The data fusion algorithm is then described, followed by 
conclusions. 
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2 Background 

The automotive stamping plant is a first tier supplier providing major components for 
the vehicle body including doors, fenders, roofs, etc.  The stamping plant supplies 
parts to assembly plants and service facilities using truck or rail transportation.  In 
general, the stamping process consists of blanking, die press, and assembly/welding 
operations.  At the end of the press or assembly operations the parts are placed into 
metal racks that are used to store and transfer them between stamping operations and 
customers.  Containers hold 8 to several hundred parts each and are unique to each 
part.  Typically, the size of the racks range between 4 to 12 feet in length, 3 to 7 feet 
in width, 4 to 8 feet in height, and weigh up to 5000 lb when loaded.  There are over 
20,000 racks in any given plant, and for each given part type there is a limited rack 
fleet.  It is important to closely monitor the flow of racks within the plant and between 
the plant and the customer's site.  If the empty racks are not received back from the 
customer on time or are held at the repair area, there may be an insufficient number of 
racks to support production, resulting in non-optimal production batch sizes or 
hampering the ability of the plant to satisfy customer demand.  Each rack is tagged 
with a passive RFID label, and fixed readers at shipping doors monitor rack flow 
between the plant and its customers.  However, more granular tracking using fixed 
readers would require a substantial investment in infrastructure as a typical stamping 
facility is over 1,000,000 square feet. 

 
Fig. 1. Schematic of the flow of racks associated with the given work center. 

 The racks are handled by forklifts which move between the end of manufacturing 
lines and storage areas, to and from trucks and rail cars, or to and from a repair area.  
Figure 1 illustrates the rack flow within a typical stamping facility and associated with 
a given set of parts produced by an assembly-welding operation (work center).  The 
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forklift transfers the racks with parts from the work center to the dedicated shipping 
storage area and brings empty racks back to the work center.  These parts can then be 
loaded onto trucks or rail cars.  If there are quality concerns regarding the parts stored 
in the shipping area, the forklift may move these parts into a repair area and then 
back.  A typical stamping facility employs 40 forklifts, and each forklift is equipped 
with a wireless terminal that can exchange data with a back office computer. 

The many benefits of knowing the specific location and status of racks (full, 
empty, or in repair) include saving time for material handling personnel locating 
inventory and reducing downtime caused by unavailability of racks.  In addition, 
when parts are quarantined due to quality concerns, location information can reduce 
the number of racks that are pulled from inventory.  Location and status information 
can also facilitate a first-in-first-out (FIFO) inventory control system, improve 
inventory turnover rate, reduce the potential for obsolete parts, and improve material 
flow and space utilization. 

3 Inertial Tracking 

Inertial measurement of motion involves the use of linear accelerometers and/or 
rotational rate sensors whose signals are mathematically integrated to produce speed 
and position estimates.  These sensors are deployed in a wide array of applications 
including air, space, and ground vehicles as well as various consumer electronic 
systems.  In each application, the orientation or dynamic motion state of the vehicle or 
device is of interest.  Automotive applications include anti-lock braking, traction 
control, yaw and roll stability controls.  Typical sensor sets for ground vehicles 
measure longitudinal and lateral vehicle accelerations and yaw rate, with roll rate 
seeing wider use now in roll mitigation systems.  In automotive applications, vehicle 
wheel speed sensors and GPS may also be added. 

A general-purpose method for tracking a system in two-dimensional space 
involves combining longitudinal and lateral accelerations and yaw rate.  Yaw rate ψ&  
(see Figure 2 for signal and axis definitions) is integrated to provide yaw angle or 
heading: 

 ∫+=
t

dtt
 

0 0  )( ψψψ & . (1) 

Vehicle-fixed longitudinal (x-axis) and lateral (y-axis) accelerations, ax and ay 
respectively, are then combined with heading and yaw rate to give velocities in the 
fixed frame of reference (with respect to inertial ground): 
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Finally, these inertial velocities are integrated to give positions in the inertial frame: 

 ∫+=
t
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0 0  )( , (4) 

 ∫+=
t

y dtVYtY
 

0 0  )( . (5) 

 
Fig. 2.  IMU signals and axes. 

 Because the sensor measurements are prone to offset and noise errors, this 
double-integrating process results in error accumulation, limiting the time and 
distance over which this process provides acceptable results.  These limitations can be 
mitigated to some degree by including kinematic constraints on the integration 
process which are imposed by the vehicle itself.  For instance, the forward speed, yaw 
rate, and lateral acceleration of a wheeled vehicle are coupled directly as long as the 
vehicle moves without sliding its wheels (a good assumption for heavy, factory floor 
forklifts).  Additionally, vehicle states such as speeds and rotational rates are bounded 
by the vehicle operating envelope.  The inertial tracking method benefits from a 
continuous stream of data from the sensors, resulting in uninterrupted, fine-grained 
position information.  However, to anchor the path calculation in absolute space, the 
position, heading, and velocity of the vehicle at the initiation of tracking (X0, Y0, Vx,0, 
Vy,0, and ψ0) must be known by some other means.  For this reason, in addition to the 
drift problem, inertial tracking alone is not completely suitable for forklift tracking. 

4 RFID Grid Tracking 

Unlike inertial tracking that drifts and has no inherent connection to absolute space, 
RFID tags used as a tracking system can be physically connected to the operating 
environment itself.  RFID as a static positioning system requires the use of both tags 
as well as a reading device that receives their identification information.  The tags are 
either attached at various fixed and known locations in the plant environment and 
detected with a reader attached to the forklift, or they are deployed on the forklift and 
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read with a plurality of stationary readers.  The former approach is advantageous as it 
also facilitates the detection of the tagged and tracked inventory (racks).  If the 
location tags are deployed in a fine enough mesh within the plant environment, 
forklift tracking can be accomplished using this method alone.  However, despite their 
low cost, passive RFID tags must still be installed, cataloged, and maintained and are 
subject to damage in the hostile plant environment where suitable safe installation 
locations may be few and far between.  For example, a typical stamping plant may 
have support columns, the only suitable installation location for tags, separated by 40 
feet or more. 
 There are other inaccuracies as well.  Because the tags can be read at a distance 
from a range of orientations, the exact location of the reading device attached to the 
tracked vehicle is not known when communication is acquired with a tag.  Therefore, 
the static RFID tag location signal has some position error since the passing reading 
device can only be assumed to be located within some expected range (10 to 15 feet) 
of the energized tag.  Additionally, there may be time when the tracked vehicle is not 
in range of any tag or where a tag is damaged and inoperative.  Thus the RFID 
tracking method, while attached to inertial space, is nevertheless somewhat 
inaccurate, discrete in nature, and intermittent. 

5 IMU and RFID Fusion 

Combining the inertial (IMU) and static (RFID) tag data can reduce or eliminate the 
limitations associated with each individually.  The inertial measurements provide 
continuous data that is potentially accurate enough to reasonably "connect the dots" 
between the sparse static tag data.  Using the absolute position data from the RFID 
tags, offset errors in the IMU readings can be estimated and removed, resulting in 
improved positioning, and the IMU data integration can be initialized with static 
RFID location information to connect it to absolute space. 
 In the automotive stamping plant setting, the instantaneous location of a tracked 
vehicle is less important than an accurate estimate of the vehicle's path during a 
finished delivery as each event takes a few minutes or less.  Therefore, the method 
proposed here assumes that inertial sensor data and static tag data will be collected 
and stored during an event.  When the event ends, the data will be post-processed to 
determine the path of the delivery vehicle (especially its end points).  Using data from 
the entire event provides a richer data set from which to calculate path, whereas 
attempting a continuous, immediate position estimate during the delivery event limits 
the calculations to data that has occurred in the past only and provides no real benefit 
as the post-processed data is timely enough (within a few seconds of the event 
ending) for the stamping environment. 

6 Postprocessing using Best-Fit Optimization 

The proposed computational method relies upon a recursive solution that makes 
repeated guesses of the initial vehicle position and IMU sensor offsets to attempt to 
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minimize the error between the resulting IMU-based path estimate and the known 
locations of the static RFID position readings taken over that path.  As the solution 
converges, RFID reader range information is employed to attempt to predict the RFID 
signal acquisition and loss locations to further improve solution fidelity.  The full 
method is consists of the following 6 steps. 

Step 1. Inertial (IMU) and static tag (RFID) data is collected during an inventory 
delivery event.  Inertial data is collected continuously at a regular rate, typically 10 to 
100 Hz.  Static tag data consists of the time and ID number of each tag as 
communication with the tag is acquired and then lost. 

Step 2. Upon completion of the delivery event (determined by observing acquisition 
and loss of inventory tag readings), the vehicle path is reconstructed solely from the 
inertial data by making vehicle initial state assumptions (X0, Y0, Vx,0, Vy,0, and ψ0).  
Typically, these initial conditions are chosen based on information from the end of the 
previous delivery event. 

Step 3. Using a best guess position for each RFID tag reading, one that represents the 
most likely average vehicle position while it is in communication range with the 
location tag, a path error calculation is made using the path constructed in Step 2:  

 [ ] [ ]∑ −+−=
n

nRFIDnnRFIDn YtYXtX
n

E
1

2
,

2
, )()(1 . (6) 

Here n is an index indicating the acquisition and loss events for the RFID tag 
readings, and X(tn) and Y(tn) give the position of the IMU integration calculation 
(Equations 1-5) at these RFID tag detection times.  The best guess positions, XRFID,n 
and YRFID,n, are unique for each tag and are based on the position of the tag, the most 
likely vehicle path followed when in range of the tag, and the reader's expected 
communication range.  These values can be cataloged during the tag's installation or 
constructed from data collected during system operation. 

Step 4. The assumed vehicle initial state (first used in Step 2) is perturbed, and Steps 
2 and 3 are repeated until these parameters converge to minimize the error calculated 
in Step 3.  This iterative process can be conducted using any of a number of 
optimization algorithms such as Matlab's fminsearch function.  The result of this step 
is the best match of the inertial sensor-based position to the best guess RFID tag 
positions used in Step 3. 

Step 5. The result of Step 4 is used to calculate the most likely RFID tag acquisition 
and loss locations using detection range assumptions.  At each time of acquisition or 
loss, the vehicle position (from Step 4) and tag location data are used to find the 
intersection of the estimated vehicle path with the locus of expected tag detection 
range points.  This locus can be assumed to be circular, or more complex shapes can 
be used based on more detailed tag and reader information.  These new 
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acquisition/loss points establish a more likely vehicle path for further optimization of 
the vehicle initial conditions (X0, Y0, Vx,0, Vy,0, and ψ0). 

Step 6. Steps 3 and 4 are repeated using the new acquisition/loss positions produced 
in Step 5.  These positions are updated with each iteration of the inertial data path 
optimization, and this step is repeated until the solution converges and each 
subsequent iteration produces a path prediction that is negligibly different from the 
iteration before. 

 
Fig. 3. Forklift path reconstruction showing actual forklift position evenly spaced in time, 
RFID antenna locations and ranges, initial path estimate, and final path estimate after ten 
iterations. 

 Figure 3 illustrates several of the aspects of the method described above.  The 
actual path of the forklift is shown for a delivery event with forklift orientation 
superimposed at regular time intervals.  Large solid circles surround the RFID 
location tags and depict their actual detection range, while the large dashed circles are 
the assumed reader ranges used in Step 5.  The smaller circles located within the tag 
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detection range are the initial best guess detection locations used in Step 3, and the 
half-tone line is the path resulting from the optimization using these points (result of 
Step 4).  Shown also is the result of the 10th iteration of Step 6 using updated 
acquisition and loss points calculated in Step 5.  Note the convergence of the 
optimized path toward the actual path from the Step 4 result to the Step 6 result. 
 The accuracy of the path reconstruction depends mostly on the accuracy of the 
assumed reader detection range as compared to the actual range.  Note from the figure 
that the path error (the distance between the actual and final estimated path) is 
roughly the same size as the reader range variability.  For a typical forklift-mounted 
RFID reader, this is 5 – 10 feet.  Solution accuracy can be further improved by 
including inertial sensor offset errors that are optimized with the initial conditions. 

7 Conclusions 

Presented here is an effective method of indoor localization of forklift vehicles 
equipped with mobile RFID readers. The method is based on the fusion of inertial 
measurements with information from static RFID location tags. While each individual 
method alone is prone to substantial errors, fusion of the two can provide results of 
reasonable quality while minimizing the cost of implementation. The accuracy of the 
resulting location estimate depends on the spacing of the location tags throughout the 
plant as well as the variability of the RFID reader detection range. In practice it is 
possible to achieve an accuracy within 5-7 feet which is acceptable for the stamping 
plant problem.  
 The ultimate goal of this development is to determine and record the locations of 
the RFID tagged containers handled by a given forklift.  Specifically, the described 
approach has been developed to track the rack locations for automotive stamping 
plants. While this paper has focused on the fusion of the inertial measurements with 
the static information from the RFID tag locations for the purpose of tracking the 
delivery vehicle, it should be noted that the full material tracking problem is more 
complex.  In addition to location awareness, the pick-up and delivery event with its 
associated inventory must be identified by monitoring the stream of RFID tag 
readings seen by the mobile reader.  This must be accomplished robustly despite 
delivery complexities such as moving stacks of racks where not all of the moved 
racks will be seen by the reader during the entirety of the delivery event.   
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