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Abstract: In this paper we investigate how diverse knowledge sources interact to direct individuals in a swarm 
population influenced by a social fabric approach to efficiently solve nonlinearly constrained global 
minimization problems. We identify how knowledge sources used by Cultural Algorithms are combined to 
direct the decisions of the individual agents in solving optimization problems using an influence function 
family based upon a Social Fabric metaphor. The interaction of these knowledge sources with the 
population swarms produced emergent phases of problem solving. This reflected an algorithmic process that 
emerged from the interaction of the knowledge sources under the influence of a social fabric using different 
configurations. This suggests that the social interaction of individuals coupled with their interaction with a 
culture within which they are embedded provides a powerful vehicle for the solution of nonlinearly 
constrained optimization problems. The algorithm can escape from the previously converged local 
minimizers, and can converge to an approximate global minimizer of the problem asymptotically. 
Numerical experiments show that it is better than many other well-known recent methods for constrained 
global optimization. 

1 INTRODUCTION 

The Cultural Algorithm (CA) is a class of 
computational models derived from observing the 
cultural evolution process in nature. It is a dual 
inheritance system that characterizes evolution in 
human culture at both the macro-evolutionary level, 
which takes place within the belief space, and at the 
micro-evolutionary level, which occurs at the 
population space. Knowledge produced in the 
population space at the micro-evolutionary level is 
selectively accepted or passed to the belief space and 
used to adjust the symbolic structures there. This 
knowledge can then be used to influence the changes 
made by the population in the next generation. The 
basic framework is shown in Figure 1.  

Previous work by Reynolds (Reynolds and 
Saleem, 2003) identified five basic categories of 

knowledge that were useful in decision making. 
They were normative knowledge (ranges of 
acceptable behaviours), situational knowledge 
(exemplars of successful and unsuccessful 
solutions), domain knowledge (knowledge of 
domain objects, their relationships, and interactions), 
history knowledge (temporal patterns of behaviour), 
and topographical knowledge (spatial patterns of 
behaviour). This set of categories is viewed as being 
complete for a given domain in the sense that all 
available knowledge can be expressed in terms of 
one of these classifications. 

Reynolds (Reynolds and Saleem, 2003) looked at 
the roles and contribution of these five generic 
knowledge classes (normative, topographical, 
domain, situational, and history knowledge) to the 
optimization problem-solving process using 
Evolutionary Programming (EP) as the population 
model. They observed the emergence of certain 

103
Z. Ali M., Khamayseh Y. and G. Reynolds R. (2009).
CULTURAL SWARMS - Knowledge-driven Framework for Solving Nonlinearly Constrained Global Optimization Problems.
In Proceedings of the International Joint Conference on Computational Intelligence, pages 103-110
DOI: 10.5220/0002282301030110
Copyright c© SciTePress



 

problem solving phases in terms of the relative 
performance of different knowledge sources over 
time. They labelled these phases as the coarse 
grained, fine grained, and backtracking phases. Each 
phase is characterized by the dominance of a suite or 
subset of the knowledge sources that are most 
successful in generating new solutions in that phase. 
In fact, the dominant subset of knowledge sources is 
often applied in a specific sequence within each 
phase. It appears that one knowledge source 
produces new solutions that are consequently 
exploited in by another knowledge source. 
Transitions between phases occur when the solutions 
produced by one phase can be better exploited by 
knowledge sources associated with the next phase. 
These phases emerged in static, dynamic, and 
deceptive problem environments.  

 
Figure 1: The framework of cultural algorithm. 

The coarse grained phase often dominates at the 
beginning of the search process or when the problem 
solving landscape changes dynamically, and a search 
for a new solution must begin anew. In the coarse 
grained phase topographical knowledge dominates, 
producing the best new solution over 50% of the 
time. Situational knowledge is the second most 
successful, producing the best new solution over 
25% of the time. In the fine-grained phase 
situational knowledge is the most successful at 
generating the best new individual, while Normative 
and Domain knowledge are a distant second best. In 
the backtracking phase all of the knowledge sources 
are equally successful at generating new solution. 
Static problems are the exception, in which cases the 
history component has little effect. Likewise, in non-
deceptive environments backtracking occurred less 
frequently than the other two phases.  

Cultural Algorithms can provide a flexible 
framework in which to study the emergence of 
complexity in a multi-agent system (MAS) 
(Reynolds, 1986). In this scenario the Cultural 
Algorithms framework has been embedded with the 

recursive porous agent simulation tool (Repast) 
(North, Collier, and Vos, 2006), producing a toolkit 
that is called Cultural Algorithms Toolkit (CAT). 
This tool is used to view the power Cultural 
Algorithms in solving many Engineering problems 
and other type of problems (Reynolds and Ali, 
2007). 

While many successful real-world applications 
of Cultural Algorithms have been produced, we are 
interested in studying the fundamental 
computational processes involved the use of Cultural 
Systems as problem solvers. In previous work the 
influence of the knowledge sources have been on 
individuals in the population only. The goal of this 
paper is to examine how Cultural Algorithms solve 
nonlinearly constrained global optimization 
problems. In our investigation here, we employ a set 
of standard test problems with differentiable 
objective function. These test problems are 
considered diverse enough to cover many kinds of 
difficulties that constrained global optimization 
faces. Agents then interact socially via the various 
knowledge sources to find the optimum after 
weaving the social fabric to motivate interaction. We 
then investigate the emergence of social patterns in 
both the population space and the belief space when 
the problem is successfully solved.  

In this new approach, the Social Fabric influence 
function is the gear to find the optimal for a certain 
minimization problem. The agents are connected 
through a topology that determines connectivity type 
between agents, through which the fabric is weaved 
after the initial signal is sent from the Knowledge 
Sources. 

2 PREVIOUS WORK 

Several researchers have used different types of 
Algorithms for solving constrained optimization 
problems. A quick overview is as follows: 

Coello and Mezura (Coello and Mezura-Montes, 
2002) implemented a version of the Niched-Pareto 
Genetic Algorithm (NPGA) (Horn, Nafpliotis, and 
Goldberg, 1994) to handle constraints in single-
objective optimization problems. The NPGA is a 
multiobjective optimization approach in which 
individuals are selected through a tournament based 
on Pareto dominance. However, unlike the first 
NPGA, Coello and Mezura’s approach does not 
require niches (or fitness sharing (Deb and 
Goldberg, 1989)) to maintain diversity in the 
population. The NPGA is a more efficient technique 
than traditional multiobjective optimization 

IJCCI 2009 - International Joint Conference on Computational Intelligence

104



 

algorithms, because it only uses a sample of the 
population to estimate Pareto dominance.  

Deb (Deb and Goyal, 1996) proposed a Genetic 
Adaptive Search (GeneAS) to solve engineering 
optimization problems. He proposed to use both, 
binary and real encoding for each solution. This 
approach was tested on three engineering problems 
(Deb and Goyal, 1996), making emphasis in 
problems that have discrete and continuous 
variables. The obvious drawback of the approach is 
the need of implementing combined operators for 
the special encoding adopted. Mezura-Montes 
(Coello and Mezura-Montes, 2002) presented an 
enhanced Evolutionary Algorithm that doesn’t 
require the definition of extra parameters other than 
those used by the Evolutionary strategy. The 
implemented mechanism allows the algorithm to 
maintain diversity during the process. Reynolds 
(Reynolds and Peng, 2005) implemented an 
algorithm that uses the Marginal Value Theorem 
(MVT) to influence the individuals in the population 
and drive the process of obtaining better solutions. 
The algorithm was a more efficient one than the one 
presented in (Coello and Mezura-Montes, 2002; 
Coello, 2002) and (Coelho, Souza, and Mariani, 
2009). 

3 THE SOCIAL FABRIC 
INFLUENCE FUNCTION 

3.1 Concept 

Knowledge sources are allowed to influence 
individuals through a network. From a theoretical 
perspective we view individuals in the real world as 
participating in a variety of different networks. 
Several layers of such networks can be supported 
within a population. The interplay of these various 
network computations is designated as the “social 
fabric”. This notion of social fabric has appeared 
metaphorically in various ways within Computer 
Science. For example, IBM among others developed 
tools to reinforce the “social fabric” whereby 
designers and programmers interact to solve 
complex problems (Cheng, Patterson, Rohall, 
Hupfer, and Ross, 2005). 

We adapt the Brock-Durlauf model of interactive 
discrete choice (Brock and Durlauf ;2001) to 
arbitrary interaction topologies represented by an 
arbitrary adjacency matrix Г: All individuals faces 
the binary choice set S = {-1, 1}: Let agent i choose 
ωi, ωi Є S, so as to maximize her utility, which 

depends on the actions of her neighbours: Ui = 
U(ω ,  ω ), where  ω  denotes the vector of 
dimension di containing as elements the decisions 
made by each of agent i's neighbours, j  . The 
I-vector of all agents' decisions,  ω= (ω , … ,ω ); is 
also known as a configuration, and  ω  is known 
as agent i's environment. We assume that an agent's 
utility function Ui is additively separable in a private 
utility component, which without loss of generality 
(due to the binary nature of the decision) may be 
written as hωi, h > 0; in a social interactions 
component, which is written in terms of quadratic 
interactions between her own decision and of the 
expectation of the decisions of her neighbours, ω , 
ω

| |
 ∑ ω ; and a random utility 

component, ω ; which is observable only by the 
individual i. 

The social fabric is viewed as a computational 
tool that influences the action and interaction of the 
various knowledge sources. Informally, we have N 
networks and M individuals. An individual can be 
associated with one or more networks. For a given 
network only certain information is allowed to flow 
along that network between nodes. Each network 
can be viewed as being produced by a single thread 
that links up the participating nodes.  

3.2 Weaving the Social Fabric into the 
CAT System 

The networks that comprise the social fabric can 
emanate from either the Belief Space or the 
Population Space. In terms of the population, the 
network could reflect a kinship network or an 
economic network for example. In terms of the 
Belief Space, the network could be the Internet, or a 
local area network, or some other network directly 
accessible to the knowledge sources. It may be that 
the Knowledge Sources know something about the 
networks that they can access but are not sure how 
those networks are linked up to the low level social 
networks of the population. In other words, they 
may be aware of the outer layer of the social fabric, 
but can only infer about what is in the interior lining. 

The experimental framework for the social fabric 
component is illustrated in Figure 2. The figure 
shows the initialization step, where each individual 
first will be affected by one knowledge source (as a 
special case) that will represent the initial signal to 
be passed to other individuals. The signal is passed 
to adjacent individuals in the topology. The 
individual is represented as a node in the landscape, 
where the number of connections or hops over 
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which it can transmit this information to its 
neighbours will correspond to its influence, by a 
maximum hop distance and will be limited. The 
number of hops can be either 0 or d meaning either 
no connections or d connections at a time. The 
current system is using 0 hops as the individuals 
don’t have any connections with each other. 

From the standpoint of the Knowledge Sources 
they can seed or influence a subset of the population, 
and that subset may have population level affects but 
they can only guess what they might be. The key is 
to “seed” a subset of the population how represent 
“the weave” to these other networks, assuming that 
those that represent the weave between the networks 
have certain properties.  

 

Figure 2: Embedded Social Fabric component in CAT 
with activated dynamics in the environment. 

As a simple configuration in CAT we can simply 
specify just one network, one that is accessible to the 
Knowledge Sources in the Belief Space. What we 
wish to investigate is whether just having access to 
the Social Fabric is sufficient for the Knowledge 
Sources to improve the performance of the influence 
function as opposed to not having a network to 
distribute their influence at all. 

The process starts where each individual first 
will be affected by one knowledge source (as a 
special case) that will represent the initial signal to 
be passed to other individuals. The signal is passed 
to adjacent individuals in the topology based on the 
network connectivity. The individual is represented 
as a node in the landscape, where the number of 
connections or hops over which it can transmit this 
information to its neighbours corresponds to its 
influence. The maximum number of hops can be 

either 0 or d meaning either no connections or d 
connections at a time. The simplest case is 
configured by assuming that each individual is 
connected to a fixed number of other individuals 
using a constant topology. The topologies that we 
used here were taken from work in Particle Swarm 
Optimization where the impact of various topologies 
on the communication of local information among 
particles has been studied.  

Several frequently used topologies taken from 
the Particle Swarm Optimization literature are 
supported in CAT. For example, the lBest model is 
the simplest form of a local topology is known as the 
ring the ring model. The lBest ring model connects 
each individual to only two other individuals in the 
landscape and is shown in figure 3(a). Another 
frequently used topology is the gbest topology. In 
this topology each individual in the network is 
connected to all the individuals in the network as 
shown in figure 3(b). The advantage of the lbest 
model may lie in its lower convergence rate relative 
to the gbest model which may reduce the change of 
premature convergence to a false peak.  

Another topology supported in CAT is the square 
topology in which each individual has four 
connections in addition to other individuals in the 
population. 

Figure 3:  Topologies used in the Social Fabric model for 
connection between individuals. (a) lBest ring topology. 
(b) gBest topology. 

At each time step, every individual is influenced 
by one of the knowledge sources. In this simplest 
version, Knowledge Sources do not know anything 
about the network and the selected individuals’ 
position in it. The individual then transmits the name 
of the influencing Knowledge Source to its 
neighbours through as many hops as specified. Next, 
each node counts up the number of Knowledge 
source bids that it collects. It will have the direct 
influence from the Knowledge Source that selected 
it plus the names of the Knowledge Sources 
transmitted to it by its neighbours. The Knowledge 
Source that has the most votes is the winner and will 
direct the individual for that time step. In case of a 
tie, there are several tie breaking rules implemented 
in CAT. They include, select the “most frequently 
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used KS, “the least frequently used Knowledge 
Source”, and “the Knowledge Source that selected 
the individual this time”, among others. In later 
sections, we will compare the performance of the 
lBest and square topologies when solving an 
example Engineering problem, used a benchmark. 

The topographical knowledge in the belief space 
is used to generate a search direction d at a given 
solution x, and then use it to generate new trial 
solutions in a neighbourhood of x. The 
topographical knowledge structure is initialized by 
sampling a solution in every cell in the grid and 
creating a list of best cells. The update occurs when 
a cell is divided into sub-cells when an accepted 
individual’s fitness value is better than the best 
solution in that cell, or if the fitness value of the 
cell’s best solution has increased after a change 
event is detected.  

4 EXPERIMENTAL 
FRAMEWORK & RESULTS 
ANALYSIS 

4.1 Experimental Framework 

The number of individuals is fixed to 100, and the 
total number of generations is 9000. If a tie is found 
when the social fabric is weaved the resolution 
approach used is to use the Knowledge Source that 
directly affected the individual at that step.  

The algorithm will be tested on a set of standard 
test problems G1-G13 (Hedar and Fukushima, 2006; 
Hock and Schittkowski, 1981; Koziel and 
Michalewicz, 1999; Michalewicz and Schoenauer, 
1996) except G2, since the objective function of 
problem G2 is not differentiable. These test 
problems are considered diverse enough to cover 
many kinds of difficulties that constrained global 
optimization faces (Hedar and Fukushima, 2006; 
Wenxing Z., Ali, M., 2009), and have been used to 
test performances of algorithms for constrained 
global optimization. 

The algorithm was used to solve each problem 
30 times with 100 individuals for the population 
space and a varying number of generations for each 
problem depending on its complexity with a 
maximum of 15000 generations for problems G1 
and G15. We experimented with different kinds of 
topologies through which we found that the best was 
the lBest topology. 

Throughout the next subsection, we will use 
problem G4 for explaining how our algorithm is 

used to solve such constrained optimization 
problems efficiently.  

4.2 Analysis of Results 

In this section we report the performance of our 
technique on 13 well-known test problems G1-G13. 
We put in Table 1 the best known objective function 
value in the second column. We report in Table 1 the 
best and the worst optimal values obtained from 30 
runs for each test problem. To understand quality of 
the obtained solutions, we report in Table 1 for each 
problem the average optimal value and the standard 
deviation of the obtained objective function values 
for all 30 runs. Moreover, the success rate, the 
maximum number of generations before we stop 
each run, used to obtain these results in 30 runs, are 
reported in the third and the last columns of Table 1 
for each problem respectively.  

The approach used by Reynolds in (Reynolds 
and Peng, 2005) did not assume that there is any 
kind of connection between the individuals in the 
population space. Knowledge sources will pass their 
signals to the individuals at each time step. Our 
approach uses different topologies to pass abstract 
information obtained from the Knowledge Sources 
and then weave the social fabric to allow the 
individuals to pass the received info through the 
assumed used topology. The amount of interaction 
appears to affect the way the system solves the 
presented problem of a certain complexity. Not only 
the individual follows the successful Knowledge 
Source but also tries to adapt through neighbours in 
the built network to find a better value in the 
landscape. The results in table 2 show a statistical 
comparison between our new approach and some 
other known approaches from literature. When 
plotting the population swarms, individuals are 
plotted in different shapes to indicate which 
knowledge source is in control. 

The population swarm plots in Figures 4-a and 4-
b show the population (individuals) moving within 
the problem’s constructed landscape using the lBest 
topology used by our Social Fabric (SF) approach. 
Each individual is shape coded to reflect the 
knowledge source that has influences it in that 
generation. The best individual of a generation is 
stressed using a big cross ‘X’.  Since the results of 
the dimensions of problems can be explained 
similarly we discuss only dimensions x1 and x2. 
Figure 5 shows a sample of the constructed Social 
Fabric-lBest topology for problem G4.  

Figures 4-a and 4-b show the initial generation 
and generation 119 when running the system using 
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the Social Fabric-lBest to illustrate how the different 
knowledge sources work under the influence of the 
social fabric technique to control individuals. The 
Topographic Knowledge followers draw the fine-
tuning knowledge followers: Situational, Normative, 
and most of the Domain Knowledge followers.  

By generation 119 most of the individuals are 
swarming around the best. Topographic knowledge 
individuals are still exploring the space hoping to 
find a better solution to report it later to the fine-
tuning knowledge followers. 

(a) 

(b) 

Figure 4: Population swarm of dimension x1+x2 using the 
lBest topology. (a) Plotted at generation 1. (b) Plotted at 
generation 119. 

The power behind the algorithm lies in using the 
bounding boxes that the system calculates at each 
time step for each of the Knowledge Sources as 
illustrated in figure 6.  

A bounding box represents the standard 
deviation of each “dot” produced during that 
generation for the mutation process. It is considered 
to be the focus of the generation process by each 
knowledge source. The main idea is how these 
bounding boxes of the Knowledge Sources interact 
(overlap area), and how focused these bounding 
boxes are at each time step. The branching phase of 
the algorithmic process is shown in Figures 6-a and 

6-b, where initially the bounding boxes associated 
with the Topographic and Normative Knowledge 
Sources cover most of the space. The exploitation 
process takes place with time and the bounding 
boxes for the fine-grained search process have 
separated from those for the coarse-grained phase 
(focused search vs. wider search) and have 
surrounded the optimal value for this pair of 
dimensions. These bounding boxes are effectively 
channelling new individuals into this area as can be 
seen in figure 6-b.  

 
Figure 5: A sample Social Fabric swarm plot for problem 
G4 using lBest topology. 

(a) 

(b) 
Figure 6: Knowledge Swarm Plot of dimension x1+x2. (a) 
Plotted at generation 1. (b) Plotted at generation 119.
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Table 1: Test results for problems G1-G13. 

Prob.  Opt.  Succ. (%)  Best  Av. opt.  Worst  S.D.  # generations 

G1  ‐15  100  ‐14.99993  ‐14.99986  ‐14.99984  0.000140  15000 
G3  1  100  0.999987  0.999977  0.999971  0.000032  9000 
G4  ‐30665.539  100  ‐30665.52  ‐30665.47  ‐30665.40  0.055110  9000 
G5  5126.4981  100  5126.499  5126.501  5126.520  0.098000  1000 
G6  6961.81388  100  ‐6961.81  ‐6961.779  ‐6961.550  0.088575  1000 
G7  24.3062091  100  24.30590  24.30595  24.306122  0.000400  90000 
G8  0.095825  100  0.095825  0.095825  0.095825  0.000000  1000 
G9  680.630057  100  680.6300  680.6310  680.6315  0.015212  10000 
G10  7049.250  100  7049.244  7049.247  7049.253  0.050000  1000 
G11  0.75  100  0.750000  0.700001  0.750004  0.000002  1000 
G12  1  100  1.000000  0.999999  0.999989  0.000018  1000 
G13  0.0539498  100  0.053950  0.053953  0.053959  0.000139  15000 

Table 2: Comparison of test results for problems G1-G13. 

Prob.: opt.    PSO  SR  ASCHEA  FSA  Our alg. 

G1: ‐15 
Best 
Av. 
Worst 

‐15.0001 
‐13.2734 
‐9.7012 

‐15 
‐15 
‐15 

‐15 
‐14.84 
N.A. 

‐14.999105 
‐14.993316 
‐14.979977 

‐14.99993 
‐14.99986 
‐14.99984 

G3: 1 
Best 
Av. 
Worst 

1.0004 
0.9936 
0.6674 

1.000 
1.000 
1.000 

1 
0.99989 
N.A. 

1.0000015 
0.9991874 
0.9915186 

0.999987 
0.999977 
0.999971 

G4: ‐30665.539 
Best 
Av. 
Worst 

‐30665.5398 
‐30665.5397 
‐30665.5338 

‐30665.539 
‐30665.539 
‐30665.539 

‐30665.5 
‐30665.5 
N.A. 

‐30665.5380 
‐30665.4665 
‐30664.6880 

‐30665.52 
‐30665.47 
‐30665.40 

G5: 5126.4981 
Best 
Av. 
Worst 

5126.6467 
5495.2389 
6272.7423 

5126.497 
5128.881 
5142.472 

5126.5 
5141.65 
N.A. 

5126.4981 
5126.4981 
5126.4981 

5126.499 
5126.501 
5126.520 

G6: 6961.81388 
Best 
Av. 
Worst 

‐6961.8371 
‐6961.8370 
‐6961.8355 

‐6961.814 
‐6875.940 
‐6350.262 

‐6961.81 
‐6961.81 
N.A. 

‐6961.81388 
‐6961.81388 
‐6961.81388 

‐6961.81 
‐6961.779 
‐6961.550 

G7: 24.3062091 
Best 
Av. 
Worst 

24.3278 
24.6996 
25.2962 

24.307 
24.374 
24.642 

24.3323 
24.6636 
N.A. 

24.310571 
24.3795271 
24.644397 

24.30590 
24.30595 
24.306122 

G8: 0.095825 
Best 
Av. 
Worst 

0.095825 
0.095825 
0.095825 

0.095825 
0.095825 
0.095825 

0.09582 
0.09582 
N.A. 

0.095825 
0.095825 
0.095825 

0.095825 
0.095825 
0.095825 

G9: 680.630057 
Best 
Av. 
Worst 

680.6307 
680.6391 
680.6671 

680.630 
680.656 
680.763 

680.630 
680.641 
N.A. 

680.63008 
680.63642 
680.69832 

680.6300 
680.6310 
680.6315 

G10: 7049.250 
Best 
Av. 
Worst 

7090.4524 
7747.6298 
10533.6658 

7054.316 
7559.192 
8835.655 

7061.13 
7497.434 
N.A. 

7059.86350 
7509.32104 
9398.64920 

7049.244 
7049.247 
7049.253 

G11: 0.75 
Best 
Av. 
Worst 

0.7499 
0.7673 
0.9925 

0.750 
0.750 
0.750 

0.75 
0.75 
N.A. 

0.7499990 
0.7499990 
0.7499990 

0.750000 
0.700001 
0.750004 

G12: 1 
Best 
Av. 
Worst 

1.0000 
1.0000 
1.0000 

1.000000 
1.000000 
1.000000 

N.A. 
N.A. 
N.A. 

1.000000 
1.000000 
1.000000 

1.000000 
0.999999 
0.999989 

G13: 0.0539498 
Best 
Av. 
Worst 

0.05941 
0.81335 
2.44415 

0.053957 
0.057006 
0.216915 

N.A. 
N.A. 
N.A. 

0.0539498 
0.2977204 
0.4388511 

0.053950 
0.053953 
0.053959 
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5 CONCLUSIONS 

The Cultural Algorithm is a stochastic 
optimization method that uses evolutionary 
algorithmic mechanisms to model cultural 
evolution and social behaviors. Just as cultural 
evolution contributes to the adaptability of human 
society, CA provides an additional degree of 
adaptability to evolutionary computation. In this 
paper we have introduced the social fabric 
influence function in the Cultural Algorithms 
framework. This influence function is used to 
produce population and knowledge swarms that 
are used to optimally solve nonlinearly constrained 
optimization problems. The SF metaphor allows 
the knowledge sources to distribute their influence 
through a social network. We apply this approach 
to a set of well-known nonlinearly constrained 
optimization problems. It turns out that the used 
topology, frequency of distribution of influence, 
and conflict resolution play an important role in 
how efficiently the system produces knowledge 
and population swarms that represent structural 
patterns to solve problems.  
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