
FUNCTIONALITY RECOMPOSITION FOR SELF-HEALING

Josu Martinez and Simon Dobson
Systems Research Group, School of Computer Science and Informatics, UCD Dublin IE, Ireland

Keywords: Autonomic Computing, Formal Methods, Distributed Architecturess, Software Composition.

Abstract: Autonomic computing aims to provide self-management and adaptation in the implementation of complex
(large, heterogeneous, distributed) systems over time. Such adaptations must be stable, in the sense of main-
taining the system’s high-level goals across environmental changes, which may lead to functionality loss. In
this paper we present FReSH, a decentralised component-based framework which main objective is to self-heal
the operation of complex systems in the face of behavioural disruptions. FReSH deals with formally specified
components that provide a single piece of functionality. The reusable and shareable nature of these building
blocks makes them eligible for dynamically recomposing the functionality provided by any failing component
of the system without human intervention. FReSH supports the construction of more flexible, adaptive and
robust software structures suitable to cope with the environmental changes of complex systems.

1 INTRODUCTION

The technological advances of the recent years have
enabled the creation of new forms of dynamic in-
teractions and global cooperation among social or-
ganizations and business communities. Due to such
constantly increasing societal expectation of this new
era of computing, a myriad of heterogeneous and
distributed components are emerging to constitute
corporate-wide computing systems that extend be-
yond company boundaries (Nachira, 2007). However,
the construction of these type of systems introduce
new levels of complexity, not only because they may
evolve in size over the time, but also because both
new and old components must co-habit sharing their
resources while ensuring the correct operation of the
system.

One of the consequences is the possibility that
some functionality of the system becomes unavailable
at run-time. As it can be inferred from the results
obtained from some case studies that analyse com-
plex systems (Patterson et al., 2002), in these environ-
ments the probability of experiencing service inter-
ruption is proportional to amount and grade of inter-
dependencies between components. Thus whenever
components become unavailable e.g., due to the high
network traffic or operation latency issues (compo-
nents may depend on other components’ services to
perform their operations), because they crash or they

are inconsistently updated, or simply because the ma-
chines they reside in are suddenly switched off, sys-
tem users may perceive that the system cannot pro-
vide some specific functionality any more. The worst
case scenario is that the activity of the system results
unexpectedly interrupted, which is not admissible at
all.

Because these type of systems evolve very rapidly
human administrators cannot cope with healing tasks
to ensure the correctness of their operation, and there-
fore a new formula to do so is required. This pa-
per presents a different self-healing approach specif-
ically designed to handle component unavailability
without operation interruption in such complex en-
vironments. We introduce FReSH, a decentralised
component-based Java framework able to detect oper-
ation disruptions at run-time and recompose any miss-
ing functionality by dynamically identifying, reusing
and self-assembling software pieces (i.e., local and
remote services) distributed over the various nodes
that belong to the system environment. Ideally, these
software components can be functions, methods, pro-
cedures, web services and even compositions of the
previous, and each provides some basic functional-
ity. Hence, FReSH can be used to build tractable and
dependable applications out components of different
nature, that flexibly adapt to environmental changes.

159
Martinez J. and Dobson S. (2009).
FUNCTIONALITY RECOMPOSITION FOR SELF-HEALING.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 159-164
DOI: 10.5220/0002281701590164
Copyright c© SciTePress



2 RELATED WORK

Since IBM coined the term autonomic computing
in 2001 many self-healing initiatives have been re-
searched. None of them are able in their own to cope
with the difficulties arisen in complex environments
described above in a completely autonomous manner.
However, far from rejecting them our proposed self-
healing strategy comprises and reuses some of their
conceptual properties, as exposed in Section 4.

We have analysed some approaches that fall into
four different self-healing categories: component re-
dundancy, architecture models, component micro-
rebooting and SOA-based process reorganization.

A component redundancy technique suggests a
self-assembly mechanism based on an agent entity
that replicates components to replace dead neigh-
bours and enables recomposition of entire struc-
tures (Nagpal et al., 2003). Another strategy in-
spired from biology is providing the system with the
ability of replicating cells in excess to combat ex-
ternal intrusions (George et al., 2003). On another
hand, Recovery-Oriented Computing (ROC) (Berke-
ley/Stanford, 2008) suggests to isolate faulty compo-
nents and replace them with redundant ones.

However, a full replication of all the components
that populate the system may introduce performance
issues due to the need of having to perform complex
redundancy management tasks. Another problem of
this approach is that many of the nodes containing the
components may be portable devices, which are con-
strained by tight memory limits.

One subset of self-healing techniques based on
architecture models focuses on dynamically recon-
figuring the connector links among components to
correct performance deviations (Georgiadis et al.,
2002). Some other approaches (Appavoo et al., 2003;
de Lemos and Fiadeiro, 2002) replace failing services
or components by functionally equivalent ones. Some
decision policies determine which alternative compo-
nent replaces the original one.

The main problem that this strategy presents is
that complex environments change very often, and
thus many of those components may not survive in
the system for a long time whereas others may ap-
pear or evolve (Nachira, 2007; Kephart and Chess,
2003). This fact makes repair plans become obsolete
even before applying them to the running system, and
enforces the administrator to constantly update them.
Furthermore, most of the researched solutions rely on
a centralized approach.

On another hand, faulty modules can be micro-
rebooted independently and automatically to avoid
fault propagation whenever they are suspected of not

functioning properly (Patterson et al., 2002). The ef-
ficiency of this technique resides on the fact that re-
starting single components takes less time than re-
booting the whole system.

In highly distributed environments where compo-
nents may have a large number of inter-dependencies
re-starting failing software artefacts may not be an
efficient and reliable option (Tanenbaum and Steen,
2001). In certain situations where components may
have to be re-started e.g., due to multiple machine
power-cuts or heavy and persistent network traf-
fic overloads other components that request services
from the failing ones may remain blocked too long,
which may degrade the performance of the entire sys-
tem to unacceptable limits.

Finally, Service-Oriented Architectures (SOA) is
a flexible coordination paradigm that enables compo-
nents to export services over the network (Papazoglou
and Georgakopoulos, 2003). These services can be
discovered and dynamically bound at run-time to pro-
vide higher level services to other components (Baresi
et al., 2004).

Despite the apparent success on efficiently build-
ing reliable and robust service structures, web-based
mechanisms do not properly address self-healing in
complex environments. There is a trade-off between
constructing loose-coupled service-based structures
to improve maintenance and flexibility, and fulfilling
the non-functional requirements of the system dur-
ing its execution (Baker and Dobson, 2005). Cer-
tain properties of the environment such as the net-
work bandwidth may negatively affect the operational
latency of some components. Hence, a more suit-
able architectural approach that reduces the inter-
dependencies among remote services is required for
complex systems.

3 ATOMIC AND COMPOSITE
COMPONENTS

A software component is a unit of composition that
provides some functionality with contractually spec-
ified interfaces and explicit context dependencies
only (Clemens Szyperski, 2002). However, once
compiled these components become self-contained
pieces of software that remain as unalterable black
boxes during their execution. Hence, their reuse to
build new applications exclusively depends on the
knowledge programmers may have about the func-
tionality they provide. From this fact it can be in-
ferred that once these components become run-time
software entities they cannot be automatically com-
posed at run-time.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

160



Similarly to some of the existing ontology lan-
guages created by the SOA community, such as
OWL-S (Martin et al., 2007), our approach consists
on associating components with some formal specifi-
cation of the functionality they provide, so that they
can be identified and reused to autonomously com-
pose higher level software structures. At this prelim-
inary development stage we are using the JML state-
based specification language (Burdy et al., 2005) to
specify the functional behaviour of atomic compo-
nents developed in Java. JML is a rich specifica-
tion language used to formally describe the function-
ality of Java objects. Other atomic components such
as web services also must also have some associated
state-based specifications to be identified and reused.

These unambiguous specifications can be matched
with other specifications to find equivalences among
the components they describe (Zaremski and Wing,
1995). Furthermore, the specification of a complex
component may be automatically decomposed into
some simpler, lower-level specifications (van Lam-
sweerde, 2000), which in turn could be matched with
the specifications of smaller components. One of the
key points of our proposal consists on providing rich
post-condition expressions to every reusable compo-
nent of the system, so that whenever it becomes un-
available it can be autonomously replaced by another
fully equivalent component or a specially combined
set of components which specifications match with
the sub-specifications of the former.

To create component compositions we are using
ORC (Misra and Cook, 2007), a concurrent and dis-
tributed component orchestration language with all
the required operators to implement sequential and
parallel structures. Moreover, ORC also provides
other features to reproduce a whole set of classic
programming idioms such as e.g., the conditional
and iterative statements. ORC components consti-
tute computational recipes where single components
can be glued together to compose higher-level com-
ponents, and therefore these relationships can be au-
tonomously altered at run-time. On another hand,
similarly to the atomic components these recipes per-
form some computation operations, and thus they are
considered composite software components.

Hence, ORC components must also be provided
with some associated formal specifications. This is
the base of our self-healing strategy and main contri-
bution. In the case of component unavailability (be-
cause e.g., a node that contains certain components
crashes, or the network traffic is so high that some
nodes become disconnected) an ORC component is
automatically created to replace the failing one. An
ORC component may comprise other ORC compo-

nents. If the unavailable component is an ORC com-
ponent, depending on the causes of failure the newly
created ORC component may reuse some of the com-
ponents that were used by the failing structure, or it
may use completely different ones.

Components are selectively replicated in other
nodes of the system to reduce the inter-dependencies
among remote services, and thus overcome the SOA
drawbacks discussed in Section 2. However, some of
the components may be too heavy to be sent through
the network or there may exist certain legal issues that
may prevent components to be shared among nodes,
and therefore they may only be remotely invoked.

4 FUNCTIONALITY
RECOMPOSITION

FReSH is an autonomic component-based framework
with reflective capabilities. Similarly to other au-
tonomic frameworks such as Unity (Tesauro et al.,
2004), in FReSH every node of the system contains
an autonomic manager (AM) that supervises all the
components included in the node and performs func-
tionality recomposition whenever any of these com-
ponents become unavailable.

More in detail, an autonomic manager must be
able to performintrospectioni.e., it must constantly
monitor the operation of its managed components
and detect behaviour inconsistencies. At this stage
of the framework development we assume the exis-
tence of a component unavailability detection mecha-
nism based on probe signals (Balasubramaniam et al.,
2005), which regularly sends probes to the compo-
nents to check the validity of its status. If a compo-
nent does not return any feedback to the autonomic
manager within a reasonable amount of time it is con-
sidered unavailable. In this case, the corresponding
autonomic manager in charge of that component must
execute someintercessionactions i.e., it must carry
out certain procedure to fix the problem without in-
terrupting the operation of the system. This proce-
dure consists first on realising the functionality that
the unavailable component was providing, and sec-
ond on finding a functionally equivalent component
to replace the failing one (direct substitution). If no
equivalence is found, the autonomic manager must
make a local or global search for a combination of
other components that can be used to recompose the
missing functionality (composite replacement).

This strategy differs from direct replication and
replacement of components as it supports the re-
creation of unavailable functionality from already ex-
isting components. Moreover, it increases the proba-

FUNCTIONALITY RECOMPOSITION FOR SELF-HEALING

161



bility of obtaining suitable software structures to re-
place unavailable components while decreasing oper-
ational costs related to replication. For all these rea-
sons, FReSH is a more efficient strategy to perform
self-healing in complex environments than other ex-
isting alternatives. The example exposed in Figure 1
shows how the system obtains the functionality of a
failing component by identifying, selecting, obtain-
ing and recomposing some other components. Al-
though the example shows how composite replace-
ment is performed, it is illustrative enough to under-
stand how direct substitution works.

Each node contains a catalogue with all the spec-
ifications of the components included in it so that the
corresponding autonomic manager explicitly knows
the software entities it must supervise. Some formal
specifications contain more complex predicates than
others. As mentioned above, complex specifications
can be interpreted as a combination of simpler speci-
fications associated to other component implementa-
tions that may exist in the system, which is the base
for achieving functionality recomposition.

Whenever any component of any particular node
becomes unavailable at run-time, the autonomic man-
ager responsible of its health must first suspend the
execution of any other component that consumes ser-
vices from it. Furthermore, the autonomic manager
must extend this requirement to the rest of the auto-
nomic managers to avoid cascading failures (this step
is not shown in Figure 1 for simplicity.)

First the corresponding autonomic manager must
internally search for an equivalent component. To do
so, it compares the functional specifications of the un-
available component with the specifications of other
components described in the local component cata-
logue (step 2). If no equivalent component is ob-
tained, this search is extended to other autonomic
managers so that they look up their catalogues in
the pursuit of an equivalent component (steps 3 and
4). Should any existing remote component match the
specifications of the unavailable component, the re-
mote autonomic manager sends that component to the
local autonomic manager over the network (steps 5, 6
and 7). However, due to certain constraints such as
e.g., size, amount of inter-dependencies or commer-
cial restrictions the transfer of some of these com-
ponents may not be permitted, and thus they must
be invoked remotely. Because they comprise com-
ponents of different nature and characteristics, many
ORC components may not be suitable to be shared
among environments.

If no equivalent component exists in the entire sys-
tem its functionality must be recomposed through the
combination of other components. Depending on the

complexity of the specification of an atomic compo-
nent, the corresponding autonomic manager may have
to split it into simpler specifications to facilitate the
search of equivalent components. In the case of a
composite component, the autonomic manager must
check the availability of the comprised local and re-
mote components, and just find equivalent compo-
nents for the unavailable bits of functionality. Al-
though this is the simplest and quickest alternative,
in some cases the combination of other distinct com-
ponents may result in a more suitable composite en-
tity. Hence, autonomic managers must implement a
specification combination algorithm to successfully
select the most appropriate components from all the
partially equivalent specifications it receives. Some
of the properties that must be taken into account to
appropriately decide the best selection of components
are e.g., the transferability nature of the components
or the grade of equivalence among components.

For every specification resulted from the previ-
ous action an alternative equivalent component is
searched in the local repository (step 2). If no one
exists, the search is extended to other remote auto-
nomic managers (step 3), which must check if any of
the services they comprise matches the specification
(step 4). Notice that in the example exposed in Fig-
ure 1 the autonomic manager of the second environ-
ment detects that three of its components have some
partial equivalence with the unavailable component of
the first environment, while the autonomic manager of
the third environment discovers two partially equiva-
lent components. These specifications are sent over
the network to the autonomic manager of the first en-
vironment (step 5). Then, it must decide which com-
bination of components is the most suitable one. In
this case the autonomic manager of the first environ-
ment is interested in one component of the second en-
vironment and the two components of the third en-
vironment. After selecting the most suitable compo-
nents, the autonomic manager of the first environment
requests them to the autonomic managers of the cor-
responding environments (step 6). The components
that satisfy some transference constrictions are sent
over the network so that they can be invoked locally,
while the rest must be invoked remotely (step 7).

Whether the substituting entity is atomic or com-
posite, once the corresponding autonomic manager
has received all the required resources and resolves
how they need to be composed to re establish the
missing functionality, it must dynamically generate a
new composite component and replace the failing one
with it (step 8). ORC provides some orchestration op-
erators and primitive functions to glue all the required
components together.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

162



Figure 1: Functionality Recomposition for Self-Healing.

Finally, the autonomic manager must modify the
existing relationships that the local components had
with the failing component, so that they can consume
the service provided by the newly obtained struc-
ture. Similarly, other autonomic managers are then
requested to change the relationships that any of their
components may had with the unavailable compo-
nent. Then, the execution of all the affected com-
ponents is re-activated (these last two steps are not
shown in Figure 1 for simplicity.)

5 CONCLUSIONS AND FUTURE
WORK

In this paper we have introduced FReSH, a decen-
tralised component-based framework currently under
development that is able to dynamically detect un-
available components and recompose the functional-
ity delivered they were delivering. Functionality re-
composition is possible by making components share-
able and reusable among the different nodes of the
system. To be identified, these components must have
some associated behavioural specifications that de-
scribe the functionality the component delivers.

However, to materialise this approach various
tasks remain as future work. At the moment we are
extending ORC to support autonomous and formally
specified compositions out of the JML specifications
associated to the atomic components implemented in
Java, so that the resulting software structures satisfy

the requirements for creating open systems (Nier-
strasz and Meijler, 1994). A next step is producing
sophisticated specification discovery, matching and
combination algorithms to successfully obtain com-
ponents allocated anywhere in the system and con-
struct the most suitable equivalent structures to the
failing software entities.

On another hand, we have to deal with the het-
erogeneity nature of the components we want FReSH
to handle. In large-scale complex systems there may
exist components implemented in different technolo-
gies, which enforces certain restrictions on the pro-
gramming languages being used. Furthermore, we
also need to figure out what is the most appropriate
level of granularity of these components, as too fine-
grained components may make FReSH an ineffective
technique due to the unaffordable amount of time that
composing new structures could take.

Finally, we also need to consider the case where a
whole node crashes and therefore even its autonomic
manager becomes unavailable. The underlying con-
cepts of ultra-stable systems (Hariri et al., 2006) may
support a solution for both component and node un-
availability, and thus needs to be further investigated.

ACKNOWLEDGEMENTS

Special thanks to Joseph Kiniry, Emil Vassev and Dal-
ibor Jaklin for all the discussions that helped shaping
the underlying concepts of FReSH. This work is par-
tially supported by Science Foundation Ireland under

FUNCTIONALITY RECOMPOSITION FOR SELF-HEALING

163



grant number 03/CE2/I303-1,Lero, the Irish Software
Engineering Research Centre.

REFERENCES

Appavoo, J., Hui, K., Soules, C. A. N., Wisniewski, R. W.,
Silva, D. M. D., Krieger, O., Edelsohn, D. J., Auslan-
der, M. A., Gamsa, B., Ganger, G. R., McKenney, P.,
Ostrowski, M., Rosenburg, B., Stumm, M., and Xeni-
dis, J. (2003). Enabling autonomic behavior in sys-
tems software with hot-swapping.IBM Systems Jour-
nal, 42(1).

Baker, S. and Dobson, S. (2005). Comparing service-
oriented and distributed object architectures. InOTM
Conferences (1), pages 631–645.

Balasubramaniam, D., Morrison, R., Kirby, G., Mickan, K.,
Warboys, B., Robertson, I., Snowdon, B., Greenwood,
R. M., and Seet, W. (2005). A software architec-
ture approach for structuring autonomic systems. In
DEAS’05: Proceedings of the 2005 workshop on De-
sign and evolution of autonomic application software,
pages 1–7, New York, NY, USA. ACM.

Baresi, L., Ghezzi, C., and Guinea, S. (2004). Towards
self-healing service compositions. InPriSE’04: First
Conference on the Principles of Software Engineer-
ing, volume 42, pages 27–46.

Berkeley/Stanford (2008). Recovery-Oriented Computing
(ROC). http://roc.cs.berkeley.edu.

Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry,
J. R., Leavens, G. T., Leino, K. R. M., and Poll, E.
(2005). An overview of jml tools and applications.
Int. J. Softw. Tools Technol. Transf., 7(3):212–232.

Clemens Szyperski, Dominik Gruntz, S. M. (2002).Com-
ponent Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman Publishing Co., Inc.

de Lemos, R. and Fiadeiro, J. L. (2002). An architectural
support for self-adaptive software for treating faults.
In WOSS’02: Proceedings of the first workshop on
Self-healing systems, pages 39–42, New York, NY,
USA. ACM.

George, S., Evans, D., and Marchette, S. (2003). A biologi-
cal programming model for self-healing. InSSRS’03:
Proceedings of the 2003 ACM workshop on Surviv-
able and self-regenerative systems, pages 72–81, New
York, NY, USA. ACM.

Georgiadis, I., Magee, J., and Kramer, J. (2002). Self-
organising software architectures for distributed sys-
tems. InWOSS’02: Proceedings of the first workshop
on Self-healing systems, pages 33–38, New York, NY,
USA. ACM.

Hariri, S., Khargharia, B., Chen, H., Yang, J., Zhang, Y.,
Parashar, M., and Liu, H. (2006). The autonomic com-
puting paradigm.Cluster Computing, 9(1):5–17.

Kephart, J. and Chess, D. (2003). The vision of autonomic
computing.IEEE Computer, 36:41–50.

Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S.,
Paolucci, M., Sycara, K., Mcguinness, D. L., Sirin, E.,

and Srinivasan, N. (2007). Bringing semantics to web
services with owl-s.World Wide Web, 10(3):243–277.

Misra, J. and Cook, W. (2007). Computation orchestration:
A basis for wide-area computing.Software and Sys-
tems Modeling, 6:83–110.

Nachira, F. (2007). Digital business ecosystems.
http://www.digital-ecosystems.org/book/de-
book2007.html.

Nagpal, R., Kondacs, A., and Chang, C. (2003). Pro-
gramming methodology for biologically-inspired self-
assembling systems. InAAAI Spring Symposium
on Computational Synthesis: From Basic Building
Blocks to High Level Functionality.

Nierstrasz, O. and Meijler, T. D. (1994). Requirements for
a composition language. InECOOP’94: Workshop
on Models and Languages for Coordination of Par-
allelism and Distribution, Object-Based Models and
Languages for Concurrent Systems, pages 147–161,
London, UK. Springer-Verlag.

Papazoglou, M. P. and Georgakopoulos, D. (2003). Service-
oriented computing. Communications of the ACM,
46(10):46–54.

Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen,
M., Cutler, J., Enriquez, P., Fox, A., Kiciman, E.,
Merzbacher, M., Oppenheimer, D., Sastry, N., Tet-
zlaff, W., Traupman, J., and Treuhaft, N. (2002). Re-
covery oriented computing (roc): Motivation, defini-
tion, techniques and case studies. Technical report,
Berkeley, CA, USA.

Tanenbaum, A. S. and Steen, M. V. (2001).Distributed Sys-
tems: Principles and Paradigms. Prentice Hall PTR,
Upper Saddle River, NJ, USA.

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A.,
Whalley, I., Kephart, J. O., and White, S. R. (2004).
A multi-agent systems approach to autonomic com-
puting. InAAMAS’04: Proceedings of the Third In-
ternational Joint Conference on Autonomous Agents
and Multiagent Systems, pages 464–471, Washington,
DC, USA. IEEE Computer Society.

van Lamsweerde, A. (2000). Formal specification: a
roadmap. InICSE’00: Proceedings of the Conference
on The Future of Software Engineering, pages 147–
159, New York, NY, USA. ACM.

Zaremski, A. M. and Wing, J. M. (1995). Specification
matching of software components. InSIGSOFT’95:
Proceedings of the 3rd ACM SIGSOFT symposium
on Foundations of software engineering, pages 6–17,
New York, NY, USA. ACM.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

164


