
TOWARDS MODEL CHECKING WITH JAVA PATHFINDER
FOR AUTONOMIC SYSTEMS SPECIFIED

AND GENERATED WITH ASSL

Emil Vassev1, Mike Hinchey2 and Aaron Quigley1
1 Lero – The Irish Software Engineering Research Centre, University College Dublin, Ireland

2 Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland

Keywords: Autonomic Computing, Model Checking, ASSL, Java PathFinder.

Abstract: Autonomic computing has been recognized as a valid approach to the development of large-scale self-
managing complex systems. The Autonomic System Specification Language (ASSL) is an initiative for the
development of autonomic systems where we approach the problem of formal specification, validation, and
code generation of such systems within a framework. As part of our research on ASSL, we have developed
and investigated different approaches to software verification. Currently, the latter is possible via built-in
consistency checking and functional testing where handling logical errors is a daunting task. In this paper,
we discuss our work on model checking with NASA’s Java PathFinder tool, which is an explicit-state model
checker that works directly on the generated Java code. We propose optional automatic generation of test
drivers in the form of PathFinder API calls seeded in the ASSL-generated code.

1 INTRODUCTION

Nowadays software permeates everywhere where
information technology can be useful to some
extent. However, contemporary software faces the
expanding burden of complexity in software
development and of ensuring both its correctness
and reliability. Hence, initiatives such as autonomic
computing (Parashar and Hariri, 2006) have risen to
introduce theories and techniques intended to reduce
the complexity of managing systems through
automation. Moreover a great deal of research effort
is devoted to developing software verification
methods. A promising, and lately popular, technique
for software verification is model checking (Clarke,
Grumberg and Peled, 2002; Baier and Katoen,
2008).

The vision and metaphor of autonomic
computing (AC) (Murch, 2004) is to apply the
principles of self-regulation and complexity hiding
to the design of complex computer-based systems.
However, the very complexity of many systems that
lend themselves well to AC can often imply
difficulty in designing the autonomic system itself.

The ASSL Approach to AC. The Autonomic
System Specification Language (ASSL) (Vassev,
2008) is a framework dedicated to AC. By providing
a powerful formal notation and computational tools,
ASSL helps AC researchers with problem formation,
system design, system analysis and evaluation, and
system implementation. The framework’s tools
allow ASSL specifications to be edited and
validated. The current validation approach in ASSL
is a form of consistency checking performed against
a set of semantic definitions (Vassev, 2008). The
latter form a theory that aids in the construction of
correct autonomic system (AS) specifications. In
addition, from any valid specification, ASSL can
generate an operational Java application skeleton.

As part of the framework validation and in the
course of a new ongoing research project at Lero —
the Irish Software Engineering Research Centre,
ASSL has been successfully used to specify
autonomic properties and generate prototype models
of the NASA ANTS concept mission (Vassev,
Hinchey and Paquet, 2008) and the NASA Voyager
mission (Vassev and Hinchey, 2009).

251
Vassev E., Hinchey M. and Quigley A. (2009).
TOWARDS MODEL CHECKING WITH JAVA PATHFINDER FOR AUTONOMIC SYSTEMS SPECIFIED AND GENERATED WITH ASSL.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 251-256
DOI: 10.5220/0002279902510256
Copyright c© SciTePress

1.1 Research Problem and Proposed
Solution

ASSL provides automatic code generation, which
ensures consistency between a specification and its
implementation. However, our experience with
ASSL has demonstrated that errors can be easily
introduced while specifying large systems. Although
the ASSL framework takes care of syntax and
consistency errors, it still cannot handle logical
errors.

We are currently working on this, and
investigating a few possible approaches to ensure the
correctness of the ASSL specifications, and that of
the generated autonomic systems:

 We are working on improving the current
ASSL consistency checker with assertion and
debugging techniques, which should allow for
a good deal of static analysis of an ASSL
specification. This approach will improve the
verification process, but will not be sufficient
to assert safety (e.g., freedom from deadlock)
or liveness properties.

 We are investigating model checking as the
most effective approach to software
verification for our purposes.

Model checking is a formal methods technique
that allows formal specifications to be tested
exhaustively (Clarke, Grumberg and Peled, 2002;
Baier and Katoen, 2008). The approach advocates
formal verification tools whereby the formal
specifications are automatically checked for specific
flaws by considering special correctness properties
expressed in temporal logic (Baier and Katoen,
2008).

In the course of this long-term project, we
consider three different possible approaches to
model checking.

 A part of this research is on a model-checking
mechanism that takes an ASSL specification
as input and produces as output a finite state-
transition system (also called a state graph)
such that a specific property in question is
satisfied if and only if the original ASSL
specification satisfies that property (Vassev,
Hinchey and Quigley, 2009).

 Another research direction is towards
mapping ASSL specifications to special
service logic graphs, which support the so-
called reverse model checking (Bakera et al.,
2009).

 In this paper we present our third approach to
model checking with ASSL. The latter
generates operational Java code, which we use

to perform a sort of post-implementation
model checking with the Java PathFinder tool
developed at NASA Ames (Visser et al.,
2000). In this approach, we use Java
PathFinder to verify the generated Java code.
We are at the beginning of our research and
the results presented here are preliminary.

1.2 Why Post-Implementation Model
Checking?

Although it is widely accepted that model checking
should be applied to the design phase rather than to
the implementation phase of the software lifecycle,
we believe that post-implementation model checking
is worthy of investigation and probably well
integrated with ASSL.

In (Vassev, Hinchey, Quigley, 2009) we reveal
the so-called state-explosion problem we are
currently facing with specification-phase model
checking. Due to the highly concurrent nature of the
ASSL-specified ASs, the size of an ASSL state
graph is at least exponential in the number of
running ASs internal concurrent processes. This is
because the state space of the entire AS is built as
the Cartesian product of the local state of these
concurrent processes. Here, our possible solutions to
the state-explosion problem are abstraction
techniques that reduce the number of states to be
tested; i.e., the model checking mechanism does not
explore all the possible paths of execution, but only
those considered important. However, this approach
makes it possible to generate ASs with ASSL that
contain fatal errors (e.g., deadlocks), which cannot
be detected, despite careful specification and the
existence of model checking.

Another good reason for having post-
implementation model checking is the possibility to
verify not only the newly-generated code but also all
consecutively updated versions of the same. Thus,
we can check the code even if it has evolved
following its automatic generation with ASSL.

Paper Organization. The rest of this paper is
organized as follows. In Section 2, we review related
work on post-implementation model checking. As a
background to the remaining sections, Section 3
provides a brief description of the ASSL framework
and the built-in consistency checking mechanism.
Section 4 introduces Java PathFinder and the
proposed post-implementation approach to model
checking by integrating that tool in ASSL. Finally,
Section 5 presents concluding remarks and future
work.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

252

2 RELATED WORK

In the course of this research, we found two
interesting projects targeting post-implementation
model checking, where the implementation language
is C.

In (Ball, T., Podelski. A., Rajamani, S., 2001)
the SLAM project at Microsoft is described. This
project is similar to Java PathFinder in the sense that
it also relies on different techniques to accomplish
model checking. SLAM uses techniques such as
static analysis, abstraction, and symbolic model
checking (Clarke, Grumberg and Peled, 2002; Baier
and Katoen, 2008). A special model checker for
Boolean programs (Ball and Rajamani, 2000) is used
where all the program variables are of the Boolean
type. The idea is to apply abstraction on the original
C program by extracting a state graph and then to
check whether program statements are reachable.
For any reachable statement, the path of instructions
to that statement is symbolically executed on the
original program. If the executed path does not
match the expected path, a Boolean variable is
created to catch the point where the difference
begins. Further, the same process is repeated with a
new Boolean condition (involving the newly created
Boolean variable) that removes the path difference.

Another post-implementation model checker is
the FeaVer tool (Holzmann and Smith, 2000). The
latter is based on the SPIN (Ben-Ari, 2008) model
checker mechanism. FeaVer extracts an abstract
verification model in PROMELA (Iosif, 1998) (a
special verification modeling language) from the C
program, and verifies it against special logic
properties. The process of abstraction is semi-
automated because a special lookup table is used to
translate C code to PROMELA code. Once the
verification model is created, in a series of steps a
complete verification of the model is performed with
the construction of increasingly detailed PROMELA
models. The SPIN model checker is used to perform
model checking on the PROMELA models.

3 ASSL

In general, ASSL considers ASs as composed of
autonomic elements (AEs) interacting over
interaction protocols. To specify ASs, ASSL uses a
multi-tier specification model (Vassev, 2008). By
their nature, the ASSL tiers are abstractions of
different aspects of the AS under consideration, such
as self-management policies, communication
interfaces, execution semantics, actions, etc. There

are three major tiers (abstraction perspectives), each
composed of sub-tiers (cf. Figure 1):

 AS tier — forms a general and global AS
perspective, where we define the general
system rules in terms of service-level objectives
(SLO) and self-management policies,
architecture topology, and global actions,
events, and metrics applied in these rules. Note
that ASSL express policies with special states
called fluents (Vassev, 2008).
 AS Interaction Protocol (ASIP) tier — forms a
perspective that defines the means of
communication between AEs.
 AE tier — forms a unit-level perspective, where
we define interacting sets of individual AEs
with their own behavior.

Figure 1: ASSL multi-tier specification model.

AEs are intelligent agents and the ASSL-
developed ASs are considered multi-agent systems.
Similar to any multi-agent system (Sycara, 1998),
AEs are autonomous entities that interact either
cooperatively or non-cooperatively (on a selfish
base). The interaction though in the ASSL approach
is going over predefined messages. In addition, the
ASSL-developed AEs provide the needed decision-
making capability that underlies autonomy and self-
management. Moreover, ASSL allows for defining
the architecture topology of an AS where AEs can
be grouped into groups forming bigger intelligent
entities (mini ASs). Here, the group formation can
be centralized or GRID-alike (Vassev, 2008).

TOWARDS MODEL CHECKING WITH JAVA PATHFINDER FOR AUTONOMIC SYSTEMS SPECIFIED AND
GENERATED WITH ASSL

253

3.1 Consistency Checking in ASSL

In general, we can group the ASSL tiers into groups
of declarative (or imperative) and operational tiers.
Whereas the former simply describe definitions in
the AS under consideration, the latter not only
describe definitions but also focus on the operational
behavior of that AS. The ASSL framework evaluates
an AS specification formally to construct a special
declarative specification tree needed to perform
both consistency checking and code generation.

Consistency checking (cf. Figure 2) is a
framework mechanism for verifying specifications
by performing exhaustive traversal of the declarative
specification tree. In general, the framework
performs two kinds of consistency-checking
operations: 1) light – checks for type consistency,
ambiguous definitions, etc.; and 2) heavy – checks
whether the specification model conforms to special
correctness properties.

Figure 2: Consistency checking with ASSL.

The correctness properties are ASSL semantic
definitions defined per tier (Vassev, 2008).
Although, these are expressed in First-Order Linear
Temporal Logic (FOLTL) (Baier and Katoen, 2008),
currently, ASSL does not incorporate a FOLTL
engine, and thus, the consistency checking
mechanism implements the correctness properties as
Java statements. Here, the FOLTL operators ∀
(forall) and ∃ (exists) work over sets of ASSL tier
instances. In addition, these operators are translated
by taking their first argument as a logical atom that
contains a single unbound tier variable. Ideally, this
atom has a relatively small number of ground tier
instances, so the combinatorial explosion generally
produced by these statements is controlled.

It is important to mention that the consistency
checking mechanism generates consistency errors or
warnings. Warnings are specific situations, where
the specification does not contradict the correctness
properties, but rather introduces uncertainty as to
how the code generator will handle it. Although
considered efficient, the ASSL consistency checking
mechanism has some major drawbacks:

 It does not consider the notion of time, and
thus, temporal FOLTL operators such as
always, next, eventually, until, waiting-for, etc.,

are omitted. Therefore, ASSL consistency
checking is not able to assert safety (e.g.,
freedom from deadlock) or liveness properties
(e.g., a message sent is eventually received).
 The interpretation of the FOLTL formulas into
Java statements is done in an analytical way
and thus the introduction of errors is possible.
 There is no easy way to add new correctness
properties to the consistency-checking
mechanism.

4 POST-IMPLEMENTATION
MODEL CHECKING

In this section, we present our preliminary work on
model checking with ASSL and Java PathFinder. As
we have already stated, we are at the beginning of
our research on this model checking approach. Thus,
the results presented here are rather theoretical.

4.1 Java PathFinder

Java PathFinder is a post-implementation model
checker tool written in Java and targeting at Java
programs (Visser et al., 2000; Java PathFinder,
2008). It can check Java programs for deadlocks,
invariants and user-defined assertions in the code.
Moreover, properties expressed in Linear Temporal
Logic (Baier and Katoen, 2008) can be checked.

In general, it is claimed that Java PathFinder is
capable of checking any Java program that does not
rely on native methods. However, it is important to
mention that the state-explosion problem limits the
size of the applications that can be checked
effectively up to 10,000 lines of code (Java
PathFinder, 2008).Similar to any regular model
checking tool, Java PathFinder performs exhaustive
testing. The difference is that it works on the real
Java code instead of on a state graph. Here, the basic
technique is multiple execution of the program under
consideration to check all the possible executions for
paths that can lead to property violations, such as
deadlocks or unhandled exceptions. If an error is
found, Java PathFinder reports the execution path
that leads to it. Note that every execution step is
recorded, so we can trace the execution path that
gets to property violation.

Figure 3 depicts the operational model of Java
PathFinder. As depicted, different components
(tools) work by accompanying the execution of the
compiled Java program (in Java bytecode), e.g., an
ASSL-generated AS compiled to Java bytecode with
a regular Java Compiler.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

254

Figure 3: Java PathFinder operational model (elaborated from Java PathFinder, 2008).

As shown by Figure 3, special configurable
search strategies are provided to solve the problem
of state explosion. Because for large (more than
10,000 lines of code) applications the whole state
space cannot be searched effectively, these search
strategies are used to direct the search.

In addition, different state-reduction techniques
can help to reduce the number of states that have to
be stored:

 Special heuristic choice generators are
provided to set possible choices where a certain
state does not have to be complete. These
generators have the form of Java PathFinder
APIs that can be embedded in the tested
applications.
 A special library abstraction per state reduces
the overhead coming from tracking the run-time
data changes taking place in the checked Java
application. Note that all the heap, stack, and
thread changes are stored by default. This can
cause a big overhead if abstraction is not
provided.

4.2 Embedding Java PathFinder in
ASSL

In general, Java PathFinder provides capabilities for
non-deterministic testing via random input data
generators (Java PathFinder, 2008) that can be
embedded in the tested Java application. Special
APIs are provided, which can significantly ease the
creation of test drivers.

Hence, the ASSL framework can automatically
generate such test drivers based on the Java
PathFinder API. ASSL could generate these special
test drives as non-deterministic choices implemented
in the generated code. Here, to simulate non-

deterministic testing we rely on two Java PathFinder
capabilities – backtracking and state matching.

With backtracking, we use the Java PathFinder
tool to restore previous execution states, which helps
to determine whether there are unexplored choices
left. Therefore, if an end state is reached, backward
steps can be performed to find execution paths that
are still not executed, and thus, the program does not
have to be re-executed from the very beginning.

With state matching, the Java PathFinder checks
whether a specific execution path has already been
explored any time when an ASSL-generated non-
deterministic choice is reached. In such a case,
model checking does not continue along the current
execution path, but does backtracking to reach the
nearest non-explored path that starts from the
nearest non-deterministic choice. For example, the
following run() method could be generated by the
ASSL framework for an autonomic element.

public class AE_WORKER {
 ...
 public void run () {
 boolean cond = Verify.getBoolean();
 if (cond) { ... }
 else { ... }
 }
 ...
}

Note that autonomic elements are generated by
ASSL as Java Threads (Vassev, 2008). Here, a non-
deterministic PathFinder choice point will be
generated (cf. cond = Verify.getBoolean)
to test two different paths of execution of the
autonomic element.Both backtracking and state
matching techniques will be used to trace the two

library
abstractions

choice
generators

vm
listeners

*.class
*.jar

Search Strategies

property
checkers

search
listeners

Java Virtual Machine

verification report

error path

TOWARDS MODEL CHECKING WITH JAVA PATHFINDER FOR AUTONOMIC SYSTEMS SPECIFIED AND
GENERATED WITH ASSL

255

possible execution path – when cond = true and
when cond = false.

5 CONCLUSIONS

A model checking mechanism will complete the
ASSL framework by allowing for automated system
analysis and evaluation of any ASSL-generated
autonomic system, and thus, it will help to validate
liveness and safety properties of the same.

As a part of our long-term research on model
checking with ASSL, we are currently investigating
post-implementation model checking with NASA’s
Java PathFinder tool. In this paper, we have justified
and presented our approach to applying Java
PathFinder on ASSL-generated autonomic systems.
We propose automatic generation of special
PathFinder choice points in the generated Java
applications. These choice points, together with the
provided backtracking and state matching
PathFinder mechanisms, will allow for possibly
efficient post-implementation model checking.

Future research is concerned with further
development of this approach and experimental
results. Moreover, it is our intention to build an
animation tool for ASSL, which will help to
visualize counterexamples and trace erroneous
execution paths. It is our belief that a model
checking mechanism for ASSL will enable broad-
scale formal verification of ASs. Therefore, it will
make ASSL a better and more powerful framework
for AS specification, validation and code generation.

REFERENCES

Clarke, E., Grumberg, O., and Peled, D., 2002. Model
Checking. MIT Press.

Baier, C., Katoen, J.-P., 2008. Principles of Model
Checking. MIT Press.

Bakera, M., Wagner, C., Margaria, T., Vassev, E.,
Hinchey, M., Steffen, B., 2009. Component-Oriented
Behavior Extraction for Autonomic System Design.
In Proceedings of the First NASA Formal Methods
Symposium (NFM 2009). NASA.

Ball, T., Podelski. A., Rajamani, S., 2001. Boolean and
Cartesian Abstractions for Model Checking C
Programs. In Proceedings of TACAS01: Tools and
Algorithms for the Construction and Analysis of
Systems. Genova, Italy.

Ball, T., Rajamani, S., 2000. Bebop: A symbolic Model
Checker for Boolean Programs. In Proceedings of the
7th International SPIN Workshop. Vol. 1885 of
LNCS, Springer-Verlag.

Ben-Ari, M., 2008. Principles of the Spin Model Checker
(Paperback), Springer.

Holzmann, G., Smith, M. H., 2000. Automating Software
Feature Verification. Bell Labs Technical Journal,
Vol. 5(2), Issue on Software Complexity.

Iosif, R., 1998. The PROMELA Language,
http://www.dai-arc.polito.it/dai-arc/manual/tools/jcat/
main/node168.html, last visited on April 25, 2009.

Java PathFinder, 2008. http://javapathfinder.sourceforge
.net/, last visited on April 25, 2009.

Parashar, M. and Hariri, S. (editors), 2006. Autonomic
Computing: Concepts, Infrastructure and
Applications. CRC Press.

Murch, R., 2004. Autonomic Computing: On Demand
Series. IBM Press, Prentice Hall.

Sycara, K. P., 1998. Multiagent Systems. In AI Magazine,
vol. 19(2). Association for the Advancement of
Artificial Intelligence.

Vassev, E., 2008. Towards a Framework for Specification
and Code Generation of Autonomic Systems. A PhD
Thesis in the Department of Computer Science and
Software Engineering, Concordia University,
Montreal, Canada.

Vassev, E., Hinchey, M., Paquet, J., 2008. Towards an
ASSL Specification Model for NASA Swarm-Based
Exploration Missions. In Proceedings of 23rd Annual
ACM Symposium on Applied Computing (SAC2008) -
AC Track. ACM.

Vassev, E., Hinchey, M., 2009. Modeling the Image-
processing Behavior of the NASA Voyager Mission
with ASSL. In Proceedings of the Third IEEE
International Conference on Space Mission
Challenges for Information Technology (SMC-IT’09).
IEEE Computer Society.

Vassev, E., Hinchey, M., Quigley, A., 2009. Model
Checking for Autonomic Systems Specified with
ASSL. In Proceedings of the First NASA Formal
Methods Symposium (NFM 2009), NASA.

Visser, W., Havelund, K., Brat, G., Park, S.-J., 2000.
Model Checking Programs, In Proceedings of the 15th
IEEE International Conference on Automated
Software Engineering (ASE’00). IEEE Computer
Society.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

256

http://www.computer.org/publications/dlib/index.htm
http://www.computer.org/publications/dlib/index.htm

