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Abstract. The problem of velocity estimation for mechanical systems is of great
practical interest. Although many partial solutions have been reported in the liter-
ature the basic question of whether it is possible to design a globally convergent
speed observer for generaldegrees of freedom mechanical systems remains
open. In this paper an affirmative answer to the question is given by proving the
existence of &n + 1-dimensional globallyxponentiallyconvergent speed ob-
server. Instrumental for the construction of the speed observer is the use of the
Immersion and Invariance technique, in which the observer design problem is re-
cast as a problem of rendering attractive and invariant a manifold defined in the
extended state—space of the plant and the observer.

Notation. For general mappingS : R" x R? — RY, (z,({) — S we define
Vo S(z,¢) = 2229 and VS (x, ¢) == 2252<). For brevity, when clear from
the context, the subindex & and, in general, the arguments of all the functions
are omitted.

1 Problem Formulation

We consider general degree of freedom mechanical systems with nonholonomic con-
straints described in Lagrangian form by [11], [13],

M(q)i+ C(q,q)q+ VU (q) = G(q)u + A(g)A, 1)
AT (q)g =0, @)

whereq(t), ¢(t) € R" are the generalized positions and velocities, respectivély,c
R™ is the control inputA(q)\ are the constraint forces witl : R* — R™*%, X € R¥,
G : R" — R™*"™ js the input matrix,M : R™ — R"™*™ js the mass matrix with
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M = M" > 0andU : R® — R is the potential energy functioii2(q, §)q is the
vector of Coriolis and centrifugal forces, with tligk)—th element of the matric’' :
R™ x R™ — R™*™ defined by

Cir(a:4) = Y Cin(@)dy
j=1

whereC;;, : R™ — R are the Christoffel symbols of the first kind defined as

_ 1 {8]V[ik 8M,—k _ 5'Mi,- } 3)

Ciin P
+(2):= 3 dgj g Ogx

We consider(t) to be measurable and assume that the imtjtis such that(¢), ¢(¢)
exist for all time, that is, the system is forward completer Objective is to design a
globally asymptotically convergent observer {gt).

Speed observation is a longstanding problem whose conipleteetical solution
has proven highly elusive. The first results were reportetid@0 in the fundamental
paper [14], and many interesting partial solutions havenlreported afterwards. Par-
ticular attention has been given to the case in which theegygfl) can be rendered
linear in the unmeasurable velocities via partial chandeordinates, see.g, [6,
16]. An intrinsic local observer, exploiting the Riemammgructure of the system, has
been recently proposed in [1] (see also [2] for a Lyapunowaisand [7] for a gener-
alization). A solution for a class of two degrees of freedgistems has been recently
reported in [8]. The reader is referred to the recent book® Phfor an exhaustive list
of references.

A complete solution to the problem is given by the propositi@low. As will be-
come clear in the proof, the construction of the observéesein the use of the Im-
mersion and Invariance (1&l ) technique—first reported ihd4d further developed in
[3,10]. In 1&I the observer design is recast as a problem oflezing attractive a suit-
ably selected invariant manifold defined in the extendetéstpace of the plant and
the observer. It should be mentioned that the observers 6]&re also based on the
I1&1 approach.

2 Main Result

Proposition 1. Consider the system (1), and assuiris such that trajectories exist for
all t > 0. There exist smooth mappings: R3"~2#+1 x R" x R™ — R3"~2F+1 and
B : R"™ — R(r=k)x(Bn=2k+1) gych that the dynamical system

X = AlX. ¢, u) (4)
with statey () € R3"~2*+1 inputsq(¢) andu(t), and output
n = B(g)x, ()

has the following property.



All trajectories of the interconnected system (1), (2),a@) such that

lim e\ ()d(t) — n(t)] =0, (6)

t—o00

for somen: > 0 and for all initial conditions(¢(0), §(0), x(0)) € R? x R" x R37—2k+1
whereN () : R* — R"~* x R" is a left invertible matrix. Thatis, (4), (5) is a globally
exponentially convergent speed observer for the mechesystem (1)-(2).

Remark 1.For the special case of a mechanical system with no nonhoiancon-

straints, it is clear that = 0 and subsequently the matih(q) becomes an invertible
square matrix.

3 A Preiminary Lemma

Before giving the proof of the main result, we recall that #ystem (1)-(2) can be
written in the port-Hamiltonian form [13] as

- (S Ge) - [l Lol @

AT (@)X =0, (8)

[

wherep = M(q)q are the generalized momenta and

H(q,p) = %pTM_l(q)p +U(q)

represents the total energy stored in the system. Furtheerd13], the system (7)-(8)
when restricted to the constrained space

Xe = {(¢,9)|A" (9)q = 0},

takes the form

H(q,p) = V(q) + 50" M~} (a)p, (10)
with 5 € R*~* being given ag = S (¢q)p whereS(q) € R™ "~ * is the full rank

annihilator of the matrix4(q) satisfying the conditiom ™ (¢)S(q) = 0. The matrix
J(gq,p) is skew-symmetric and is given by

Jij(a,p) = —p" [5i, 5], (11)

Where[S’i, S*j] denotes the standard Lie bracket of the column vecprs; and the
matrix M (q) € R"~**"—* is symmetric positive-definite.



In order to streamline the presentation in this section,mmduce a factorization
of the mass matrix .

M~ q) =T ()T (a), (12)
whereT : R® — R®~#xn—F is a full rank matri and define the mappinds: R" —
R™*"=k andF : R* x R™ — R"~* as

L(g) = S(a)T " (q), (13)
F(g,u) = LT (q)[Be(g)u — VU(q)]- (14)
Notice that, since andu are measurable, these mappings are known. We next state the
following proposition.

Lemma 1. The system dynamics (9)-(10) when expressed in the nevitatas(y, ) =
(¢,T(q)p), admits a state space representation of the form

y=L(y)z, (15)
&= S(y,x)x + F(y,u), (16)

where

S=TJT" + zn:({

i=1

e} —{LTe, }{ T 23T, @7)

ande, is thei'" basis vector oR™ %,

Proof. We directly obtain (15) by differentiatingand by using (9), (10), (13). We next
compute the following,

i&=Tp+Tph, (18)
=Tp— TS‘Taé(%ﬁTM_l((j)ﬁ) —TS'VU +TS8"Bou+TJT "z, (19)

Yy
=Tp—L"T ;y( p' M YG)p) + F +TJT «, (20)

where we have made use of (10), (13) and (14). We now compaite th

Tp= Z i SMp),
T
= Z 8y| )(e' L)x (21)
and further obtain
{ ~TM pt= —{ ~TTTTp}

oT _

= Z Gi{fp}Tz- (22)
i=1 Y

4 SinceM is positive definite this factorization always exists. Ityriz taken to be the (univo-
cally defined) Cholesky factorization, as proposed in [9].



Substituting (21) and (22) in (20) we obtain the dynamics a§,

i = Z({g—frlx}{ﬂem - {LTei}{g—jT—lw CTITTe 4 F
i=1 i i
=Sz + F, (23)

where we have used (17) to obtain the equation (23). Thisledas the proof.

Remark 2.1t can be verified easily that matri%(y, =) defined in (17) satisfies the fol-
lowing properties:

(i) Sis skew—symmetric, that is,
S+ST=o.

(ii)y Sislinearin the second argument, that is,
S(yv a1z + a2f) = als(yv 1‘) + GQS(ya j)a

forally,z,z € R", anday, a2 € R.
(iii) There exists a mapping : R™ x R® — R™*™ such that

S(y, )z = S(y, 7)z,
forall y, x,z € R™.

Remark 3.Lemmal implies that the speed observer problem for system (1)d2)e
recast as an observer problem for system (15)-(16) withutytp

Remark 4.For the special case of no nonholonomic constraints, we havé and
J(q,p) =0,9(q) = I, M(q) = M(q), L(q) = T" (q).
This subsequently simplifies the expression§¢y, =) as
., oT _ or,.
Sy, x) = Z({a—y_T Yo {Te} " — {Tez'}{a—y_T )T, (24)
i=1 v '

It can be shown (refer to [16]) that thigk )—th element oS is S, = —{T 1} " [7], Z].

4 Proof of the Main Result

The observer is constructed in four steps.

(S1) Following the I&I procedure [3], we define a manifold {ire extended state-space
of the plant and the observer) that should be rendered tgand invariarit As
is well-known, to achieve the latter objective a partiafetiéntial equation (PDE)
should, in principle, be solved.

5 The manifold should be such that the unmeasurable part at#te can be reconstructed from
the function that defines the manifold.



(S2) To avoid the need to solve the PDE the “approximationhéque proposed in
[10] is adopted. Using this approximation induces somersirothe observer error
dynamics.

(S3) Always borrowing from [10], we introduce a dynamic @eglthat dominates—
in a Lyapunov-like analysis—the effect of the aforemergidisturbance terms,
proving that the scaled observer error converges to zero.

(S4) To prove that the dynamic scaling factor is bounded emgsequently, that the ac-
tual observer error converges, exponentially, to zerd) bagn terms are introduced
in the observer dynamics to, again, dominate sign—indefiaitns in a Lyapunov—
like analysis.

Step 1. (Definition of the manifol&or the system (15)-(16), we propose the manifold
M= {(y,2,&,9,2) : € = + B(y,9,&) = 0} TR ¥, (25)

where¢ € R"* ¢ € R* % % € R” are (part of) the observer state, the dynamics of
which are defined below, and the mappjhgR3" 2 — R"~* s also to be defined.

To prove that the manifold\ is attractive and invariant it is shown that the off—
the—manifold coordinate

the norm of which determines the distance of the state to #&foid M, is such that:

(C1) 2(0) = 0= z(t) =0, for all t > 0 (invariance);
(C2) z(t) asymptotically éxponentially converges to zero (attractivity).

Notice that, ifz(¢t) — 0, an asymptotic estimate efis given by¢ + .
To obtain the dynamics of differentiate (26), yielding

t=E—i+f
=&~ S(y,x)e = F + Vy B8y + VyBj + Vafi.
Let . ) .

§=F —VyBy—Vipi+ 5y, &+ B)(E§+6) — VyBLY)(E+6), (27)
wherejj andz are to be defined. Replacing (27) in the equatiohalhove, and invoking
properties (ii) and (iii) of Lemma 1, yields

i=-8Sul+B-2)(E+B8—2)+
+S(y, £+ B)(E + B) — VyBL(y)=
= S(y,x)z + S(y,2)(§ + B) — VyBL(y)=
= S(y,z)z + S(y, &+ B)z — V,BL(y)2. (28)

From (28) it is clear that condition (C1) above is satisfied.te other hand, condition
(C2) would be satisfied if we could find a functigrthat solves the PDE

VyB = [kl + S5y, £+ B)L ™ (y), (29)



with k&, > 0, whereL=(y) : R* — R"*x7 is the full rank left inverse of the
matrix L(y). Indeed, in this case, the-dynamics reduce t& = (S — k;)z, achieving
the desired exponential convergence property. Unforapatolving the PDE (29) is a
daunting task, and we don’t even know if a solution exister&fore, in the next step
of the design we proceed to “approximate”stdution

Step 2. (“Approximate solution” of the PDB)efine the “ideaV, 3" as

H(y, &+ B) == [kl + 5y, £ + B)IL ™ (v), (30)

and denote the columns of this— k x n matrix by H; : R” x R*~* — R»~* for
1=1,...,n,thatis,

Now, mimicking [10], definé
Y1
ﬁ(y,:l),.f?) = ) Hl([s,gg,...,:&n],i‘)ds—|—...+
Yn
[ He i) s (31)
0

From the definition of the mapping, and adding and substractidd(y, £ + 3), we
have thatv, 3 can be written as

VyBly 5. 2) = Hy,€+ ) — {H(y, £+ 5)-

[Hl(ylay%-- -7?)717'%) R - Hn(?)la--'agn—hynaj)] }

Since the term in brackets is equal to zerg i y andz = £ + 3, and all functions are
smooth, there exist mappings, : R” x R" % x R? — R*=Fxn A R x R"F x
R?~* — R*—kxn gych that

VyB(y, 9, &) = H(y, £+ B) — Ay (y, 2, ey) — Au(y, &, €2), (32)
with
€y ::g*ya €y 11!2'*(54’6), (33)

and such that
Ay(y,fj,()) = 0; Al(y,jj,()) = Oa (34)

forall y, §, € R" andz, & € R" .
Replacing (30) and (32) in (28) yields
2=(S—k)z+ (A, + Ay)L(y)=. (35)

& We attract the readers attention to the particular seleaifche arguments used in the inte-
grands. Namely that, with some abuse of notation, the vectas been spelled out into its
components.



Recalling thatS is skew—symmetric ané; > 0, it is clear that the mapping4, and
A, play the role of disturbances that we will try to dominatehnatdynamic scaling in
the next step of the design.

Step 3. (Dynamic scaling)efine the scaled off-the—manifold coordinate

1
n= ;z, (36)

with r a scaling dynamic factor to be defined below. Differentigt{B86), and using
(35), yields

. 1. 7
n=-—-z—-0n
r r

= (S —ki)n+ (Ay + Az)L(y)n — ;n

Consider the function )
Vi(n) = 5lnl*,

and note that its time derivative is such that

T
Vi = (kv + —)nf* - n' (A, + A)L(y)n

k 7 1
- (55 - gl + AdDP) I
r

IN

2 2k,

IN

k1 1
— = — — (|A,L|I? + ||ALL|? 2
(%L a,017 + 1821 ) .

37)

where]| - || is the matrix induced—norm and we have applied Young’s inequality (with
the factork;) to get the second bound. Let

) k 7
P= g =) 4 (AL A L)), r(0) 2 1. (38)

Notice that the sefr € R | » > 1} is invariant for the dynamics (38). Replacing (38)
in (37) yields the bounds

° kl lefl 2
< | = - =
Vi< (2 1 )Inl

ki, o
_n 39
1 Inl=, (39)

IA

where the property‘;—1 < 1 has been used to get the second bound. From (39) we
conclude that)(t) converges to zero exponentially.

Step 4. (High—gain injectiorfjrom (36) and the previous analysis it is clear tha} —



0 if we can prove that € L., which is the property established in this step. To enhance
readability the procedure is divided into two parts. Fingt, make the function

1
Van,egrex) = V() + 5 (Jesf> + e ),

a strict Lyapunov function. Then, the derivative of the ftiowe

Va(n, ey, ez, 1) = Va(n, ey, ex) + %7“27 (40)
is shown to be non—positive—establishing the desired bedness of-. In both steps
the objectives are achieved adding, via a suitable sefedficthe observer dynamics,
negative quadratic terms if e,;, e, in the Lyapunov function derivative. We recall that
e, ande, are measurable quantities, defined in (33).
Towards this end, define

g =L(y)(&+ B) — 1y, r)ey, (41)

with ¢; : R™ x Ry — R, a gain function to be defined. The error dynamics, obtained
combining (15) and (41), are
€y = Lz — ey (42)

Now, select _
&=F+ 8y, +B)(E§+B) — 2y, r)ex, (43)

with ¢ : R™ x Ry — R, a gain function to be defined. Recalling (27) the error
dynamics fore,, become
€x = VyBL2z — 1)ae,. (44)

Using (39), (42) and (44) and doing some basic boundingdyiel

. k
Va < =L Inf* + reg L — inley | +

+reg VyBLn — ale,|? (45)
<4ﬁ—nw%(w—fWM)wF—
2 4 2 Y
T2
- (v = SV )l (46)

Selecting
7“2 2
Y1 = ke + Y3+ EHLH ;
r’ 2 2
Yo = ks + ¢ + 5[V, B ILI2, (47)
with ko, k3 > 0 andis, 14 : R™ x R. — R, to be defined, we conclude that

. 1
Vo < =5 (k1 = 2)In* — kaley|* — ksles|?,



which, selectingt; > 4, establishes thaf, e, e, € L2 N Lo and the origin of the
(non-autonomous) subsystem with state,, e, is uniformly globally exponentially
stable.

We are now ready for theoup de gace namely the selection af3 andy, to
guarantee that € L. For, recall (34), which ensures the existence of mappihgs
R” x R* % x R — Rn—k‘Xn, A_J, R x Rk x R~k _, Rn—kxn such that

14y (y, &, e0)[l < 14y (9, 2, €)] ley]
142 (y, &, ex) || < [|1A2(y, 2, €x)ll eal- (48)

Now, evaluate the time derivative 0f, defined in (40), replace (47) in (46), and use
the bounds (48) to get

k1

. r2  _
o< —(B - il = (va = TIBPILIE ey -

o 2 2 2
- z/frk—lllﬂxll IL]7 ) lex|”
Fixing
2
r _

Y3 = k—IIAyHQHLII2

1
_ ﬁ A_ 2 L 2
ba= I

1

ensured’; < 0, which ensures € L.
To prove condition (6) note that equation (39) implies

_kiy
In(&)] < [n(0)[e™= ",

hence ®
r ky _ k1
2(t)] < —=5[2(0)|e™ = " < sup{r(t)}=(0)|e” =",
r(0) >0
which yields the claim, by boundedness-¢f).

The proof is completed defining the state vector of the olesasy = (Z, 7, &, r),
obtainingA(y, ¢, u) from (43), (41), (27), and (38), and defining

B(y) = [T *(y)000].

Remark 5.The four components, g, £ andr of the state vector of the observer can be
given the following interpretation. The componénis the estimate of and a filtered
version of¢ + 5. The componeng is a filtered version of the measured variaple
The&-dynamics render the set= 0 invariant, regardeless of the selection of the other
dynamics, and can be regarded as tstteof a reduced order observerFinally, the
r-dynamics are used to trade stability of the nominal desigmdbustness against the
disturbancesA, andA,.

" To clarify this point note thatdeally, the PDE (29)should have a solutiéwhich is a function
of y alone. In this case the variabfewould play the role of the state of the (reduced) order
observer(see the examples in [8]).



Remark 6.Although the analysis of the performance of the proposeémies in the
presence of noise is not within the scope of the paper, it hwmoting the following.
The Lyapunov argument establishing uniform asymptotibibta of the zero equilib-
rium of the(n, ey, e, )-subsystem yields robustness againsts small additivenbertions

on the measured variablesandy. In the presence of such perturbations the variables
e, ande, do not converge to zero. Nevertheless, as long as they dieieutly small,
equation (38) can be regarded as describing a linear (ntumannous) scalar differen-
tial equation in which, by equations (34), the coefficienttw linear term is uniformly
negative. This ensures boundednesg of for all ¢.

5 Conclusions

A definite affirmative answer has been given to the questi@xistence of a globally
convergent speed observer for general mechanical systethmes form (1). No assump-
tion is made on the existence of an upperbound for the inerdittix, hence the result
is applicable for robots with prismatic joints. Also, no ditons are imposed on the
potential energy function. The only requirement is thatdygtem is forward complete,
i.e, that trajectories of the system exist for all times 0—which is a rather weak
condition.

In some sense, our contribution should be interpreted moanaexistence result
than an actual, practically implementable, algorithm.Jieg aside the high complex-
ity of the observer dynamics, that can be easily retraced fhe proof of Section 4, the
difficulty stems from the fact that the key functighis defined via the integrals (31),
whose explicit analytic solution cannot be guarantagxiori. Of course, the (scalar)
integrations can always be numerically performed leading mumerical implementa-
tion of the observer. Given the recent spectacular advancesnputational technology
this does not seem to constitute an unsurmountable difficult
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