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Abstract: In the same manner that species are associated with variants in order to survive, and that human 
communities, apparently in order to survive, are built up from people with different skills and professions, 
we suggest in this paper to select a set of diverse solutions in order to optimally solve Multi-Objective 
Problems (MOPs). As a set, the solutions may cover a wider range of capabilities within the multi-objective 
space than is possible for an individual member of the set. The diversity within the set is a key issue of this 
paper and hereinafter designated as an assortment. In the paper, we suggest a computational tool that 
supports the selection of such an assortment. The selection is posed as an auxiliary MOP of cost versus 
variability. The cost is directly related to the size of the assortment, whereas the variability is related to the 
ability of the assortment to cover the objective space. A previously treated problem is adopted and utilized 
in order to explain and demonstrate the approach. 

1 INTRODUCTION 

The use of Evolutionary Multi-objective 
Optimization, (EMO) is a popular approach for 
searching for solutions to MOPs (Multi Objective 
Problems). Commonly when the objectives of a 
MOP are contradicting the solution to the MOP is 
the Pareto set. The development of Pareto-based 
evolutionary algorithms has been initiated by the 
procedure suggested by Goldberg, (1989). Surveys 
and descriptions of EMO algorithms can be found in 
several references (e.g., Deb, 2001). 

Selecting a solution out of a Pareto set is 
commonly based on the designers' preferences. 
Choosing a set of solutions to MOPs instead of 
selecting a single solution is relatively a new area of 
research.   

Recently a new approach to select conceptual 
solutions has been investigated (e.g., Mattson, and 
Messac, 2005). It involves Set-Based Concept 
(SBC) representation in which a concept is 
associated with the performances of multiple 
solutions. When dealing with SBCs, each of the 
solutions (design alternatives), of the SBC is 
assumed to be associated with a point in the 
objective space, representing its performances. 
Therefore the concept performances can be 
evaluated based on a cluster of points in the 

objective space, where each of the points of the 
cluster is associated with the performances of at 
least one of the design alternatives (solutions) of the 
SBC. According to that approach, each concept has 
its related front. The global front, which is the non 
dominated set over all the objective space, is the s-
Pareto (Mattson, and Messac, 2005). An approach 
for choosing a concept, (a set) which has 
representatives on the s-Pareto, has been suggested 
in Mattson and Messac, (2005). There, it has been 
assumed that, the more representatives a concept has 
on the s-Pareto, the more flexible it is in 
corresponding to uncertainties. Avigad and 
Moshaiov (2009) have highlighted some pitfalls of 
considering just the s-Pareto and suggested an 
auxiliary MOP of optimality versus variability to 
compare between the concepts, based on their entire 
individual Pareto fronts.  

Apart from selecting a set, the evolution of sets 
has also been considered. For instance, there are 
studies that use set domination to search for the best 
approximation of the Pareto front (e.g., the 
Indicator-based Evolutionary Algorithm, -IBEA of 
Zitzler and Künzli, (2004). Such a search is based on 
assigning a value to the degree of domination 
between sets of competing approximations of the 
Pareto set. For example, such an assignment is 
performed using the binary additive indictor, which 
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was introduced by Zitzler et al. (2003). The binary 
additive-indicator of two Pareto set approximations 
is equal to the minimum distance among the 
dimensions of the objective space by which one 
Pareto set approximation needs to move or can be 
moved such that the compared approximation is 
weakly dominated by it.  

Within the context of this paper, it is important to 
consider another assessment measure that allows a 
comparison between two sets. This measure is the 
hyper-volume measure or S metric, which has been 
proposed by Zitzler and Thiele, (1998), who called it 
the 'size of the space covered' or the 'size of 
dominated space.' Van Veldhuizen and Lamont 
(2000), described it as the Lévesque measure of the 
union of hyper-cubes defined by a non-dominated 
point and a reference point. When engineering 
design is considered, the reference point might be 
related to specified boundaries in the objective 
space, namely within a 'region-of-interest'. 
According to Mattson and Messac (2005), in order 
to define a region-of-interest, the designer should 
specify a single point in the objective space. 

It is noted that choosing a set might also be 
related to the notion of community of robots. In that 
case, the aim is to find a set of robots which are 
communicating in order to perform a task or tasks. 
The idea might be related to swarms (see 
http://www.swarm-robotics.org) or to a multi-agent 
design (e.g., Bensaid, and Matheieu, 1998).  

In contrast to previous studies, which utilize a set 
of robots in order to execute an aggregated mission, 
the current paper suggests choosing a set such that 
its members do not always participate in the mission, 
but are rather "called for" based on the mission at 
hand. To elucidate the problem that will be attended 
by the current paper, refer to the following 
illustrative example: Suppose that robotic platforms 
are operating in a multi-task environment. This 
means that sometimes a fast action is needed and a 
robot should quickly move from one place to the 
other. In another scenario heavy loads should be 
transferred by a robot from one place to the other. It 
is clear that if optimality is considered, ideally the 
two different tasks should be performed by different 
robots. Choosing the optimal variety of robots 
(solutions) is the scope of the current paper.  

The paper is organized as follows. The next 
section lays out the background on which we rely in 
order to introduce the suggested approach. Section 3 
describes the motivation for this paper, having its 
origins in biology, sociology, and engineering 
design. Section 4 is the methodology, where the 
problem, its solutions, and the search approach are 

explained and formulated. In Section 5, an example 
is utilized in order to demonstrate the applicability 
of the approach in choosing an optimal assortment. 

2 BACKGROUND 

Recently in Avigad et al. (2009), we have introduced 
a new problem within the context of MOPs. The 
problem treated in Avigad et al. (2009), although 
defined as a common uncertain MOP, differs 
inherently from that problem. This difference 
influences both the search procedure as well as the 
multi criteria decision making. In the following, a 
brief outline of the problem and its solution as given 
in Avigad et al. (2009) are described. Consider the 
following MOP: 

)d,x(FMinimize
)x(

                               (1) 
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where Ω is the design parameters space 
(parameters that are to be chosen) and Γ is the 
model's environmental parameters space (which are 
not chosen but might be uncertain). x is a solution 

T
ni1 ]x,...x,..x[x = , 

nRx ⊂Ω∈  where 

 xxx
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iii ≤≤ and nR is the design space 
(controlled parameter space). The interval given for 
x is commonly related to an uncertainty, which is 
related to the realization of an exact value of x. 
Factors such as machine precision are the basis for 
the interval, which is in fact a tolerance given for 
each design parameter. In Avigad et al. (2009), the 
origin of the interval is fundamentally different. The 
interval is a span of possible values associated with 
choosing a specific parameter. For example 
choosing a specific motor (with no uncertainty) is 
like choosing a span of output torques (as well as 
weight, size, etc.). Each of the possible values for all 
design parameters is performing within an 
environmental situation mRd ⊆Γ∈  

T
mj1 ]d....d,...d[d = such that 

)U()L(

jjj ddd ≤≤  and 
mR are the environmental space (uncontrolled 

parameter space). If Γ×Ω⊆xS  then x
x Ss ∈  is a 
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scenario of x (which is a vector in mnR × ) . A 
scenario's vector of performances in a K objective 
space is 

)s(Fy x
sx = where Tx

K
x

2
x

1
x )]s(F....),s(F),s(F[)s(F =   

The corresponding set of all the scenarios' 
performances of the solution x is designated as: Yx 
, K

x RY ⊆Τ⊆ .  This means that a solution is 
represented by a cluster of points (each representing 
a vector) in objective space. The cluster of possible 
scenarios in the work of Avigad et al. (2009), is built 
of scenarios that are related to the same solution 
whereas in the uncertainty MOP case, each scenario 
is a different realized solution. So if all are possible 
scenarios, then a comparison between the solutions 
should be based on the best. In a multi objective 
space, the best might be a set of best scenarios. The 
set of best scenarios of a solution x, RSx and related 
front RSFx has been defined in Avigad et al. (2009) 
as follows:  

                               

}RSs:)s(Fy|y{:RSF
)}s(F)s(F:Ss|Ss{:RS

xxx
ss
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x
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The set of optimal solutions P* and their 
representation in objective space, the Pareto Layer, 
PL, are defined as follows:  

      
*}Px|RSF)s(F{:PL

}RSRS:RS|x{:*P
xx

x'x'x

∈∈=
∃¬Ω⊆= ≺       (3) 

The PL is associated with sets of representative sets, 
each related to a solution. This front is not a clear-
cut front but rather a cloud of scenarios' 
performances and therefore, it has been termed in 
Avigad et al. (2009) as the Pareto layer (PL). Such a 
PL possesses solution scenarios' performances that 
are dominated by the performances of other 
solutions’ scenario's performances.  Nevertheless, 
the representative sets of the optimal solutions do 
not dominate each other.  
In Avigad et al. (2009), an MOEA (Multi Objective 
Optimization Algorithm), which applies a search for 
finding the PL, has been suggested and investigated.   

The current paper deals with selecting sub-sets of 
the Pareto layer set, based on the motivation 
explained in the following section.  

3 MOTIVATION 

This paper approach is motivated by the apparent 
diversity within species in nature and by the 

diversity of professions and expertise within human 
societies. The genetic diversity carried in natural 
populations is a key factor in evolution (e.g., Mayr 
1982) and is one of the fundamentals of what is 
termed as modern evolutionary synthesis. The 
importance of population diversity is highlighted in 
many nature related studies (e.g., Booy, G. et al 
2000). According to Booy, G. et al 2000, "Such 
genetic variation within a population may allow 
species to change over time and thereby survive 
changing environmental conditions." According to 
Boer et al. 1993, "… a population can only achieve 
its adaptability by distribution of the variation across 
its individuals". The above citation clearly implies 
the importance of variability within a species. The 
above biologically related differences are associated 
with diversity in the genotype.  A question that 
needs to be investigated involves phenotypic 
differences. Naturally, the dissimilarity of human 
faces is one example.  However, here we are more 
interested in the behavior aspects. A clear 
dissimilarity between individuals within a human 
community is the existence of different trades, such 
that different people within the community are 
experts in different fields of knowledge (e.g., a 
medic, a coal miner and a fisherman are trades 
commonly practiced by different people).  

When optimality is considered, this is somewhat 
comparable to the fact that there is no world heavy 
weight champion winning a 100m run against Usain 
Bolt (the current world champion). These two 
extremes (strong and fast) are not the only cases. A 
decathlon athlete should possess characteristics that 
will allow him competing both in speed and 
strength. Neither the decathlon athlete, the runner, 
nor the heavy lifter athletes, is superior to each other 
if the bi-objective space of speed versus strength is 
considered.  This issue is the base for choosing the 
members of an Olympic team. Instead of choosing 
one solution (a single superstar that performs 
reasonably in all Olympic professions), a set of 
solutions (several athletes, each expert at his own 
field of profession) are selected. Thus a multi-
objective problem of optimizing all objectives (i.e., 
running the fastest, lifting the heaviest, etc.) is 
solved through using a set of solutions (athletes).  

Motivated by the apparent importance of 
diversity in species and human communities, we 
suggest searching for a set of diversified engineering 
solutions such that they may optimally comply with 
their set related tasks.  

Before going on to present the methodology, we 
would like to note the following two remarks. 
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1. Choosing a name for the set of solutions within 
the context of this paper was not an easy task. 
Community, group, team, unit, and other names 
were considered. The main drawback of all of these 
notions is the inherent interaction between their 
members. The definition for an assortment seems to 
best fit the idea. According to 
en.wiktionary.org/wiki/assortment an assortment is 
"a collection of varying but related items." 
No interaction is reminded in that definition, which 
is fine, with the relation possibly being interpreted 
here as the relation to the same objective space.  

2. The current paper is bound to the ideas 
presented in Avigad et al. (2000). Here a solution 
may have a span of possible performance vectors 
rather than a single performance vector. Consider a 
100 meters runner that runs slower than his/her best, 
or would run slower if s/he carries a load (or if s/he 
runs uphill). This is comparable to a design of a cart 
to move as fast as possible and to carry the highest 
loads. Carrying heavier loads means moving slower 
and vice versa. We could think of choosing a set of 
cars that could carry as high as possible loads and 
move as fast as possible or on a set of telescopic 
arms that should carry high as possible loads to most 
distant horizontal locations.  In these cases there is a 
fundamental contradiction in the objective space. 
However, more importantly, each solution has a 
span of possible performances. This is why the 
methodology and the example are built upon the 
Pareto Layer notion.  

4 METHODOLOGY 

4.1 An Assortment of Solutions 

An assortment As is a sub-set of all possible 
solutions Ω⊆sA ,   ∪

sn

1i

i
s xA

=
=  where ns= sA . 

Notes: 
1. An assortment might possess a single 

member. 
2. A solution might be a member of more than 

one assortment. 
3. An assortment might possess identical 

members.  
The performance of an assortment, Ys is represented 
in the problem objective space by the union of the 
representative sets of the assortment's members, 

∪
sn

1i

i
s RSFY

=
=  where iRSF  is the representative-set 

related front (see Section 2) of the i-th member of 
the assortment.  
In the current paper we shall follow some 
assumptions, which are given and explained here.  

1: Following the motivation for optimality, we 
only consider solutions that belong to the Pareto set 
as candidates for members in an assortment. 

2: The boundaries of the performances within the 
objective (task) space are known beforehand. In 
other words, the task WOI is given a priori to the 
design process. For example, it is assumed that the 
maximal carried load is known.  

3: The maximal cost involved with the assortment 
is known. This might be based on costs of 
manufacturing and transportation, among others. 

Based on the above assumptions, the assortment 
set and related performances are: 

             *
s PA ⊆ and PLYs ⊆   

In the current paper, we assume that the Pareto set 
and related Pareto Layer are given. 

4.2 The Competency of an Assortment 

It is suggested here that comparing and selecting an 
assortment out of all possible assortments is carried 
out by considering their performances. The 
performances of an assortment is termed here as the 
competency of the assortment. There might be 
several measures used to assess this competency. In 
the current paper, we consider just two: The first is a 
straight forward one, the cost of the assortment. As 
the number of members within an assortment 
increase, so does its cost. The cost of an assortment 
is the sum of the individual members' costs: 

           ∑
=

=
sn

1i

i
ss )x(Cost)A(Cost               (4) 

The second measure is the variability of the 
assortment, Vss.  It is a measure of the capability of 
the assortment to cover the objective space. The 
issue of variability has been extensively treated in 
Avigad and Moshaiov, (2009). Here it is the hyper-
volume rendered by the community related scenarios 
as formulized for an assortment As as follows: Let 

AF  be the union of all representative sets of an 

assortment such that: ∪
sn

1i

i
A RSF

=
=  . Thus the 

variability measure may be defined as: 

∏
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where 
xs

iHV is the hyper-volume  measure of the i-th 
scenario belonging to the set FA. To elucidate the 
measure, refer to Figure 1. The figure depicts the 
representative sets of three solutions within a WOI 
(designated by dashed lines). The size of the grey 
area in the figure is the variability measure. As it 
grows, the assortment may comply with more tasks 
within the WOI.  

 
Figure 1: Assortment related variability. 

The two measures explained above are mapping an 
assortment, which is represented by its related 
representative sets' fronts in the problem objective 
space, into an auxiliary space, which represents the 
competency of the assortment. The competency of 
an assortment is a point in the auxiliary space 
representing the cost associated with the assortment 
and its variability. Therefore, the problem of 
comparing and selecting between communities is 
transformed from the original objective space where 
each assortment is represented by a sub-Pareto layer 
into the auxiliary objective space where each 
assortment is represented by a single competency 
point of variability and cost.    

4.3 Problem Definition 

The problem of finding a sub-set of a Pareto set (an 
assortment) is defined as follows: 

 
Find Ω⊆sA , In order to                           

      ))A((max s
As

Ψ   , )
Cost

1,V()A(
ss

sss =Ψ            (6) 

 
Following assumption 1 in Section 4.1, the problem 
of Equation 6 may be restated as a search for a sub-
set of the Pareto set:  
 

Find *
s PA ⊆ ,                                          (7) 

In order to )
Cost

1,V(max
ss

ss
As

 s.t: 

)s(Fy|RSsAx x
WOIx

x
s ≺∈∃∈∀  

 
Observing Figure 1, it may be understood that as 

the size of the assortment grows, its variability also 
grows. This means that the MOP that is defined in 
Equation 7 involves contradicting objectives. 
Therefore the solution, (which is defined in Section 
4.4) may involve a Pareto front within the auxiliary 
MOP of variability versus cost.  

4.4 Problem Solution 

The solution to the problem, which has been defined 
by Equation 7, is an assortment As* and related 
competency Pareto front in the auxiliary MOP, FC*: 

 

*}AA:)A(Z|ZZ{:FC

)}A()'A(:'A|*PA{:*A

sss
***

sssss

≡Ψ=∈=

ΨΨ∃¬⊆= ≺
 (8) 

 
To elucidate the notions of Equation 8, refer to 
Figure 2. In order to simplify the example, suppose 
that the cost is the number of members in an 
assortment. 

 

Figure 2: The PL and the optimal assortments. 

4.5 Auxiliary MOP's Boundary 
Solutions 

The boundary solutions of the problem of Equation 
8 are; a single solution with the maximal hyper 
volume on one side and a set of all the solutions, 
which have the scenario/s' performances on global 
Pareto front on the other side. This might be seen by 
inspecting Figure 3, in which a PL in a bi-objective 
space is depicted.  
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Figure 3: Four PL's solutions RSFs. 

The PL is associated with four RSF's of the 
solutions. It can be seen that the black related RSF 
possesses the highest variability (biggest hyper 
volume) when just one member for the assortment is 
sorted. Nevertheless, the highest possible variability 
would be if all three grey RSFs are combined, 
unfortunately at the expanse of cost (three 
members). The question is how to find the solutions 
which are not the boundary solutions. Here we 
suggest using EMO for that search.  

4.6 The Evolutionary Search 

In this paper, it is assumed that the Pareto set and the 
related PL, are given. Therefore, in the current 
paper, the focus is on the search for sub-sets of the 
optimal solutions' set in order to comply with 
Equation 8. The evolutionary search involves a 
single chromosome integer value code for each 
individual. The length of the individual is predefined 
and is usually constrained by transportation volume 
or maximal cost boundary. Decoding an individual 
results in both the size of the assortment as well as 
which of the solutions (found by using the procedure 
of (Avigad et al., 2009)) are to be used for the 
assortment. For example, depict the coded individual 
of Figure 4. 

 
Figure 4: An Individual. 

Decoding the individual of Figure 4, results in a four 
member assortment with solutions 3, 7 (twice) and 9 
as its members. Any MOEA may be used for the 
evolutionary search. Here we have used the NSGA-
II (Deb et al. 2002), which is given in the following 
with some added details that relate the algorithm to 
the current methodology: 

Store the RSFs of all P* solutions (see equations… 
and (Avigad et al.  2000)  for  details  how  to evolve 

them). 
1. Initialize a population tP with n individuals. 

create Qt = tP  
2. Create a combined population ttt QPR ∪= . 
3. Decode Rt and compute the competency of all 

assortments using equations 4 and 5. 
4. Perform a non-dominated sorting for *Z and 

find fronts, iFr , i=1,…,nr  where nr is the 
number of fronts in a generation. 

5. Initialize a new parent population ∅=+1tP . Set 
a non-dominance level counter i=1. 
While nFrP i1t ≤++ , include the i-th front in 
the new parent population: i1t1t FrPP += ++  and 
set i=i+1. 

6. Perform the Crowding Sort procedure (see 
(Deb et al., 2002)), and complete the filling of 

1tP + with the most widely spread 1tPn +−  
solutions using the Crowding Distance measure 
of (Deb et al., 2002). 

7. Create offspring population *
1tQ + from 1tP + by   

Tournament Selection. 
8. Perform crossover to obtain **

1tQ +  from *
1tQ + . 

9. Perform mutation to obtain 1tQ +  from **
1tQ + . 

10. If last generation Go to 12 
11. Go to 2 
12. Introduce the FC* (Equation 8) to decision 

makers.  

5 EXAMPLE 

The example described in this section proceeds from 
Avigad et al. (2000). A cart of mass m(m') driven by 
a motor and gear with a mass of m' is to be designed. 
m(m'), meaning that as the chosen motor gets 
heavier, the carrying cart should be bigger and 
heavier in order to support the motor. The cart is 
carrying a load M as depicted in Figure 5.  

 
Figure 5: The cart. 

Considering a movement of the cart along the x axis, 
and that the overall mass is m*=m(m')+m'+M, the 
following relaxed equation has been shortly 
developed in (Avigad et al., 2009) 
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0gm)x(f
R

)'m(T *
r =− �   ,        (9)  

where T, is the driving  moment beyond the 
transmission gear, which depends on the motor 
size/mass (i.e., the bigger the stronger) and may 
change such that: maxTT0 ≤≤ . R=0.05m is the 
wheel diameter, and fr is the rolling resistance force 
that may be computed for inflation wheel-pressure 
of 30 psi, 5.2

r )x(002.001.0f �+= . Let 
m(m')=mo+2*m' where mo=4kg. The following bi-
objective problem, which maximizes the speed and 
carried load of the cart, i.e., )M,xmax( � has been 
considered. T and m' are motor dependent and are 
taken from PittmanTM motor data.  The resulting PL 
is depicted in Figure 6, which is borrowed from 
Avigad et al. (2000). 
 

 
Figure 6: The Pareto Layer of the problem. 

The algorithm, which was given in Section 4.6, has 
been utilized in order to search for the optimal 
assortments. A population of 100 individuals with 
50%, 3% crossover and mutation rates respectively 
were used. The Pareto front of the auxiliary MOP is 
found and is depicted in Figure 7.  

 
Figure 7: The most variable yet expensive assortment. 

It is observed that there are three possible different 
assortments consisting of one, two or three 
members. The solution to equation 8 is depicted in 
Figure 8. In the figure, each square represents an 
optimal assortment. The leftmost square represents 
the three member assortment (all solutions of Figure 
7). Although its cost is high compared to other 
assortments, its variability is the largest. This means 
that if all there carts are available more performance 
demands may be complied with. The middle square 
represents the two cart assortment with its medium 
competency. The rightmost square represents the 
single cart assortment, which has the least variability 
but with the least cost. Choosing one of the 
assortments is up to the DMs, who should consider 
their available resources, versus the gain of 
variability. 

 
Figure 8: The auxiliary problem Pareto front. 

The algorithm was run 50 times for the current 
problem. The statistical data is depicted in Figure 9. 
 

 
Figure 9: Statistical results for the cart problem. 

The Figure depicts the spread of the resulting 
variability for the three assortments as related to 
their variability.  
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6 CONCLUSIONS 

In the paper, we introduce the notion of an 
assortment, suggest an auxiliary MOP whose 
solution may aid decision makers in choosing an 
optimal assortment. Furthermore, an EMO to solve 
the auxiliary MOP is suggested. The paper 
contributions are: a. A new kind of a set (the 
assortment) is represented and motivated, b. A need 
to choose a set based on a set of sets has been 
encountered here for the first time by using EC, c. 
New motivation to correlate nature and sociology to 
engineering design has been suggested d. A new 
motivation for variability within engineering design 
has been highlighted, e. Yet another use of MOEA's 
has been explored.  

Future work should consider searching for 
assortments based on the auxiliary MOP directly 
from the beginning without relying on an a priori 
search of the PL. Furthermore, some more examples 
and test cases should be explored. Among the 
investigated cases, problems with more objectives, 
both in the original and the auxiliary MOPs should 
be interesting. Finally, robustness, while choosing an 
assortment, should be an important issue. Gaining 
more robustness may call for a need for overlapping 
of RSFs, which may reduce variability.   
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