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Abstract. In this paper we consider the dynamic model of a logistic node of a
transportation network and study dispatching feedback policies in terms of sta-
bility and optimality. A necessary and sufficient condition for the existence of a
stable feedback policy is given and a policy is presented which would be optimal
if the transportation resources were continuous.

1 Introduction

An intermodal logistic system can be modeled as a network comprising a set of nodes
(hubs and terminals) connected by the links established by the transport operations,
which, in general, take place under different modes. The management of logistic nodes
in this network is a complex problem where several factors have to be taken into ac-
count, from the availability of carriers and their assignment to particular tasks (in terms
of products to be shipped, destinations or routes), and fulfillment of various perfor-
mance criteria such as timely delivery, minimization of transportation and inventory
costs (possibly, both at the logistic nodes and at the destinations); see among others,
[1–4].

Many instances of decisional problems for these systems are presented and solved
in the literature; often transportation problems can be addressed in terms of linear pro-
gramming problems, see e.g., [5–8], and developing ad-hoc techniques to obtain the
solutions, such as dynamic programming with linear approximation of the (unknown)
value function. It is worth mentioning that by the approach of [5, 6] the framework of
the Logistic Queuing Networks is introduced.

A slightly different paradigm considers shipping policies for simplified models of a
logistic network (or a part of it) and addresses the minimization of transportation and
inventory costs, see for example [9, 10] and [15] where a stochastic setting is adopted.
Still another example of management problems for a logistic node is represented by the
optimization of space allocated for containers in ports (e.g., [13]); or the optimization
of the operations of discharging containers from a ship, their location in the terminal
yard and the upload of new containers [14]. In these last two cases, the performances
considered can be also viewed in terms of the necessity to maintain low levels of stocked
products in the logistic node (in this case, a port). The stability of the dynamics of the
stock at a logistic node is therefore a relevant issue to be taken into account.
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In order to study the stability (and the performance of stabilizing policies) from
a dynamical point of view, in this paper a simplified model of alogistic node in a
transportation network is considered and feedback policies based on the current state
of the system are defined to control the node. The scenario is similar to those arising in
other applicative domains (like in manufacturing, communications, computer systems
or queuing networks in general), so the feedback policies considered in this paper have
been inspired by various well established techniques developed in those domains. The
stability of these policies will be investigated and a necessary and sufficient condition
for the possibility of stabilizing the system will be determined. The sufficiency will be
established in a constructive way by determining a class of policies which guarantee the
stability of the system. A comparison among the performances of different stabilizing
policies will be carried out through simulations, showing that a policy, inspired by a
control known as optimal for the fluid version of the problem,will provide the best
results among the policies considered in the paper.

2 Problem Formulation

Consider the discrete time model of a logistic node collectingQ different types of wares
which have to be shipped toP different locations, and letxij(k) ≥ 0 be the quantity of
items of typej = 1, . . . , Q, with destinationi = 1, . . . , P , stocked at the logistic node
at timetk, and collected in the buffer3 Bij . In this model adestinationcould be more
in general considered as aroute among different locations, established through some
routing algorithm.

The time evolution of eachxij is observed at various decisional time instantstk,
and as such characterized by a discrete time dynamics. Denoting dij(k) the amount of
goods of typej to be sent to destinationi arriving in the node in the interval(tk, tk+1)
anduij(k) the amount of goods of typej shipped to destinationi from the node in the
same interval(tk, tk+1), we have:

xij(k + 1) = xij(k) + dij(k) − uij(k) (1)

In addition to this dynamics, we consider that of the vehicles executing the shipping
task. Letni(k) be the number of vehicles assigned to destinationi in the interval
(tk, tk+1); the total numberN(k) of vehicles present in the node at timetk obeys to the
following equation:

N(k + 1) = N(k) + R(k)−
P∑

i=1

ni(k) (2)

whereR(k) is the number of vehicles arriving from outside in the interval (tk, tk+1).
Notice that, according to the above dynamics, the total number of vehicles available for
a shipping task at timetk is given by

3 These buffers could be considered as virtual, in the sense that in some cases we may have
items which are physically stocked in different places according to their type (in such a way
that the physical content of a buffer is given by

∑P
i=1 xij) as it happens for the stocked finished

products in a factory.
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Na(k) := N(k) + R(k) (3)

To model the inflow of vehiclesR(k), first consider the simple scenario where there is
a fixed quantityNc of vehicles which could serve the logistic node (as if for example,
the logistic node is a shipper who owns a certain quantityNc of trucks). A traveling
time Ti ∈ N is associated to each route (i.e. destination)i; in particularTi denotes the
round-trip time, i.e. the interval after which a vehicle is again available at the node after
completion of a shipping task to destinationi. In this caseR(k) =

∑P
i=1 ni(k − Ti)

is the number of vehicles coming back from their expedition,and therefore (2) reads as
follows:

N(k + 1) = N(k) +
P∑

i=1

ni(k − Ti) −
P∑

i=1

ni(k); N(0) = Nc (4)

Notice that the total sum of vehicles (those at the logistic node and those traveling)
equalsNc at each time instant.

In other cases we can consider the logistic node and the shippers as separate entities,
so that the total number of vehicles which are going to accessthe logistic node varies
with time; in such situationsNc can be obtained through a suitable average of the expe-
dition history in the node, and can be possibly perturbed when new vehicles are assigned
to (or removed from) the node. A possible way to model this situation is by perturbing
the signalR(k), i.e.,R(k) =

∑P
i=1 ni(k−Ti)+∆(k), where∆ is a disturbance signal

characterized by certain statistical properties (e.g. zero mean). Another interesting ex-
tension would be to add to the round trip time some noise (possibly asymmetric, in the
sense that positive perturbations, so thatT̃i > Ti, are more likely to occur than negative
ones). As a first approach to the problem, in the following we consider the simplified
model (4), i.e., assuming that theTi’s are deterministic quantities andNc is fixed. In this
case the number of available vehicles at timetk is: Na(k) = N(k)+

∑P
i=1 ni(k−Ti).

Let’s now consider the interaction between the stock dynamics (1) and the vehicle
dynamics (4). To this end, assume that each vehicle has identical volume capacity and
that each item of typej = 1, . . . , Q has a relative volume with respect to vehicle
capacityvj ≤ 1 (that is, a vehicle has unit capacity). Accordingly, we havethe following
constraint for any routei:q

Q∑

j=1

vjuij(k) ∈ [0, ni(k)]. (5)

Sinceni(k) vehicles are used at timetk for route i, it is reasonable that the above
quantity is larger thanni(k)− 1 (actually, by the policies that will be considered in this
paper, vehicles travel completely loaded).

The objectives of this work will be essentially two. First, derive conditions on the
stability of the system, that is conditions on the inflow processd(·), (relative) part vol-
umesvj , traveling timesTi and number of vehiclesNc such that there exists a policy of
selection ofni(·) anduij(·) which maintains limited all the buffersxij(·). Second, ana-
lyze theperformanceof some class of policies, trying to solve the optimization problem
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consisting in the selection of theni(k) and of theuij(k) to minimize:

J =
K∑

k=1

g[x(k)]γk (6)

whereγ ∈ (0, 1] is a discount factor andK a planning horizon, possibly infinite. The
functiong(·) penalizes waiting freights in the node, e.g., for a linearg(x),

g(x) =
P∑

i=1

Q∑

j=1

cijxij (7)

We now make a fluid approximation for the variables involved in (1), considering
xij , dij anduij as continuous quantities. Accordingly, the information about the vol-
ume of each typej = 1, . . . , Q is now carried by the continuous variables (now the
relative volumesvj have no sense per se, hence they will be dropped in the follow-
ing) and each costcij , assuming a fixedi, now has the meaning of holding cost of part
j = 1, . . . , Q per unit volume4. Notice that also the variablesN, Nc, ni will represent
volumes (multiples of the unit volume).

We will deal with the two problems above by restricting the control policies to those
which make vehicles travel completely full (this is possible under the fluid approxima-
tion of the materials): this should represent, as remarked below, a correct choice under
heavy traffic conditions. Notice, also, that transportation costs have not been included
in the cost index: this depends on the fact that (i) transportation costs are considered
constant in time; (ii) we restrict the analysis to policies which make all vehicles travel
completely full. The assumptions above imply that the transportation cost is a fixed
component that does not influence the optimization problem.The choice of considering
the vehicles fully loaded is reasonable under heavy traffic conditions (where allowing
the possibility of sending partially full vehicles may evencompromise the stability), but
may become significantly sub-optimal in the case of reduced inflow rates, large holding
costscij and small traveling costs.

3 Stability

As an introduction, consider a one part-type system (Q = 1) with constant inflow
processesdi and equal transportation timesTi = T , ∀i. The equations are then:

xi(k + 1) = xi(k) + di − ui(k), i = 1, . . . , P (8)

ui(k) ∈ [0, ni(k)] (9)
P∑

i=1

ni(k) ≤ Na(k) (10)

N(k + 1) = N(k) +
P∑

i=1

ni(k − T )−
P∑

i=1

ni(k) (11)

4 Formally, as if the system were described by new variablesx′
ij = xijvj (and similarly fordij

anduij ) andc′
ij = cij/vj ; dropping the “prime” and remaining with the same notation.
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Based on the Little’s law, the necessary and sufficient condition of stability for this
system should be:

P∑

i=1

di ≤
Nc

T
(12)

In fact, Nc/T is actually the effective number of vehicles available at each time unit,
and hence also the volume of goods the node may handle in each unit of time. This must
be equal to the volume arriving from outside, i.e.

∑P
i=1 di.

The stronger condition that there exists a static vehicle allocation such that:

T di ≤ ni (13)

for all i, which implies condition (12), actually is not necessary (but clearly sufficient,
since if it holds, allows to apply a policy where vehicles aredivided once for ever among
the tasks and each task is fulfilled, with no interaction among them), as shown in the
following simple example.

Example. Consider a system withd1 = d2 = .5, T = 1, Nc = 1. Clearly it is
not possible to distribute vehicles once for ever (in fact for any static selection ofni,
condition (13) does not hold). However (12) holds and, in fact, the periodic allocation
n1(·) = {1, 0, 1, . . .} andn2(k) = 1− n1(k), maintains the buffers bounded. �

Let us now return to the general case, but considering at firsta constant inflow
process. Condition (12) should be substituted by:

P∑

i=1

Q∑

j=1

dijTi ≤ Nc (14)

which will be shown to be necessary and sufficient for the stability of the node. In this
case, in fact, the quantitydijTi plays the role of awork inflow in the system per unit of
time (in the sense that for each item of typej to be sent toi, the system must allocate
a working capacity ofTi, where the total working capacity isNc). In the case of time
varying inflow rates (but with the inflow rate oscillating in abounded interval), the same
condition should hold with average inflow ratesd̄ij .

Remark 1.Actually, while (14) is necessary for stability, the proof reported below only
holds if the inequality in (14) is strict. We believe howeverthat also the equality ensures
the stability. Notice, in any case, that a strict inequalityshould be considered in practical
settings to guarantee a certain degree of robustness of the stability property.

The previous discussion can be formalized in the following theorem.

Theorem 1. Condition (14) is necessary and sufficient (if taken with strict inequality)
to maintain all the buffers in the node bounded at all times.

Proof. Necessity.The necessity of (14) can be shown by relaxing the integer constraint
on theni(k). If the vehicle resource is not discrete, it is possible to maintain all the
buffers bounded only if there exists a static assignment of the vehicles (notice in fact
that in our model the inflow process is constant) which balances the freight inflow into
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the system for all the routesi. The freight inflow into the system of parts to be sent
on the routei is given byDi :=

∑Q
j=1 dij . If ni vehicles are assigned to this route,

since each transport requiresTi time units,ni vehicles are available only everyTi time
units. The amount of wares accumulated in such a period is given byDi Ti. So it must
be Di Ti ≤ ni. Summing overi, we get the condition (14). Since this condition is
necessary for the relaxed problem, it is necessary also for the original problem.

Sufficiency.The proof of sufficiency is constructive: we exhibit a class of policies
which, if (14) holds with strict inequality, ensures that all the buffers remain bounded.
The proof is very similar to the proof of Theorem 1 in [11]. Theclass of policies ensur-
ing stability is like the CAF policies in [11] where, however, the bufferxij is processed
not until it is cleared (level zero) but until its level becomes lower thanNc. That is: all
the vehicles are assigned to a single route by filling them with the products of a certain
bufferBij (selected according to the CAF rule (15) reported below) only if this buffer
has sufficient stock to use all vehicles, and the buffer is changed when this is no more
possible. If no buffer can fill all the vehicles, the system remains idle until this becomes
possible. Letτn denote the time a buffer has been finished to be processed. At each time
τn the next buffer will be the one (denoted with a∗) satisfying:

x∗(τn) ≥ ǫ
∑

i,j

xij(τn) (15)

for someǫ > 0 (e.g. the policy which selects the buffer with the largest content will
belong to this class, satisfying (15) with anyǫ ∈ (0, 1/P ), see [11]). LetT̄i := Ti/Nc.
Performing a derivation similar to the one reported in [11],it is possible to show that:

τn+1 − τn ≤ T̄ ∗x∗(τn)
1− ρ∗

+
Nc

d∗
(16)

where the∗ denotes the quantities corresponding to the buffer selected at timeτn and
ρ∗ := T̄ ∗d∗. The terms in (16) have been obtained as follows: the first term T̄∗x∗(τn)

1−ρ∗

corresponds to the time to bring the bufferx∗ from its initial level x∗(τn) to a value
belowNc and is derived from [11] setting the setup timeδ to 0 and considering that we
only need to reach a value belowNc and not0; the second termNc

d∗ takes into account
that when a buffer is selected, perhaps its content is less thanNc. We define, as in [11]:

w(k) =
∑

i,j

T̄ixij(k)

Then we have:
w(τn+1) =

∑

i,j

T̄ixij(τn+1) =

=
∑

i,j 6=∗
T̄i [xij(τn) + dij(τn+1 − τn)] + T̄ ∗x∗(τn+1)

= w(τn) +
∑

i,j 6=∗
T̄idij(τn+1 − τn) + T̄ ∗[x∗(τn+1) − x∗(τn)]
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≤ w(τn) +
∑

i,j 6=∗
T̄idij(τn+1 − τn) + T̄ ∗Nc − T̄ ∗x∗(τn)

where the last inequality is implied by the fact thatx∗(τn+1) ≤ Nc (we stop processing
x∗ at timeτn+1, when its content is belowNc). Exploiting (16),

w(τn+1) ≤ w(τn) +
∑

i,j 6=∗
T̄idij

(
T̄ ∗x∗(τn)
1− ρ∗

+
Nc

d∗

)
+ T̄ ∗Nc − T̄ ∗x∗(τn)

Now, introducing the notationρ :=
∑

i,j T̄idij , we have that
∑

i,j 6=∗ T̄idij = ρ − ρ∗.
Introducing this in the equation above and simplifying, we get:

w(τn+1) ≤ w(τn) − T̄ ∗x∗(τn)
1− ρ

1− ρ∗
+

ρ

d∗
Nc

Using (15), the previous becomes:

w(τn+1) ≤ w(τn) − T̄ ∗ǫ
∑

i,j

xij(τn)
1− ρ

1 − ρ∗
+

ρ

d∗
Nc

≤ w(τn) − T̄ ∗

T̄M
ǫ
∑

i,j

T̄ixij(τn)
1− ρ

1− ρ∗
+

ρ

d∗
Nc

whereT̄M = maxi T̄i. So,

w(τn+1) ≤ w(τn)
[
1− ǫ

T̄ ∗

T̄M

1− ρ

1− ρ∗

]
+

ρ

d∗
Nc

Notice that condition (14) under strict inequality can be written asρ < 1, which is
exactly the condition considered in [11]. The proof can be continued exactly as in [11]
where, however, for usαij = T̄i

1−ρ
1−ρij

(the same as in [11]) andβij = ρ
dij

Nc. So, as in
[11], it is possible to obtain:

supnw(τn) ≤ T̄M

ǫ
max

ij

βij

αij

hence

w(tk) ≤ T̄M

ǫ
max

ij

βij

αij
+ ρ

Nc

dm

wheredm = minij dij . This allows to obtain that

∑

ij

xij(tk) ≤ 1
T̄m

w(tk) ≤ T̄M

T̄mǫ
max

ij

βij

αij
+ ρ

Nc

ρm

is bounded for alltk (whereT̄m := mini T̄i). �
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4 Optimization

Consider for nowQ = 1 (one part type system). Now, under condition (14), if every-
thing is approximated through continuous variables, the optimal policy is myopic [12],
that is, it is thecµ rule if dealing with a linear cost functiong(x) as the one consid-
ered in (7). Thecµ rule consists in processing the buffersBij according to a priority
established by the productc timesµ, where in the present problem, the cost coefficient
c associated to the bufferBij is given by the coefficientcij in (7) and the maximum
processing rateµ for this buffer is given byµi = Nc

Ti
: this is actually the maximum

processing capacity for goods with destination (route)i. There are however two major
differences:

– vehicles are not continuous resources;
– the capacity allocation has an influence also on the future (if we allocate all vehicles

to destinationi we have to waitTi time units before we can change allocation)
while in the scheduling machine case, where thecµ policy has been proved optimal,
capacity allocations can change instantaneously at each step.

4.1 A Possible Heuristic

According to the above observations, we propose here a policy that we believe repre-
sents a promising and simple real time rule. We do not give here a proof of optimality
for this policy and neither give a proof of stability: the performance of this policy will
be explored from a computational point of view. According tothe simulations, the sta-
bility appears to hold whenever condition (14) holds: this is not surprising since the
policy reported below reduces the idle periods with respectto the one considered in the
proof of the sufficiency of Theorem 1. This depends on the factthat, even if also this
policy (as the one considered in the proof of Theorem 1) does not allow vehicles to
travel partially loaded, it is no more required here that allthe vehicles travel together to
the same destination.

In particular, at each time step, the policy considered in this section allocates the ve-
hicles available at that moment to the bufferBij which, among the ones with

∑
j xij ≥

1 (that is, among the ones which allow to complete the load of a vehicle) has the largest
cµ index (where, as mentioned above, for the bufferBij , the indexcµ is given by
cijNc/Ti). To illustrate the policy more in detail, assume for simplicity Q = 1 and
let i1, . . . , iP be the priority established according to thecµ rule (that iscik

/Tik
≥

cik+1/Tik+1 for all k). Then, the policy is given by:

ni1(k) = min {Na(k), ⌊xi1 (k)⌋}

ni2(k) = min {Na(k) − ni1(k), ⌊xi2 (k)⌋}
and so on, whereNa(k), defined in (3), is the number of available vehicles in the interval
(tk, tk+1). Then, to fill all the vehicles assigned to routei, we set:

ui(k) = ni(k).
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4.2 Simulative Results

We tested the policies discussed above in a system withQ = 1 (a single product),P =
3, characterized by the following parameters: delaysT1 = 4, T2 = 3, T3 = 5; arrivals,
constant in time,d1 = d2 = 7, d3 = 5; with this choice the minimumNc guaranteeing
stability is 74, according to condition (14). In figure are shown the performances (6), (7),
with unit costsc1 = c3 = 1, c2 = 2, andγ = 1, of three policies derived by simulating
the system, for a finite time horizon, for various values of the parameterNc. The dash
dotted line shows the performances of the stabilizing policy described in Theorem 1;
the dashed line the performances of the policy which allocates at each time instant all
the available vehicles prioritizing the buffers with higher content, and the continuous
line the performances of the “cµ policy” (those coefficients, by the parameters chosen,
make buffer2 the one with higher priority followed by buffer1 and3).

It is possible to observe that for values ofNc lower than the stabilizing value (74),
none of the policy described can achieve stability, consistently with Theorem 1 (for
Nc < 74 the costs reported in Figure 1 result finite as a consequence of the finite
time horizon considered). ForNc > 74 the cµ policy performs better than the policy
prioritizing the higher buffers.
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Fig. 1. Performances of thecµ policy (continuous line), the serve-largest-buffer policy (dashed),
and the basic stabilizing policy (dash-dotted), as a function ofNc.

5 Conclusions

In this paper, a simplified model of a logistic node has been considered, where items
arrive from outside to the node and must be routed to different destinations. Waiting
items are stored in different buffers, according to their class and destination. At first,
a necessary and sufficient condition is given in the paper forthe possibility of finding
dispatching dynamic policies that maintain all the buffersbounded. Subsequently an
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optimization problem is considered and a simulative comparison of the performance of
different feedback policies is presented in the paper. The problem has been studied un-
der a fluid approximation of the items traveling in the node: this allows to completely fill
the vehicles (and to neglect complex combinatorial loadingproblems). This possibility
is actually used by the policies studied in this paper that donot allow the vehicles to
travel partially filled. This is actually a reasonable choice under heavy traffic conditions
where allowing the possibility of sending partially full vehicles may even compromise
the stability, but may become significantly sub-optimal in the case of reduced inflow
rates, large holding costs and small traveling costs.
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