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Abstract. Considering nonlinear sampled-data systems, it has been shown in
[14] - that emulating a continuous-time controller that ensures some global asymp-
totic stability properties in continuous-time. In this study, we provide a similar
result, for a general class of systems, using a hybrid formulation that allows de-
riving explicit bounds on the maximum allowable sampling period.

1 Introduction

A number of researches focused on the stabilization problem of nonlinear sampled-data
systems during the last decades (see the overview [13] and [14] and the references cited
therein). A common approach consists in emulating a known continuous-time controller
using a sample-and-hold device. Based on discrete-time model approximations and us-
ing results of [17], it has been shown in [14] that, by choosing a sufficiently small sam-
pling period, asymptotic stability properties are recovered in an appropriate practical
sense, under mild conditions. Practical state convergence might be an issue in practice,
especially when the sampling period cannot be taken small enough. It is also important
for engineers to know an explicit bound on the sampling period that can be taken so that
designed controllers ensure the desired asymptotic state convergence. Thus, a number
of papers propose solutions for the asymptotic stabilization of nonlinear sampled-data
systems and the knowledge of an explicit bound onTMASP . In most of these works,
global asymptotic stability properties are studied. Two exceptions are however available
in the literature. First in [9] where a hybrid stabilization method is proposed for some
classes of systems: it consists in decomposing the state space in a number of regions
for which a controller is designed in order to reach the next region that is closer to the
origin. A semiglobal asymptotic stability property is shown to hold for system in output
feedback form in [21] but no explicit bound onTMASP is given. Concerning results on
global asymptotic stability properties for nonlinear systems, some papers are available
in the literature. In [4], global Lipschitz conditions on system and static state-feedback
nonlinearities are supposed to apply, thus the global exponential stability of the system
origin is recovered under sampling. In [1], considering the Euler approximation of a dy-
namic feedback controller, Lyapunov stability results for impulsive systems are applied,
under similar conditions than in [4]. A small gain theorem for a class of hybrid systems
that does not satisfy the classical semi-group property is developed in [7] that allows to
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design discrete-time controllers for classes of nonlinearsystems. The same authors in
[9] derive an analytic bound onTMASP when using emulated controllers, by modeling
sampled-data systems as time-delay systems. Recently, techniques firstly developed for
networked systems have been applied to the stabilization problem of nonlinear sampled-
data systems [16]. Writing nonlinear sampled-data systemswith emulated controllers
as hybrid systems in the modeling framework of [3, 2], sufficient Lyapunov-type condi-
tions are proposed and an explicit bound on theTMASP is given.

In this study, considering a known controller that is supposed to ensure the input-to-
state stability w.r.t. measurement errors of the closed-loop system in continuous-time,
it is shown that the emulated controller will ensure the asymptotic stability of system
origin if the sampling period satisfy an explicit boundedness condition. Similarly to
[16], the system is written as the interconnection of the continuous-time closed-loop
system and the ‘error’ system due to the sampling. The stability analysis relies on tra-
jectory based arguments and the Lyapunov-like analysis to ensure bounds on the state
and sampling error.

2 Notations

The Euclidean norm of a vector is denoted by| · |, for a functionf : R → Rn and
t1 ≤ t2 ∈ R, ‖f‖[t1,t2) stands forsupτ∈[t1,t2) |f(τ)|. LetC(Rp,Rq), p, q ∈ N, denote
the space of all continuous mappingRp → Rq. Bd ⊂ ofRn denotes the open ball
centered at0 and of radiusd. For initial conditions we use notationst◦ ≥ 0, x◦ =
x(t◦), e◦ = e(t◦), finally, to simplify the notations we sometimes omit the arguments
and when it is clear from the context, we writeV (x(t)), or evenV (t) in place of of
V (x(t, t◦, x◦)).

3 Problem Statement

Consider a system:

ẋp = fp(xp, u), (1)

y = hp(xp), (2)

wherexp ∈ Rnxp denotes the state vector of the plant,u ∈ Rnu the input vector,
y ∈ Rny the output vector,nxp , nu, ny ∈ N, fp ∈ Rnxp ×Rnu → Rnxp is locally Lip-
schitz withfp(0, 0) = 0, andhp ∈ Rnxp → Rny is differentiable, its partial derivatives
are locally Lipschitz andhp(0) = 0.

The following dynamic output-feedback controller is considered for the system (1)-(2):

ẋc = fc(xc, y), (3)

u = hc(xc, y), (4)

wherexc ∈ Rnxc denotes the state vector of the controller,nxc ∈ N, fc ∈ Rnxc ×
Rny → Rnxc is locally Lipschitz withfc(0, 0) = 0 andhc ∈ Rnxc → Rnu is differ-
entiable with locally Lipschitz partial derivatives andhc(0) = 0. For the sake of gener-
ality, all the results are stated for the system (1)-(4), butthey apply also for the case of
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output or state static feedbacks. Denotingx = [x⊤p , x
⊤
c ]⊤ ∈ Rnx , nx = nxp + nxc , the

following assumption is supposed to apply throughout the paper.

Assumption A 1. The originx = 0 is globally asymptotically stable for the closed-loop
system (1)-(4).

Attention is focused on the case where the inputu and the measure vectory are sampled
at the same instants{tk}k∈N using a sample-and-hold device. In the sequel we will use
the following assumption on the sampling instants.

Assumption A 2. Sequence of sampling instants{tk}, k ∈ N satisfies the following:
(i) There exist positive constantsυ, Tmax ∈ R>0 such thatυ ≤ tk+1 − tk ≤ Tmax for
all k ≥ 0.
(ii) The sequence{tk}k∈N0 is unbounded.

Remark.Assumption A2 allows the sampling sequence to be non-uniform. The lower
boundedness condition on the sampling periods is not restrictive sinceυ can be taken
arbitrarily small.

Considered sampled-data system can be rewritten in the following way, fork ∈ N and
t ∈ (tk, tk+1],

ẋ = f(x, e), (5)

ė = g(e, x), (6)

for t = tk,

x(t+k ) = x(tk), (7)

e(t+k ) = 0, (8)

wheree = x − x(tk), f = [fp(xp, hce)⊤, fc(xc, hpe)⊤]⊤, hpe(x, e) = hp(x(tk)) =
hp(xp − ep), hce(x, e) = hc(xc(tk), yk) = hc(xc − ec, hpe) andg(e, x) = f(x, e) .
Due to the properties of the functionsfp, fc, hp, hc thus introduced functionsf and
g are locally Lipschitz. Since by assumption A2 the sampling sequence is not gener-
ated independently, the system (5)-(8) satisfies the classical semigroup property (see
Example 2.12 in [7]).

The proposed presentation of the sampled data system is similar to this of [16] with
the difference in the definition of the variablee.
Our objective is to establish certain stability propertiesof the system (5-8) in case where
Assumptions A1-2 are satisfied. Namely we are interested in semi-global stability prop-
erty defined next.

Definition 1. System (5-8) is said to beSemi-Globally Asymptotically Stable (SGAS)
with respect toT if for all ∆ ∈ R>0, there existTmax∈R>0 , β ∈ KL such that for all
T ∈ [υ, T )max, x(t◦) ∈ B∆ and for all t ∈ [t◦,∞) the following inequality holds:

|[x(t)⊤, e(t)⊤]| ≤ β(|[x(t◦)⊤, e(t◦)⊤]|, t− t◦). (9)

If (9) holds for∆ = ∞, then system (5-8) is said to beGlobally Asymptotically Stable
(GAS).
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The approach we use is quite similar to the one proposed in [8]for design of hybrid
observers for sampled-data systems. Indeed, similar to [8]an ISS-like property with re-
spect to the measurement errors is exploited for the stability analysis. Actually, we base
our analysys on the following theorem which is similar to theresult given in Theorem
2 of [20] but in our case the bound on the possible input does not depend on the system
initial condition but rather on the radius of the ball of initial conditions for the state∆
and a chosen overshoot.

Theorem 1. Consider the system

ẋ = f(x, u), (10)

wherex ∈ Rn and functionf : Rn × Rm → Rn is continuous and locally Lipschitz.
Let ∆ ∈ R>0 be arbitrary andx◦ ∈ B∆. If the system (10) is GAS with the input
u ≡ 0, then there exist functionβ ∈ KL, a continuous positive definite functionδ :
R≥0 → R≥0 and for each∆ > 0 there exists functionγ∆ ∈ K such that for any
t◦, t ≥ 0, t ≥ t◦ and each measurable, essentially bounded inputu(·) for which

‖u‖[t◦, t) < δ(∆), (11)

the solution of (10) exists at least forτ ∈ [t◦, t) and satisfies on this interval the follow-
ing bound

|x(τ) ≤ β(|x|◦, τ − t◦) + γ∆(‖u‖[t◦, t)). (12)

Proof. Since the originx = 0 is GAS for the systeṁx = f(x, 0), then it follows
from Proposition 13 in [18] (see also [22]) that there exist functionsα1, α2 ∈ K∞ and
α3 ∈ K and a Lyapunov functionV ∈ C1(Rn,R) such that for allx ∈ Rn we have

α1(|x|) ≤ V (x) ≤ α2(|x|),
∂V

∂x
f(x, 0) ≤ −V (x), |∂V

∂x
(x)| ≤ α3(|x|).

Then, for the system (10) we have

∂V

∂x
f(x, u) ≤ −V (x) +

∂V

∂x
[f(x, u) − f(x, 0)] ≤ −V (x) + α3(|x|)|f(x, u) − f(x, 0)|

Since the functionf is continuous, it follows from the Lemma 2 that there exist a
strictly increasing functionc ∈ C(R, [1,∞)) and a functiond ∈ K such that|f(x, u)−
f(x, 0)| ≤ c(|x|)d(|u|) and therefore we have

∂V

∂x
f(x, u) ≤ −V (x) + c1(|x|)d(|u|),

wherec1(s) = α3(s)(s). Notice that the functionc1 ∈ K
Let ∆, ǫ > 0 andx◦ ∈ B∆ be fixed and arbitrary otherwise, define functionsδ1 and
ψ ∈ K∞ as follows

ψ(s) = (1 + ǫ)α−1
1 ◦ α2(s), δ(s) =

α1 ◦ ψ(s)− α2(s)
c (ψ(s))

.

Functionsα1, α2 ∈ K∞ andα2(s) ≥ α1(s) hence we have that functionψ ∈ K∞ and
ψ(s) > α−1

1 ◦ α2(s) > s for all s > 0, thereforeα1 ◦ ψ(s)− α2(s) > 0 for all s > 0.
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Sincec(s) ≥ 1 for all s ≥ 0, functionδ defined above is a continuous, positive definite
function.
Claim 1.If the input satisfies the bound (11) forτ ∈ [t◦, t), then it holds that

‖x‖[t◦, t)
≤ ψ(∆). (13)

Proof of the Claim 1. We proceed by contradiction. Assume that there existst∗ ∈ [t◦, t)
such that|x(t∗)| = ψ(∆) and lett1 = inf{τ ∈ [t◦, t) : |x(τ)| = ψ(∆)}.

Then for allτ ∈ [t◦, t1] we have that

V̇(10) =
∂V

∂x
f(x, e) ≤ −V (x) + c(ψ(∆))d(|e|),

using the comparison principle [10] we obtain that for allτ ∈ [t◦, t1] we have

V (x(τ)) ≤ V (x◦)e−(τ−t◦) +
∫ τ

t◦

c(ψ(∆))d(||e||[t◦,τ)) exp(−τ )dτ

≤ V (x◦)e−(τ−t◦) + c(ψ(∆))d(||e||[t◦ ,τ)). (14)

Combining the last inequality with (13) we obtain that for all τ ∈ [t0, t1]

V (x(τ)) ≤ V (x◦) + α1(ψ(∆))− α2(∆) < α1(ψ(∆)).

Thus,V (x(t1)) < α1(ψ(∆)) which implies that|x(t1)| < ψ(∆) and we came to the
contradiction with the initial assumption that|x(t1)| = ψ(∆) and hence Claim 1 is
proved.

Next, since for anyτ ∈ [t◦, t) we have that|x(τ)| ≤ ψ(∆) then it follows from (14)
and properties of the functionV (x) that on the same interval

α1(‖x(τ)‖) ≤ V (x(τ)) ≤ V (x◦)e−(t−t◦) + c(ψ(∆))d(||e||[t◦ ,τ))
≤ α2(‖x◦‖)e−(t−t◦) + c(ψ(∆))d(||e||[t◦,τ))

and therefore

‖x(τ)‖ ≤ α−1
1

(
α2(‖x◦‖)e−(t−t◦) + c(ψ(∆))d(||e||[t◦,τ))

)

≤ α−1
1

(
2α2(‖x◦‖)e−(t−t◦)

)
+ α−1

1

(
2c∆d(||e||[t◦,τ))

)
,

wherec∆ = c(ψ(∆)).
Sinceα1, α2 ∈ K∞ andd ∈ K, it is clear from the last inequality that there exists

functionβ ∈ KL and for each∆ > 0 there exists functionγ∆ ∈ K such that for all
t ∈ [t◦, t) the bound (12) is satisfied.

�

4 Main Results

As mentioned in the Introduction, it is well known that the sampling of the system
output and the control input is usually source of instability and that the only possibility
to overcome this issue consists in restricting the upper bound on the sampling period.
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The effect of the sampling is mostly due to the dynamics of thevariablee. Thus, it is
interesting to estimate an upper bound of this variable taking into account the fact that
e(t+k ) = 0, k ≥ 1, i.e. we start every sampling period with zero initial condition for this
variable

Lemma 1. Consider the system (10) and assume that the functionf is continuous,
locally Lipschitz andf(0, 0) = 0. Then, for anyµ ∈ R>0 there exist aC1 function
W : R≥0 → R≥0 with bounded∂W (x)/∂x and aC1 functionγ ∈ K such that for all
(x, e) ∈ Rn ×Rm

∂W

∂x
(x), f(x, u) ≤ µW (x) + γ(|u|). (15)

The proof of the lemma 1 is presented in the appendix. It showsthat the functionρ is
not necessarily unbounded. Thus, according to Lemma 1, for any µ ∈ R>0, there exist
ᾱ ∈ R>0 ∪ {∞} such thatρ : R≥0 → [0, ᾱ) of classK (K∞ if ᾱ = ∞).

Remark.Lemma 1 is similar to Lemma 11 in [18], but here, instead of finding an expo-
nentially decreasing positive definite function of the state, an exponentially increasing
one is obtained.

In the remaining part of the paper we assume that for the system (6) a functionW is
constructed according to Lemma 1 with a constantµ ∈ R>0 given. Note that, sinceW
is locally Lipschitz, using the arguments given in the footnote8 in [15], this holds for
almost all(x, e) ∈ Rnx+ne , along solutions to (6):

Ẇ (e) ≤ µW (e) + γ(|x|). (16)

The following proposition considers the case when subsystem (5) is ISS and gives the
conditions under which there existsTmax such that the system (5)-(8) is GAS if the
maximal sampling period is less thanTmax.

We start with introduction of the following assumption which will be used to ensure
that the solutions of the sampled data system do not explose during the first sampling
period.

Assumption A 3. The system

ẋ = f(x, x+ ce) (17)

is forward complete for any parameterce ∈ Rn.

Remark 1.From the Theorem 2, [23] it follows that assumption A3 is equivalent to
assuming existence of a proper and smooth function functionΨ(x) : Rn → R≥0 such
that along solutions of (17) we have

Ψ̇ ≤ aΨ (18)

for anyce ∈ Rn.
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Remark 2.Assumption A3 can actually be replaced by the equivalent assumption on
forward completeness for the systemė = g(e, e + cx). Choice of the assumption de-
pends rather on the simplicity to verify the assumptions forthese two systems.

Theorem 2. Consider the system (5)-(8) and let assumptionsA1- A3 hold. Suppose
that for the system (5)-(6) there exist positive definite functionsV , W : Rn → R≥0,
functionsαiv , gv, gw ∈ K∞, αiw ∈ K, i = 1, 2 and positive constantsµ andσ such
that along solutions of the system (5)-(6) we have

α1v(|x|) ≤ V (x) ≤ α2v(|x|) (19)

α1w(|e|) ≤W (e) ≤ α2w(|e|) (20)

V̇ ≤ −σV + gv(|e|) (21)

Ẇ ≤ µW + gw(|x|), (22)

and functionsg, α satisfy the followinglinear gainconditions

gv ◦ α−1
1w(s) ≤ k1s (23)

gw ◦ α−1
1v (s) ≤ k2s, (24)

wherek1, k2 are positive constants. Then ifTmax from the assumptionA2 satisfies the

inequalityTmax < T∗, whereT∗ = 1
µ+σ ln

(
1 + σ(σ+µ)

k1k2

)
, then the system (5)-(8) is

GAS.

Proof. We start the proof with the remark that there is important difference between the
first sampling interval and the rest of the sequence since it is only at the beginning of the
1st sampling interval we can have thate(t◦) 6= 0 while for all other intervals (k ≥ 1)
we havee(t+k ) = 0 , see (8). Therefore, we will teat here these two cases separately and
later combine the results together. We start with the case ofthe first sampling interval.
Case I.k = 0. On the interval[t◦, t1) we can rewrite the system (5)-(6) as follows:

ẋ = f(x, x+ e◦)
ė = g(e, e+ x◦).

Due to assumption A3 there exists a functionΨ : Rn → R≥0 such that (18) is satisfied,
hence for any initial conditions(x◦, e◦) we have thatΨ̇ ≤ Ψ and therefore, during the
interval[t◦, t1) ⊂ [t◦, t◦ + T∗) we have thatΨ(x(t, x◦, e◦), e◦) ≤ Ψ(x◦, , e◦)eT∗ . Since
functionΨ is proper and positive definite, there exist functionsαiψ ∈ K∞, i = 1, 2
such thatα1ψ(|x|) ≤ V (|x|) ≤ α2ψ(|x|), thus for allt ∈ [t◦, t1]

|x(t), e(t)| ≤ α−1
1ψ

(
α2ψ(|x◦, e◦|)eT∗

)
. (25)

Case II.k ≥ 1. This part of the proof is based on the following two observations:
– starting withk = 1 we have that at the beginning of each sampling periode(t+k ) = 0
and therefore we can use (22) to estimate the errore(t) during the sampling period.
– to ensure asymptotic stability it is enough to show that there exists a Lyapunov func-
tion V (x) such that for anyk ≥ 1 and anyt ∈ (tk, tk+1] we have

V (x(t)) ≤ V (x(tk)) (26)
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and moreover, there existsε > 0 such that

V (xk+1) ≤ εV (x(tk)). (27)

Notice that condition (26) insures Lyapunov stability of solutions, while (27) en-
sures decreas of the Lyapunov function during each samplingperiod and thus it’s con-
vergence to zero. From convergence to zero of the sequenceV (xk) follows convergence
to zero of thex(tk), hence ofx(t) and therefore of the differencese(t) = x(t)− x(tk).

Thus we only need to ensure that conditions of the theorem guarantee that during
any sampling period of the lenght less thanT∗ inequalities (26), (27) are satisfied. In
order to prove (26) we proceed by contradiction. We assume that there existsk ≥ 1
such that (26) is not true andt∗ ∈ (tk, tk+1) is the first moment such thatV (x(t∗)) =
V (x(tk)).

Let t ∈ (tk, t∗]. Sincee(t+k ) = 0, then from (22) it follows that

W (e(t)) ≤ e
µ(t−t

+
k

)
∫ t

tk

e
−µτ

gw(|x(τ)|)dτ

≤ e
µ(t−t

+
k

)
∫ t

tk

e
−µτ

gw ◦ α−1
1v (V (x(τ)))dτ ≤ k2e

µ(t−t
+
k

)
∫ t

tk

e
−µτ

gwV (x(τ))dτ

By assumption, forτ ∈ (tk, t∗] we have thatV (x(τ)) ≤ V (x(tk)) and therefore we
conclude that

W (t) ≤ k2

µ
V (x(tk))

(
eµ(t−tk) − 1

)
. (28)

In a similar way, from (21) we obtain that

V (t) ≤ V (tk)e−σ(t−tk) + e−σ(t−tk)

∫ t

t+k

eστgv(|e(τ)|)dτ

≤ V (tk)e−σ(t−tk) + k1e
−σ(t−tk)

∫ t

t+
k

eστW (e(τ))dτ

≤ V (tk)e−σ(t−tk) +
k1k2

µ
V (tk)e−σ(t−tk)

∫ t

t+k

eστ
(
eµ(τ−tk) − 1

)
dτ,

where we used (28) in the last inequality.
After simple but tedious calculations we obtain that

V (t) ≤ V (tk)f(t), (29)

where

f(t) =
k1k2

µ(µ+ σ)
eµ(t−tk) +

(
1 +

k1k2

µ(µ+ σ)

)
e−σ(t−tk) − k1k2

µσ
. (30)

Notice thatf(t+k ) = 1, while during the interval[t+k , t
+
k +T∗) derivative off(t) satisfies

the following bound

f ′(t) ≤ e−σ(t−t+k )

(
−(σ +

k1k2

µ+ σ
) +

k1k2

µ+ σ
e(µ+σ)Tmax

)

< e−σ(t−t+k )

(
−(σ +

k1k2

µ+ σ
) +

k1k2 + σ(µ+ σ)
µ+ σ

)
= 0
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and therefore for allt ∈ (tk, tk + T∗) we have thatf(t) < 11. Now, sincet∗ ∈
(tk, tk+1), we have thatt∗ ≤ tk + Tmax < tk + T∗ and therefore from (29) it fol-
lows that

V (t∗) ≤ V (t+k )f(t∗) < V (t+k ) = V (tk)

and we came to the contradiction. Hence the estimate (26) is satisfied during any sam-
pling interval(tk, tk+1]. Next, letε = f(Tmax). SinceTmax < T∗, we have thatε < 1
and then from (29) we obtain that on any sampling interval

V (tk+1) ≤ V (tk)f(tk+1) ≤ V (tk)f(Tmax) ≤ εV (tk)

and so the bound (27) is satisfied for any sampling period(tk, tk+1]. �

5 Conclusions

In this paper, for a general class of nonlinear systems we presented a result on asymp-
totic stability of a continuous time system in a closed loop with an emulated controller.
We use a hybrid formulation that allows to give explicit bounds on the maximum al-
lowable sampling period.
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Appendix

Proof of Lemma 1. Let µ > 0 be arbitrary and define an auxiliary functionΦ(x) =
‖x‖. Similar to Lemma 11 in [18] this function will serve the basis to construct function
W which satisfies inequality (15). Taking derivative ofΦ along the solutions of (10) we
obtain

∂Φ

∂x
(x) f(x, u) ≤ ‖f(x, u)‖ . (31)

Notice that functionf satisfies the assumptions of Lemma 2 and therefore there exist
C1 functionsλi, C1 functionsκ ∈ K andpositiveconstantsci > 0, i = 1, 2 such that

λi(s) = (κi(s) + ci) s, (32)

and
‖f(x, u)‖ ≤ λ1(‖x‖) + λ2(‖u‖). (33)
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It follows then that

∂Φ

∂x
(x) f(x, u) ≤ λ1(|x|) + λ2(|u|) = λ1(Φ(x)) + λ2(‖u‖).

Next we define the functionρ as
{
ρ(τ) = exp

(∫ τ
1

a
λ1(s)ds

)
for all τ ∈ R>0

ρ(0) = 0
(34)

wherea = max{µ, 2(c1 + κ1(1)}.
Claim 1. Thus defined functionρ is a continuous, locally Lipschitz function and

there exists a constantc > 0 such thatρ′(s) ≤ c for all s > 0.
We will prove this Claim a little bit later while for now we assume that it is true and
define functionW asW = ρ ◦Φ. FunctionW is locally Lipschitz (as a composition of
2 locally Lipschitz functions) and we have

∂W

∂x
(x)f(x, u) =

a

λ1(Φ(x))
W (x)

∂Φ

∂x
(x)f(x, u)

≤ a

λ1(Φ(x))
W (x) (λ1(Φ(x)) + λ2(|u|))

≤ µW (x) +
µW (x)
λ1(Φ(x))

λ2(|u|)

= µW (x) + µρ′(Φ(x))λ2(|u|) ≤ µW (x) + cµλ2(|u|). (35)

This would end the proof of the lemma.
Proof of the Claim. Functionρ defined in (34) is continuous onR>0 and strictly in-
creasing. From (32) we have that for alls ∈ [0, 1]

cis ≤ λ1(s) ≤ (c1 + κ1(1)) s (36)

and therefore
∫ τ
1

a
λ1(s)ds ≤

∫ τ
1

a
c1+κ1(1)

ds
s . Since the last integral diverges to−∞ asτ

goes to zero we have that functionρ is continuous onR≥0 and thereforeρ ∈ K.
In contrast with [18] we can not guarantee that thus constructed functionρ belongs

toK∞. Actually, this function will belong toK∞ only under certain conditions.
Next we will prove that the functionρ is locally Lipschitz. Since it is aC2 function

onR>0, it is enough for us to show thatlimτ→0+ ρ′(τ) exists and is bounded.2

For τ 6= 0 we have

ρ′(τ) =
a

λ1(τ)
ρ(τ), ρ′′(τ) =

(
a2

λ2
1(τ)

− aλ′1(τ)
λ2

1(τ)

)
ρ(τ). (37)

From (32) it follows thatλ′1(0) = c1 andλ′(τ) > 0 for all τ ≥ 0. Thus there exists a
constantδ > 0 such that for0 < τ < δ we haveλ′1(τ) ≤ 2c1 and we have that on the

2 In doing this we mostly retrace the steps of proof of Lemma 11,[18]
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interval(0, δ) the functionρ′ is positive and strictly increasing and hencelimτ→0+ ρ′(τ)
exists.

Next we show that this limit is bounded. From the first inequality in (37) we have
that on the interval(0, 1)

ρ′(τ) =
a

λ1(τ)
exp

(
−

∫ 1

τ

a

λ1(s)
ds

)

≤ a

c1τ
exp

(
−

∫ 1

τ

a

c1 + κ1(1)
ds

s

)
=

a

c1τ
exp

(
a

c1 + κ1(1)
ln τ

)

=
aτ

a
c1+κ1(1)

c1τ
≤ a

c1
τ, (38)

where we used definition of the constanta in the last inequality. From (38) it follows
trivially that limτ→0+ ρ′(τ) = 0 and therefore we proved that the functionρ is locally
Lipschitz.3

To prove boundedness ofρ′ onR≥0 we are left only with the caseτ ≥ 1. From (32)
it follows that there existsτ⋆ > 0 such thatκ(τ⋆) + c1 = a. Without loss of generality
we can assume thatτ⋆ > 1. Using lower estimateλ1(τ) ≥ c1τ and (37) we obtain that
for all τ ∈ [1, τ⋆] the following holds

ρ′(τ) ≤ a

c1τ
exp

(∫ τ

1

a

c1s
ds

)
=

a

c1τ
exp

(
ln τ

a
c1

)
=

a

c1
τ

(
a

c1
−1

)
≤ ∆,

where∆ = a
c1
τ

(
a

c1
−1

)

⋆ Finally for all τ ≥ τ⋆ the following holds

ρ′(τ) ≤ a

c1τ
exp

(∫ τ⋆

1

a

c1s
ds+

∫ τ

τ⋆

a

as
ds

)
=
a∆

c1τ
exp

(∫ τ

τ⋆

ds

s

)

≤ a∆

c1τ
exp

(
ln
τ

τ⋆

)
≤ a

c1
τ

(
a

c1
−2

)

⋆ ,

and therefore the functionρ′ is bounded onR>0. �

Lemma 2. Letn, m, l ∈ N − 0 andF : Rn+m → Rl) be continuous function then
the following statements are correct for all(x, y) ∈ Rn+m

A1. There exists a functionα ∈ K and a continuouslu differentiable, strictly increasing
functionc : R≥0 → [1,+∞) such that the following inequality holds

|F (x, y)− F (x, 0)| ≤ c(|x|)d(|y|). (39)

A2. If in addition, functionF is locally Lipschitz andF (0, 0) = 0, then there exist
continuously differentiable functionsγi ∈ K and nonnegative constantsci ≥ 0
(i = 1, 2) such that

|F (x, y)| ≤ λ1(|x|) + λ2(|y|), (40)

whereλi(s) = [ci + γi(s)] s, i = 1, 2.

3 Actually, following reasoning of Lemma 11 of [18] and slightly increasing the constanta we
can ensure thatρ is a C1 function. However, since functionΦ is only locally Lipschitz, in
general we can not expect to find aC1 functionW .
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Proof.

A1. From Lemma A.1, [12] we have that there exist functionsγ0, γ1 ∈ K∞, γ1 ∈ C1

such that, for all(x, y) ∈ Rn+m,

|F (x, y)− F (x, 0)| ≤ γ0(2|y|)
(
1 + γ1(|x|2 + |y|2)

)
.

Using properties of classK∞ functions and denotingc(s) =
(
1 + γ1(2s2)

)
,d(s) =

γ0(s)
(
1 + γ1(2s2)

)
we obtain

|F (x, y)− F (x, 0)| ≤ γ0(|y|)
(
1 + γ1(2|x|2) + γ1(2|y|2)

)
≤

≤ γ0(|y|)
(
1 + γ1(2|x|2)

)
+ γ0(|y|)γ1(2|y|2)

≤
(
γ0(|y|) + γ0(|y|)γ1(2|y|2)

) (
1 + γ1(2|x|2)

)
= c(‖x‖)d(‖y‖).

Continuous differentiability of the functionc and other properties follow straight-
forward from the definitions of the functionsc andd and the fact thatγ1 ∈ C1.

A2. Definez ∈ Rn+m asz = (x⊤, y⊤)⊤ and letF̃ (z) = F (x, y). Since functionF̃ is
locally Lipschitz inz, hence there exists a continuous functionL : Rn+m → R≥0

such that
∥∥∥F̃ (z)

∥∥∥ ≤ L(z) ‖z‖. Based onL(x) we define functionl0 : R+ → R+

as followsl(s) = sup{z:‖z‖≤s} L(z) andl0(0) = L(0). SinceL(z) is continuous,
the functionl0(s) is well defined, continuous ats = 0 and nondecreasing. It is
easy to show that we can always upperbound functionl0 by a strictly increasing
continuously differentiable function, i.e there always exists aC1 function l1 ∈ K
and a constantc1 ≥ 0 such thatl0(s) ≤ l1(s) + c1 for all s ≥ 0.
Notice that‖z‖ ≤ ‖x‖+‖y‖ andll(s1)s2 ≤ l1(s1)s1+l1(s2)s2 for anys1, s2 ≥ 0;
the last one is due to the fact thatl1 ∈ K. Using this inequalities we obtain that for
all s ≥ 0

‖F (x, y)‖ =
∥∥∥F̃ (z)

∥∥∥ ≤ (l1(‖z‖) + c1) ‖z‖ ≤ (l1(‖x‖+ ‖y‖) + c1) (‖x‖+ ‖y‖) ≤
≤ (l1(2 ‖x‖) + l1(2 ‖y‖) + c1) (‖x‖+ ‖y‖)
≤ (3l1(2 ‖x‖) + c1) ‖x‖+ (3l1(2 ‖y‖) + c1) ‖y‖

�

93


