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Abstract. On-time delivery is a key performance measure for dispatching and 
routing of freight vehicles in just-in-time (JIT) manufacturing environments. 
Growing travel time delays and variability, attributable to increasing congestion 
in transportation networks, are negatively impacting the efficiency of JIT 
logistics operations. Recurrent congestion is one of the primary reasons for 
delivery delay and variability. In this study, we propose a stochastic dynamic 
programming formulation for dynamic routing of vehicles in non-stationary 
stochastic networks subject to recurrent congestion. Results are very promising 
when the algorithms are tested in a simulated network of Southeast-Michigan 
freeways using historical Intelligent Transportation Systems (ITS) data. 

1 Introduction 

Supply chains that rely on just-in-time (JIT) production and distribution require 
timely and reliable freight pick-ups and deliveries from the freight carriers in all 
stages of the supply chain. However, road transportation networks are experiencing 
ever growing travel time delays, which greatly hinders all travel and certainly the 
freight delivery performance. Travel time delays are mostly attributable to the so 
called ‘recurrent’ congestion that, for example, develops due to high volume of traffic 
seen during peak commuting hours. The standard approach to deal with congestion is 
to build additional ‘buffer time’ into the trip (i.e., starting the trip earlier so as to end 
the trip on time). Intelligent Transportation Systems (ITS) are providing real-time 
traffic data (e.g., lane speeds and volumes) in many urban areas. In-vehicle 
communication technologies, such as satellite navigation systems, are also enabling 
drivers’ access to this information en-route. In this paper, we precisely consider JIT 
pickup/delivery service, and propose a dynamic vehicle routing model that exploits 
real-time ITS information to avoid recurrent congestion. 

Our problem setting is the non-stationary stochastic shortest path problem with 
recurrent congestion. We propose a dynamic vehicle routing model based on a 
Markov decision process (MDP) formulation. Stochastic dynamic programming is 
employed to derive the routing ‘policy’, as static ‘paths’ are provably suboptimal for 
this problem [1]. The MDP ‘states’ cover vehicle location, time of day, and network 
congestion state(s). Recurrent network congestion states and their transitions are 
estimated from the ITS historical data. The proposed framework employs Gaussian 
mixture model based clustering to identify the number of states and their transition 
rates, by time of day, for each arc of the traffic network. To prevent exponential 
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growth of the state space, we also recommend limiting the network monitoring to a 
reasonable vicinity of the vehicle. 

The rest of the paper is organized as follows. Survey of relevant literature is given 
in section 2. Section 3 establishes modeling recurrent congestion and dynamic vehicle 
routing for the problem. Section 4 presents experimental settings and discusses the 
results. Finally, section 5 offers some concluding remarks.  

2 Literature Survey 

Shortest path problems with stochastic and time-dependent arc costs (STD-SP) are 
first studied by Hall [1]. Hall showed that the optimal solution has to be an ‘adaptive 
decision policy’ (ADP) rather than a single path. Hall [1] employed dynamic 
programming (DP) approach to derive the optimal policy. Later, Fu [2] discussed 
real-time vehicle routing based on the estimation of immediate arc travel times and 
proposed a label-correcting algorithm as a treatment to the recursive relations in DP. 
Waller and Ziliaskopoulos [3] suggested polynomial algorithms to find optimal 
policies for stochastic shortest path problems with one-step arc and limited temporal 
dependencies. For identifying paths with the least expected travel (LET) time, Miller-
Hooks and Mahmassani [4] proposed a modified label-correcting algorithm. Miller-
Hooks and Mahmassani [5] extends [4] by proposing algorithms that find the 
expected lower bound of LET paths and exact solutions by using hyperpaths. 

All of the studies on STD-SP assume deterministic temporal dependence of arc 
costs, with the exception of [3] and [6]. Polychronopoulos and Tsitsiklis [7] is the first 
study to consider stochastic temporal dependence of arc costs and to suggest using 
online information en route. They defined environment state of nodes that is learned 
only when the vehicle arrives at the source node. They considered the state changes 
according to a Markovian process and employed a DP procedure to determine the 
optimal policy. Kim  et al. [8] studied a similar problem as in [7] except that the 
information of all arcs are available real-time. They proposed a DP formulation where 
the state space includes states of all arcs, time, and the current node. They stated that 
the state space of the proposed formulation becomes quite large making the problem 
intractable. They reported substantial cost savings from a computational study based 
on the Southeast-Michigan’s road network. To address the intractable state-space 
issue, Kim  et al. [9] proposed state space reduction methods. A limitation of Kim et 
al.[8], is the modeling and partitioning of travel speeds for the determination of arc 
congestion states. They assume that the joint distribution of velocities from any two 
consecutive periods follows a single unimodal Gaussian distribution, which cannot 
adequately represent arc travel velocities for arcs that routinely experience multiple 
congestion states. Moreover, they also employ a fixed velocity threshold (50 mph) for 
all arcs and for all times in partitioning the Gaussian distribution for estimation of 
state-transition probabilities (i.e., transitions between congested and uncongested 
states). As a result, the value of real-time information is compromised rendering the 
loss of performance of the dynamic routing policy. Our proposed approach addresses 
all of these limitations. 
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3 Modeling 

3.1 Recurrent Congestion Modeling 

Let the graph ( ),G N A=
 
denote the road network where N  is the set of nodes 

(intersections) and A N N⊆ ×  is the set of directed arcs between nodes. For every 
node pair, ',n n N∈ , there exists an arc ( ), 'a n n A≡ ∈ , if and only if, there is a road 

that permits traffic flow from node n  to 'n . Given an origin, 0n -destination, dn  node 
(OD) pair, the trip planner’s problem is to decide which arc to choose at each decision 
node such that the expected total trip travel time is minimized. We formulate this 
problem as a finite horizon Markov decision process (MDP), where the travel time on 
each arc follows a non-stationary stochastic process.  

An arc is labeled as observed if its real-time traffic data (e.g., velocity) is available 
through the traffic information system. An observed arc can be in 1r ++ ∈Ζ  different 
states that represent arc’s traffic congestion level at a time. We begin with discussing 
how to determine an arc’s congestion state given the real-time velocity information 
and defer the discussion on estimation of the congestion state parameters to Section 4.  
Let ( )1i

ac t−

 
and ( )i

ac t
 
for i=1,2,...,r+1 denote the cut-off velocities used to determine 

the state of arc a given the velocity at time t  on arc a , ( )av t . We further define 

( )as t  as the state of arc a  at time t , i.e.
 ( ) { } { }Congested at level as t i i= = and can 

be determined as: ( ) ( ) ( ) ( ){ }1, if i i
a a a as t i c t v t c t−= ≤ < . For instance, if there are two 

congestion levels (e.g., 1 2r + = ), then the states will be i.e., 
( ) { } { }Uncongested 0as t = =  and ( ) { } { }Congested 1as t = = and the travel time is 

normally distributed at each state. 
We assume the state of an arc evolves according to a non-stationary Markov 

chain. In a network with all arcs observed, ( )S t
 
denotes the traffic congestion state 

vector for the entire network, i.e., ( ) ( ) ( ) ( ){ }1 2 | |, ,..., AS t s t s t s t=  at time t . For 
presentation clarity, we will suppress ( t ) in the notation whenever time reference is 
obvious from the expression. Let the state realization of ( )S t  be denoted by ( )s t . 

It is assumed that arc states are independent from each other and have the single-
stage Markovian property. In order to estimate the state transitions for each arc, two 
consecutive periods’ velocities are modeled jointly. Accordingly, the time-dependent 
single-period state transition probability from state ( )as t i=

 
to state ( )1as t j+ =  is 

denoted with ( ) ( ){ }1 | ( )ij
a a aP s t j s t i tα+ = = = . The transition probability for arc a , 

( )ij
a tα , is estimated from the joint velocity distribution as follows: 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1

< 1 1 1

<

i i j j
a a a a a aij

a i i
a a a

c t V t c t c t V t c t
t

c t V t c t
α

− −

−

≤ ∩ + < + < +
=

≤
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 Let ( ), 1aT t t +  denote the matrix of state transition probabilities from time t  to 

time 1t + , then we have ( ) ( ), 1 ij
a a ij

T t t tα⎡ ⎤+ = ⎣ ⎦ . Note that the single-stage Markovian 

assumption is not restrictive for our approach as we could extend our methods to the 
multi-stage case by expanding the state space [10]. Let network be in state ( )S t

 
at 

time t  and we want to find the probability of the network state ( )S t δ+ , where δ  is 
a positive integer number. Given the independence assumption of arcs’ congestion 
states, this can be formulated as follows: 

( ) ( )( ) ( )
1

| ( ) | ( )
A

a a
a

P S t S t P s t s tδ δ
=

+ = +∏ .
 

Then the congestion state transition probability matrix for each arc in δ  periods 
can be found by the Kolmogorov’s equation:

 
( ) ( ) ( ) ( ), 1 ...ij ij ij

a a a aij ij ij
T t t t t tδ α α α δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = × + × × +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 

With the normal distribution assumption of velocities, the time to travel on an arc 
can be modeled as a non-stationary normal distribution. We further assume that the 
arc’s travel time depends on the congestion state of the arc at the time of departure 
(equivalent to the arrival time whenever there is no waiting). It can be determined 
according to the corresponding normal distribution: 

( ) ( ) ( )( )2, , ~ , , , , ,a a at a s N t a s t a sδ μ σ , 

where ( ), , at a sδ
 
is the travel time; ( ), , at a sμ and ( ), , at a sσ are the mean and the 

standard deviation of the travel time on arc a at time t with congestion state ( )as t . 

3.2 Dynamic Routing Model with Recurrent Congestion 

We assume that the objective of our dynamic routing model is to minimize the 
expected travel time based on real-time information where the trip originates at node 

0n  and concludes at node dn . Let's assume that there is a feasible path between 

( )0 , dn n  where a path ( )0 1,.., ,..,k Kp n n n −=
 
is defined as sequence of nodes such that 

1( , )k k ka n n A+≡ ∈ , 0,.., 1k K= −  and K  is the number of nodes on the path. We 
define set 1( , )k k ka n n A+≡ ∈  as the current arc set of node kn , and denoted with 

( )kCrAS n . That is, ( ) { }1: ( , )k k k k kCrAS n a a n n A+≡ ≡ ∈  is the set of arcs emanating 
from node kn . Each node on a path is a decision stage (or epoch) at which a routing 
decision (which node to select next) is to be made. Let kn N∈  be the location of kth 

decision stage, kt is the time at kth decision stage where { }1,...,kt T∈ , 1KT t −> . Note 
that we are discretizing the planning horizon.  

While optimal dynamic routing policy requires real-time consideration and 
projection of the traffic states of the complete network, this approach makes the state 
space prohibitively large. In fact, there is little value in projecting the congestion 
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states well ahead of the current location. This is because the projected information is 
not different than the long run average steady state probabilities of the arc congestion 
states. Hence, an efficient but practical approach would tradeoff the degree of look 
ahead (e.g., number of arcs to monitor) with the resulting projection accuracy and 
routing performance. This has been very well illustrated in Kim et al. [9]. Thus we 
limit our look ahead to finite number of arcs that can vary by the vehicle location on 
the network. The selection of the arcs to monitor would depend on factors such as arc 
lengths, value of real-time information, and arcs’ congestion state transition 
characteristics. For ease of presentation and without loss of generality, we choose to 
monitor only two arcs ahead of the vehicle location and model the rest of the arcs’ 
congestion states through their steady state probabilities. Accordingly, we define the 
following two sets for all arcs in the network. ( )kScAS a , the successor arc set of arc 

ka ,
 ( ) { }1 1 1 2: ( , )k k k k kScAS a a a n n A+ + + +≡ ≡ ∈  , i.e., the set of outgoing arcs from the 

destination node ( 1kn + ) of arc ka . ( )kPScAS a , the post-successor arc set of arc ka , 

( ) { }2 2 2 3: ( , )k k k k kPScAS a a a n n A+ + + +≡ ≡ ∈  i.e., the set of outgoing arcs from the 
destination node ( 2kn + ) of arc 1ka + .  

Since the total trip travel time is an additive function of the individual arc travel 
times on the path plus a penalty function measuring earliness/tardiness of arrival time 
to the destination node, the dynamic route selection problem can be modeled as a 
dynamic programming model. The state, ( )1 2 ,, ,

k kk k ka an t s
+ +∪ ,  of the system at k th 

decision stage is denoted by kΩ . This state vector is composed of the state of the 
vehicle and network and thus characterized by the current node ( kn ), the current node 
arrival time ( kt ), and 

1 2 ,k k ka as
+ +∪  the congestion state of arcs 1 2k ka a+ +∪  where 

( ){ }1 1: kk ka a ScAS a+ + ∈
 
and ( ){ }2 2: kk ka a PScAS a+ + ∈  at k th decision stage. The 

action space for the state kΩ  is the set of current arcs of node kn , ( )kCrAS n .  
At every decision stage, the trip planner evaluates the alternative arcs from 

( )kCrAS n
 
based on the remaining expected travel time. The expected travel time at a 

given node with the selection of an outgoing arc is the expected arc travel time on the 
arc chosen and the expected travel time of the next node. Let { }0 1 1, ,..., Kπ π π π −=

 
be 

the policy of the trip and is composed of policies for each of the K-1 decision stages. 
For a given state ( )1 2 ,, ,

k kk k k ka an t s
+ +∪Ω = , the policy ( )k kπ Ω  is a deterministic 

Markov policy which chooses the outgoing arc from node kn , i.e., 

( ) ( )k k ka CrAS nπ Ω = ∈ . Therefore the expected travel cost for a given policy vector 
π  is as follows: 

( ) ( )( ) ( )
2

0 1
0

, ,
k

K

k k k k K
k

F E g gπ

δ
π δ

−

−
=

⎧ ⎫
Ω = Ω Ω + Ω⎨ ⎬

⎩ ⎭
∑ ,  

where ( )0 0 0 0, ,n t SΩ =  is the starting state of the system. kδ  is the random travel 
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time at decision stage k, i.e., ( ) ( )( ), ,k k k k a kt s tδ δ π≡ Ω . ( )( , , )k k k kg π δΩ Ω  is cost 

of travel on arc ( ) ( )k k ka CrAS nπ Ω = ∈  at stage k , i.e., if travel cost is a function (

φ ) of the travel time, then ( ) ( )( , , )k k k k kg π δ φ δΩ Ω ≡ and ( )1Kg −Ω is terminal cost 

of earliness/tardiness of arrival time to the destination node under state 1K−Ω . Then 

the minimum expected travel time can be found by minimizing ( )0F Ω  over the 
policy vector π as follows: 

( )
{ }

( )
0 1 1

*
0 0, ,...,

min
K

F F
π π π π −=

Ω = Ω . 

The corresponding optimal policy is then 
{ }

( )
0 1 1

*
0

, ,...,
arg min

K

F
π π π π

π
−=

= Ω . Hence, the 

Bellman’s cost-to-go equation for the dynamic programming model can be expressed 
as follows [10]: 

( ) ( ) ( ){ }* *
1min ( , , )

k k
k k k k k kF E g F

π δ
π δ +Ω = Ω Ω + Ω

.  
For a given policy ( )k kπ Ω , we can re-express the cost-to-go function by writing 

the expectation in the following explicit form: 

( ) ( ) ( )

( ) ( )( ) ( )( ) ( )
, 1 , 11 2

1 1 21 1 11 1, , ,

| | , , ,

|
k

a k a kk k

k k k

k k k k k k k k

k k k k
s s

k k ka a a

F a P a g a

P s t s t P s t F

δ

δ δ

+ ++ +

+ + ++ + ++ +

Ω = Ω Ω +⎡⎣

Ω ⎤⎦

∑

∑ ∑
 

where ( )| ,k k kP aδ Ω  is the probability of travelling arc ka  in kδ  periods. 

( )( )2 11,k kkaP s t
+ ++  is the long run probability of arc ( )2 2: kk ka a PScAS a+ + ∈  being in 

state 
2 1,k kas

+ +  
in stage 1k + . This probability can be calculated from the historical 

frequency of a state for a given arc and time. 

 
We use backward dynamic programming algorithm to solve for ( )*

k kF Ω , 
1, 2,..,0k K K= − − . In the backward induction, we initialize the final decision 

epoch such that, ( )1 1 1 1, ,K K K Kn t s− − − −Ω = , 1Kn −  is destination node, and

( )1 1 0K KF − −Ω =
 
if 1Kt T− ≤ . Accordingly, a penalty cost is accrued whenever there is 

delivery tardiness, e.g., 1Kt T− > .Note that 1Ks − =∅ since destination node current 
and successor arcs doesn’t have value of information. 

4 Experimental Studies 

In this section we first introduce two road networks for demonstrating the 
performance of the proposed algorithms along with a description of their general 
traffic conditions. Then describe the process of how to model recurrent congestion. 
Finally, we report savings from employing the proposed model. 

71



We te
sample n
metropoli
arcs and 
by Michi
for the fu
small par
observed 

Fig. 1. (a
network fr

Fig. 2. Fo
deviations

We p
example. 
illustrated
non-statio

Given
clustering
arc by tim
method o

4

S
pe

ed
 (m

ph
)

est our proced
network cover
itan area. The
55 unobserve
gan ITS Cente
ull 24 hours o
rt of our full 
arcs is used h

a) South-East M
rom South-East

or arc 4-to-5 (a
s of speeds by th

present the sp
The mean a

d (Fig. 2.b). I
onary distribu
n the traffic sp
g technique to
me of day. In
of Verbeek [

0 4am 8am

20

40

60

80

dure on a road
rs major free

e network has
ed arcs. Real-t
er for 23 week
of each day a

network, lab
here to better i

Michigan road 
t Wayne County

a) raw traffic s
he time of day w

peed data for 
and standard 
It can be seen
ution that vary
peed data, we
o determine th
n particular, w
[11] for its c

12pm 4pm 8pm

d network from
eways and hi
 30 nodes and
time traffic da
kdays from Ja
at a resolution
beled sub-netw
illustrate the m

network consi
y. 

speeds for 23 w
with 15 minute 

arc 4-to-5 fo
deviations of

n clearly that t
y with the time
e employed th
he number of 

we employed t
computationa

m 0
40

50

60

70

M
ea

n

0

Mea

m South-East 
ighways in a
d a total of 98
ata for the ob
anuary 21, 200
n of an observ
work (Fig. 1b
methods and r

idered for expe

weekdays (b) m
time interval re

or the given 
f speed for t
the traffic spe
e of the day. 
he Gaussian M
f recurrent-con
the greedy lea
l efficiency 

4am 8am 12pm4am 8am 12pm

n speed (mph)

Michigan (Fi
and around th
8 arcs with 43
served arcs is
08 to February
vation every m
b), with 5 nod
esults. 

erimental study

mean (mph) an
esolution. 

days in Fig. 
the arc 4-to-5
eeds follow a 

Mixture Mode
ngestion state
arning GMM 
and performa

m 4pm 8pmm 4pm 8pm
0

5

1

1

Standard Dev

ig. 1). The 
he Detroit 
3 observed 
s collected 
y 20, 2008 
minute. A 
des and 6 

 
y. (b) Sub-

 
 

nd standard 

2.a as an 
5 is  also 
stochastic 

el (GMM) 
s for each 
clustering 

ance. The 

0

5

0

5

S
td

. D
ev

.

iation

72



parameters of the traffic state joint Gaussian distributions (i.e., , 1 , 1;i i
t t t t+ +μ Σ ) along 

with the computed cut-off speeds (if GMM yields more than one state) are employed 
to calculate travel time distribution parameters and the transition matrix elements as 
explained in section 3. In the event that two states are identified by GMM,  denotes 
the probability of state transition from congested state to congested state whereas  
denotes the probability of state transition from uncongested state to uncongested state. 
Fig. 3a plots these transition rates for the arc 4-to-5 with a 15 minute time interval 
resolution. The mean travel time of arc 4-to-5 for congested and uncongested traffic 
states  are given in Fig. 3b. 

 
Fig. 3. For arc 4-to-5 (a) recurrent congestion state-transition probabilities where α: congested 
to congested transition; β: uncongested to uncongested transition probability; (b) mean travel 
time for congested and uncongested traffic states. 

In the experiments based on the sub-network, node 4 is considered as the origin 
node and node 6 as the destination node of the trip. As stated earlier, we consider 
node 4 as the origin node and node 6 as the destination node of the trip. Three 
different path options exist (path 1: 4-5-6; path 2: 4-5-26-6; and path 3: 4-30-26-6). 
Given the historical traffic data, path1: 4-5-6 dominates other paths most of the time 
of a day under all network states. Hence we identify path 1 as the baseline path and 
show the savings (averaged over 10,000 runs) from using the proposed dynamic 
routing algorithm with regard to baseline path. Fig. 4a plots the corresponding 
percentage savings from employing the dynamic vehicle routing policy over the 
baseline path for each network traffic state combination and Fig. 4b shows the 
average savings (averaged across all network traffic states, treating them equally 
likely). It is clear that savings are higher and rather significant during peak traffic 
times and lower when there is not much congestion, as can be expected.  

 
Fig. 4. (a) Savings for each of 32 network state combinations and (b) average savings for all 
state combinations during different times of the day. 

Besides the sub-network (Fig. 1b), we have also randomly selected 4 other origin 
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and destination (OD) pairs (OD pair 1: 2-21, 2: 12-25, 3: 19-27, and 4: 23-13) to 
investigate the potential savings from using real-time traffic information under a 
dynamic routing policy. Once again, we identify the baseline path for each OD pair 
(as explained for the case of routing on the sub-network) and show percentage savings 
in mean travel times (over 10,000 runs) over the baseline paths from using the 
dynamic routing policy. The savings, Fig. 5, are consistent with results from the sub-
network, further validating the sub-network results. 

 
Fig. 5. Savings of dynamic policy over baseline path during the day for all starting states of 
given OD pairs of full network (with 15 minute time interval resolution).  

5 Conclusions 

The paper proposes practical dynamic routing models that can effectively exploit real-
time traffic information from ITS regarding recurrent congestion in transportation 
networks. With the aid of this information and technologies, our models can help 
drivers avoid or mitigate trip delays by dynamically routing the vehicle from an origin 
to a destination in road networks. We model the problem as a non-stationary 
stochastic shortest path problem under recurrent congestion. We propose effective 
data driven methods for accurate modeling and estimation of recurrent congestion 
states and their state transitions.  

ITS data from South-East Michigan road network, collected in collaboration with 
Michigan ITS Center, is used to illustrate the performance of the proposed models. 
Experiments show that as the uncertainty (standard deviation) in the travel time 
information increases, the dynamic routing policy that takes real-time traffic 
information into account becomes increasingly superior to static path planning 
methods. The savings however depend on the network states as well as the time of 
day. The savings are higher during peak times and lower when traffic tends to be 
static (especially at nights). 
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