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Abstract: Chaotic dynamics in finger plethysmogram system was studied in relation to anesthesia processes. The 
experiments were conducted to observe the changes in finger plethysmogram before, during, and after the 
anesthesia for a surgery. The largest Lyapunov exponent of the plethysmograms was found to be significant 
and can be used to correlate the temporal variations of mental/physical status in the processes. There were 
lower values o f Lyapunov exponents during anesthesia, showing the block effect of anesthesia on central 
nervous system. There were highly Lyapunov exponents in recovery consciousness from anesthesia. To 
understand how the chaos arises and to explain the changes in the Lyapunov exponent in finger 
plethysmograms in experiments, a mathematical model consisting of baroreflex feedback and autonomous 
interactions was proposed and studied numerically. The decrease of the largest Lyapunov exponent in 
plethysmograms was explained successfully by the model in relation to the decreased chaoticity, and hence 
the depressed or blocked central nervous system in higher cerebral region.  

1 INTRODUCTION 

The chaotic dynamics has been evidenced in 
experiments in the time series of finger 
plethysmograms (Sumida et al., 2000). An extensive 
investigation has focused on applying changes of the 
deterministic chaos of finger plethysmograms to 
estimating physiological/physical status (Miao et al., 
2003a), diseases diagnosis (Oyama-Higa and Miao, 
2005), evaluations of anxiety states (Miao et al., 
2003b), and to estimating mental work load by the 
use of human finger photo-plethysmograms recorded 
during driving environments. It showed that 
fluctuation analysis based on chaotic dynamics of 
the plethysmogram systems could characterize 

effectively the changes in physical/physiological 
status in various conditions.  

In this study, we designed an experiment to 
observe the changes in chaos of finger 
plethysmogram before, during, and after the 
anesthesia for a surgery. To understand how the 
chaos changes, a mathematical model was proposed 
and studied numerically.  

2 METHOD OF EXPERIMENTS 

The patient participated the experiment was a male 
aged 71. He was made a deeply anesthesia in order 
for a surgery of cancer treatment. The surgery taken 
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place at Rakuwakai Otowa Hospital, Kyoto, 
December 12, 2008. The participant gave informed 
consent to all experimental procedures.  

The subject slept comfortably in a hospital bed in 
a relaxed manner. The hand was softly put on the 
side of his body, held in a relaxed semi-open 
position, with the palm turned downward. A 
photoelectric sensor of the plethysmography was 
placed on the distal phalanx of second finger. Finger 
plethysmogram was recorded continuously for all 
processes including before, during and after the 
surgery, by an instrument (BACS2000; CCI). The 
signals were digitized with a 200Hz sampling rate 
with resolution 12 bits, and transferred via an A/D 
converter to a PC for data processing.  
Table 1 shows the steps and processes including 
before, during and after anesthesia for the surgery.  

Table 1: Processes before, during and after the surgery. 

 

3 METHOD OF CHAOS 
ANALYSIS OF TIME SERIES 

Given a time series x()i, with i=1,..., N, the phase 
space is reconstructed by using the method of 
delays. Assuming that we create a d-dimensional 
phase space using a τ constant delay lag, the vectors 
in the space are formed by d-tuples from the time 
series and are given by  

x(i) = (x (i),..., x (i – (d – 1)τ))= {xk(i)} (1) 
where xk (i) = x(i − (k – 1) τ), with k=1,..., d. In order 
to correctly reconstruct the phase space, the 
parameters of delay lag τ and embedding dimension 
d should be chosen optimally.   
On the reconstructed phase space, one of the 
important complexity measures is the largest 
Lyapunov exponent. The Lyapunov exponents 
characterize how a set of orthonormal, infinite small 
distances evolve under the dynamics. For a chaotic 
system, there is at least one positive Lyapunov 
exponent, let λ1> 0 be the largest exponent. The 
defining property of chaos is sensitive dependence 
on initial conditions, in the following sense. Given 
an initial infinite small distance  
∆x(0) , its evolution obeys  

∆x(t) =∆x(0)℮
 λ

1
t
    (2) 

For an M-dimensional dynamical system, there are 
M Lyapunov exponents. We estimated only λ

1
 using 

algorithm of Sano and Sawada (Sano and Sawada, 
1985). 
We used chaos analysis to finger plethysmograms 
and estimate the largest Lyapunov exponent λ

1
.

. 

4 EXPERIMENT RESULTS 

Since the chaoticity of the plethysmogram can give 
important information about human temporal 
processing, we used chaos analysis to the 
plethysmograms and estimate the largest Lyapunov 
exponent. Parameters used are embedding 
dimension d=4, time delay lag is taken as 50ms. 
Fig.1 illustrates changes of the largest Lyapunov 
exponent for all processes on the Table I, where 
times indicated ranged from t1-t22.  

There are changes of chaotic dynamics indicated 
by Lyapunov exponent during all experiment 
processes. We found there smaller values estimated 
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during t11 to t19, showing the effect of laparotomy 
and change O2 to 50% on cam down the 
mental/physical status. Whereas there were largely 
arising Lyapunov exponents in recovery 
consciousness from anesthesia, even higher than the 
ones in initial stage before the surgery. There were 
overall lower values o f Lyapunov exponents than 
the average one for healthy subject that had 
averaged values ranged 3-5, showing the block 
effect of anesthesia on central nervous system.  

 
Figure 1: Lyapunov exponents for experimental processes. 

5 MATHEMATICAL MODEL 
AND SIMULATIONS 

To understand emergence of changes of chaos in the 
finger plethysmograms in the experiments, a 
mathematical model is proposed. Fig. 2 shows a 
schematic description of the model used in this 
paper. The model consists of a feedback loop and 
physiological factors (Miao et al., 2006). The 
pressure receptors are the sensors of the system, 
which senses and transmits neural afferents from 
pressure to cardio-vascular centre. Neural efferents 
are created and then sent to effectors. There are 
influences both from respiratory centers and from 
higher cerebral region.  

 
Figure 2: Schematic representation of the model. 

It notes that pulsations in blood volume of ear were 
able to be represented as a response function to 
pulsations in radial artery (Liu, 2003), and whence a 
proportional relation between the finger 
plethysmogram and artery blood pressure can be 
approximately assumed. Thus, for sake of 
simplifying unimportant details, our model 
concentrated on dynamics of blood pressure in a 
well approximation to approaching finger 
plethysmograms without loss of generality.  

In the model, baroreceptor activity is determined 
by pressure p and its derivative, with constants 
k1=0.02 mm/Hg, k2=0.00125 smm/Hg, and 
p0=50mmHg, as  

Vb = k1(p – p(0))+ k2
dp
dt

    (3) 

The neural efferent of sympathetic activity is 
determined by (3) as  

    max(0,  –  k (1 cos(2 )) ) (0)V v v k r Yb rs s s b π γ= + − +  (4) 

where constants ν =0.8, k
s 
=0.7 , kr =0.035; Y is the 

impulse input from higher cerebral center and is 
assumed to only affect sympathetic neural efferents 
through a coupling coefficient γ. r is an instance 
phase of respiration describing effects of respiration 
modulations. Likewise, efferent parasympathetic 
activity is determined by (3) as  

(5)

where constants ν(0) =0.0, k
b 
=0.3 .  

As suggested in Kotani (Kotani et al., 2005), the 
instance respiration phase r has a constant phase 
velocity during inspiration with period Tresp=4.5s, as  

 
(6)

Whereas during expiration (sin(2 πr) >0 ) and if ν >ν, 
r is modulated by baroreceptor afferents as  

 
(7)

where G=0.2, ν
trig 

=1.3 .  
The pulsating heartbeat is generated by an integrate-
and-firing model. A pacemaker phase of sinus node 
was introduced. A new heartbeat is generated when 
the phase reaches a threshold of 1.0. At this point the 
phase is then reset to zero. The phase velocity is 
determined by sympathetic and parasympathetic 
influences on sinus node by the relation  

1
(0)

d f f
dt T

s p
φ
=    (8) 
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Where T(0)=1.1s, and 

 
(9)

(10)

where sympathetic influence fs is determined by  
constants of , and cardiac 
concentration (ccNe) of neurotransmitter 
"norepinephrine" (Ne). The cardiac concentration 
(ccNe) follows kinetics equation:  

 
(11)

 Where  tcNe=2.0, 
cNe

Ks
c =1.2, and time delay  

θ cNe=1.65s (default) due to the neural conduction. 
The parasympathetic influence fp is determined by 
constants k

φ 

p 
= 5.8, v̂ p= 2.5, np=2.0, and time delay 

pθ =0.5s (default=. The influence of fp is fast and 
therefore does not need transmitter kinetics. 
Whereas phase effective cure F (φ ) is added in (10) 
by 

3
1.3

3 3
(1 )( ) ( 0.45)

(1 0.8) (1 )
F φφ φ φ

φ

−
= −

− + −
  (12) 

Blood pressure during the systolic part of the heart 
cycle is determined by diastolic pressure of the 
previous beat di-1 and cardiac contractility Si of the 
current beat:  

1
exp 1

i sys sys

i it t t t
p d S

t ti−

⎧ ⎫− −⎪ ⎪= + −⎨ ⎬
⎪ ⎪⎩ ⎭

  (13) 

where ti is the time of last contraction onset, syst = 

0.125s , and cardiac contractility, according to Frank-
Starling law, is  

(0)
1' c tC Ti s cNe s iS S k k −= + +    (14) 

Cardiac contractility with saturation becomes 

'
' ( ' )

'

ns

ns ns
i

i i i
i

S
S S S S

S S
= + + +

+
        (15) 

Where S(0)=25mmHg, c
sk =40mm/Hg, t

sk =10mm/Hg, 
Ŝ =70mmHg, ns=2.5. Blood pressure during 
diastolic part of hear cycle, according to relaxation 
of Windless arteries, is  

( )v

dp p
dt t t

= −     (16) 

Where relaxation constant tv is determined by 
vascular concentration of CvNe: 

 
(17)

where (0)
vt τ

 

= 2.2s, vt = 1.2s , c
ν Ne 

= 10.0, n
ν Ne 

= 1.5 , and 
vascular concentration follows equation of  

( )e e
s vNe

e

svN vN
c

vNevN

dc c
k

dt t
v t θ= − + −    (18) 

Where time delay 
vNe

θ =1.65s (default) is due to 

neural conduction 
evN

t =2.0, and 
vNe

s
c

k =1.2. 

Because the higher cerebral activity played 
important in modulation central nervous system and 
autonomic system, our model added the influences 
to sympathetic neural efferent activity through a 
coupling coefficient γ as shown in (4). Dynamics of 
the cerebral activity was assumed to be described by 
Duffing equation that was able to generate both limit 
cycle and chaotic behavior (Bergey and 
Franaszczuk, 2001), as evidenced experimentally by 
measurements of electroencephalography (EEG). 
Thus, we chose Duffing equation to describe 
cerebral impulse activities Y as:  

2
3

2
cosd Y dY aY bY B t

dtdt
ε ω+ + + =   (19) 

Where ε =0.05, a=0, b=1.0, ω =1.0, B=7,5. This 
setting of parameters gives arise of chaotic dynamics 
in agreement with studies on human brain (Korn and 
Faure, 2003). 
In simulation studies, we used a Runge-Kutta 
method to make numerical simulations of the delay-
differential equations. Ring buffers were used to 
handle time delays in equations. We used the initial 
values of p=110 mmHg, cNe

c = vNe
c =0.15, d0=90 

mmHg, S0=40 mmHg, and T0=1.1s. Simulations 
were performed to skip first 200s transients and 
recorded the following data. 

For parameters γ =0.1, cNe
θ =2.5s, in Fig. 3 we 

calculated and depicted temporal variations of blood 

pressure p, concentrations cNe
c , higher cerebral 

activity Y, baroreceptor activity vb, delayed 

sympathetic activity vs (t- cNe
θ ), delayed vagal 

activity vp(t-θ p), and phase of cardiac pacemaker φ. 
There appeared a complex dynamics in blood 
pressure p. Indeed, as shown in Fig. 4, return maps 
for peak value of blood pressure Pi showed 
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complexity and random-like patterns, characterizing 
a chaotic behavior.  

 
Figure 3: Output with influence of higher cerebral center. 

 
Figure 4: Return maps for peak value of pressure Pi.  

Additionally the reconstructed orbits (called 
attractor) exhibited complex, non-periodic, diverse 
orbiting patterns, strongly suggesting deterministic 
chaotic behaviors. Lyapunov exponents of the 
chaotic attractors were also calculated, as described 
in next section, and showed positive values, again 
being consistent with chaotic behaviors.  

Higher cerebral center influence, therefore, was 
found to play an important role and largely 
responsible for emergence of chaos in finger 
plethysmograms.  

Furthermore, effects of chaoticity in higher 
cerebral center were studied by simulation to 
understanding how it affects the baroreflex 
controlled cardiovascular system. Keeping coupling 
coefficient γ =0.1 in constant, while changing 
parameter B to 6.6, 7.0, and 7.5, we obtained a 
changing chaoticity of higher center activity 
described by Duffing equation (19), which was 
characterized by changing  Lyapunov exponents. 
The largest Lyapunov exponents of (19) were 
λ1=0.066, 0.105, 0.078, corresponding to three 
parameters of B. Putting these parameters into the 
model, we obtained time series of blood pressure p. 
The largest Lyapunov exponent was then computed 
using Sano and Sawada algorithm (Sano and 
Sawada, 1985). Fig. 5 plotted these results, showing 
a well linear relationship between the largest 
Lyapunov exponents of higher cerebral center and 
ones of blood pressure p.  

This relation shown in Fig.5 explains 
theoretically the causes for an increase in chaos of 
finger plethysmogram come from higher Lyapunov 
exponent in higher cerebral center. In other words, 
there is higher information processing in central 
nervous system, leading to increasing complexity of 
finger plethysmograms.  

6 CONCLUSIONS 

Chaotic dynamics in finger plethysmogram system 
was studied in relation to anesthesia processes. The 
largest Lyapunov exponent of the plethysmograms 
was found to be significant and can be used to 
characterize the changed in mental/physical status 
for the experimental processes. There were lower 
values o f Lyapunov exponents, indicating a blocked 
or depressed effect of anesthesia on central neural 
system.  We found there a further smaller values 
estimated during the laparotomy and change O2 to 
50%, showing the effect of cam down on mental 
status. Whereas there was a highly Lyapunov 
exponent in recovery consciousness from anesthesia, 
even higher than the period of time before 
preparation of the surgery. 
    To understand how the chaos arises and to explain 
the changes in the Lyapunov exponent in finger 
plethysmograms in experiments, a mathematical 
model consisting of baroreflex feedback and 
autonomous interactions was proposed and studied 
numerically. By using of the model, the decrease of 
the largest Lyapunov exponent in plethysmograms 
was explained in relation to the decreased chaoticity, 
and hence the depressed or blocked central nervous 
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system in higher cerebral region. Highly arising 
values of Lyapunov exponent was theoretically 
explained as caused from excitations in activities 
underlying central nervous system.  

 
Figure 5: A plot of the largest Lyapunov exponent of 
blood pressure with respect to one of higher cerebral 
center. 
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