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Abstract: The paper deals with training of speaker-clustered acoustic models. Various training techniques - Maximum
Likelihood, Discriminative Training and two adaptation based on the MAP and Discriminative MAP were
tested in order to minimize an impact of speaker changes to the correct function of the recognizer when a
response of the automatic cluster detector is delayed or incorrect. Such situation is very frequent e.g. in on-
line subtitling of TV discussions (Parliament meetings). In our experiments the best cluster-dependent training
procedure was discriminative adaptation which provided the best trade-off between recognition results with
correct and non-correct cluster detector information.

1 INTRODUCTION

One of the most important problems of speaker-
independent LVCSR systems is their worse ability
to get over the inter-speaker variability. This prob-
lem becomes serious if the recognizer works in real
time and in tasks where speakers change frequently.
Such task is e.g. the on-line closed captioning of
Parliament meetings - the task which is experimen-
tally tested by the TV since 11/2008 (experimental
broadcasting). One of the ways how to handle this
problem is the incremental speaker adaptation or us-
ing gender-dependent acoustic models or even models
obtained from more detailed clustered voices. This
paper describes our experiments with unsupervised
speaker clustering and following discriminative train-
ing of various initial acoustic models. The goal of
the work is to minimize an impact of delayed or in-
correct response of cluster detector to the changes of
speakers. Such situation is very frequent just in on-
line subtitling of TV discussions. All the discussed
methods came from frame-based discriminative train-
ing (DT) that seeks such solution (such acoustic mod-
els) which yield on one hand favorable quality (in-
creased accuracy) of discriminative training, on the
other hand obtained DT models should not be overly
sensitive to imperfect function of a cluster-detector.
Let us mention that the clustering algorithm is de-
scribed in Section 2, the Discriminative Training or
Frame-Discriminative training are described in Sec-

tion 3. The incorporating DT to a cluster-dependent
training procedure is discussed in Section 4.4 and re-
sults of completed experiments are described in Sec-
tion 5.

2 AUTOMATIC CLUSTERING

Training of gender-dependent models is the most pop-
ular method how to split training data into two more
acoustically homogeneous classes (Stolcke, 2000).
But for particular corpora, it should be verified that
the gender-based clusters are the optimal way, i.e. the
criterion L = ∏u P(u|M(u)), where u is an utterance in
a corpus and M(u) is a relevant acoustic model of its
reference transcription, is maximal. Because of some
male/female ”mishmash” voices contained in corpora
we proposed an unsupervised clustering algorithm
which can reclassify training voices into more acous-
tically homogeneous classes. The clustering proce-
dure can start from gender-dependent splitting and it
finishes in somewhat refine distribution which yields
higher accuracy score (Zelinka, 2009). In addition,
we can use the algorithm to find out more than only
two acoustically homogeneous clusters. Thereafter,
two ways of clustering procedure are possible. The
first approach is just to split randomly initial training
data into n clusters and run the algorithm. The second
way is to prepare clusters hierarchically. It means to
split data via the algorithm into two clusters and after
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that to continue in the same way with the both sub-
clusters. The number of final clusters can naturally
be the power of two only. This way produces more
size-balanced clusters and it does not need as much
computation time as the first direct way. But the final
clusters do not need to be so compact.

2.1 Algorithm Description

The algorithm is based on similar criterion like the
main training algorithm – maximize likelihood L
of the training data with reference transcription and
models. The result of the algorithm is a set of trained
acoustic models and a set of lists where all utter-
ances are assigned to exactly one cluster. Number of
clusters (classes) n has to be set in advance and for
gender-dependent modeling or for hierarchical split-
ting is naturally n = 2. The process is modification of
the Expectation-Maximization (EM) algorithm. The
unmodified EM algorithm is applied for estimation of
acoustic model parameters. The clustering algorithm
goes as follows:
1. Random splitting of training utterances into n

clusters. The clusters should have similar size. In
case of two initial classes there is reasonable to
start the algorithm from gender-based clusters.

2. Train (retrain) acoustic models for all clusters.
3. Posterior probability density P(u|M) of each

utterance u with its reference transcription is
computed for all models M (so-called forced-
alignment).

4. Each utterance is assorted to the cluster with the
maximal evaluation P(u|M) computed in the pre-
vious step:

Mt+1(u) = argmax
M

P(u|M). (1)

5. If clusters changed than go back to step 2. Other-
wise the algorithm is terminated.

Optimality of results of the clustering algorithm is
not guaranteed. Besides, the algorithm depends on
initial clustering. Furthermore, even convergence of
the algorithm is not guaranteed, because there can be
a few utterances which are reassigned all the time.
Therefore, it is suitable to apply a little threshold
as a final stopping condition or to use fixed number
of iterations. Thus, if we would like to verify that
the gender-dependent splitting is ”optimal” so we use
this male/female distribution as initial and start algo-
rithm. The intention is to complete the algorithm with
more refined clusters, in which ”masculine” female
and ”feminine” male voices and also errors in man-
ual male/female annotations will be reclassified. This
should improve a performance of the recognizer.

3 DISCRIMINATIVE TRAINING

Discriminative training (DT) was developed in a re-
cent decade and provides better recognition results
than classical training based on Maximum Likelihood
criterion (ML) (Povey, 2003; McDermott, 2006). In
principle, ML based training is a machine learn-
ing method from positive examples only. DT on
the contrary uses both positive and negative exam-
ples in learning and can be based on various ob-
jective functions, e.g. Maximum Mutual Informa-
tion (MMI) (Bahl at al., 1986), Minimum Clas-
sification Error (MCE) (McDermott, 2006), Mini-
mum Word/Phone Error (MWE/MPE) (Povey, 2003).
Most of them require generation of lattices or many-
hypotheses recognition run with appropriate language
model. The lattices generation is highly time con-
suming. Furthermore, these methods require good
correspondence between training and testing dictio-
nary and language model. If the correspondence is
weak, e.g. there are many words which are only in
the test dictionary then the results of these methods
are not good. In this case, we can employ Frame-
Discriminative training, which is independent on a
used dictionary and language model (Kapadia, 1998).
In addition, this approach is much faster. In lat-
tice based method with the MMI objective function
the training algorithm seeks to maximize the poste-
rior probability of the correct utterance given the used
models (Bahl at al., 1986):

FMMI(λ) =
R

∑
r=1

log
Pλ(Or|sr)κP(sr)κ

∑S Pλ(Or|s)κP(s)κ
, (2)

where λ represents the acoustic model parameters, Or
is the training utterance feature set, sr is the correct
transcription for the r’th utterance, κ is the acoustic
scale which is used to amply confusions and here-
with increases the test-set performance. P(s) is a
language model part. Optimization of the MMI ob-
jective function uses Extended Baum-Welch update
equations and it requires two sets of statistics. The
first set, corresponding to the numerator (num) of the
equation (2), is the correct transcription. The sec-
ond one corresponds to the denominator (den) and
it is a recognition/lattice model containing all possi-
ble words. An accumulation of statistics is done by
forward-backward algorithm on reference transcrip-
tions (numerator) as well as generated lattices (de-
nominator). The Gaussian means and variances are
updated as follows (Kapadia, 1998):

µ̂ jm =
Θnum

jm (O)−Θden
jm (O)+D jmµ′jm

γnum
jm − γden

jm +D jm
(3)
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σ̂
2
jm =

Θnum
jm (O2)−Θden

jm (O2)+D jm(σ′2jm +µ′2jm)

γnum
jm − γden

jm +D jm
−µ2

jm,

(4)
where j and m are the HMM-state and Gaussian in-
dex, respectively, γ jm is the accumulated occupancy
of the Gaussian, Θ jm(O) and Θ jm(O2) are a posteriori
probability weighted by the first and the second order
accumulated statistics, respectively. The Gaussian-
specific stabilization constants D jm are set to maxi-
mum of (i) double of the smallest value which ensures
positive estimated variances, and (ii) value Eγden

jm ,
where constant E determines the stability/learning-
rate and it is a compromise between stability and
number of iteration which is needed for well-trained
models (Povey at al., 2001). In Frame-Discriminative
case, the denominator lattices generation and its
forward-backward processing is not needed. The de-
nominator posterior probability is calculated from a
set of all states in HMM. This very general denomi-
nator model leads to good generalization to test data.
Furthermore, statistics of only few major Gaussians
are needed to be updated and its probability has to be
exactly calculated in each time. It can tend to very
time-efficient algorithm (Povey at al., 1999). Opti-
mization of the model parameters uses the same two
equations (3) and (4), the computation of Θden

jm (O) and
γden

jm is modified only. In case that only limited data are
available, maximum a posteriori probability method
(MAP) (Gauvain at al., 1994) can be used even for
discriminative training (Povey at al., 2003). It works
in the same manner as the standard MAP, only the in-
put HMM has to be discriminatively trained with the
same objective function. For discriminative adapta-
tion it is strongly recommended to use I-smoothing
method to boost stability of new estimates (Povey
at al., 2002).

4 EXPERIMENTS DESCRIPTION

4.1 Train Data and Acoustic Processing

The corpus for training of the acoustic models con-
tains 100 hours of parliament speech records. All
data were manually annotated. The digitization of
an analogue signal is provided at 44.1 kHz sample
rate and 16-bit resolution format. The aim of the
front-end processor is to convert continuous speech
into a sequence of feature vectors. Several tests were
performed in order to determine the best parame-
terization settings of the acoustic data (see (Psutka,
2001) for methodology). The best recognition results
were achieved using PLP parameterization (Herman-

sky, 1990) with 27 filters and 12 PLP cepstral coef-
ficients with both delta and delta-delta sub-features
(see (Psutka, 2007) for details). Therefore one fea-
ture vector contains 36 coefficients. Feature vectors
are computed each 10 milliseconds (100 frames per
second).

4.2 Acoustic Model

The individual basic speech unit in all our experi-
ments was represented by a three-state HMM with
a continuous output probability density function as-
signed to each state. As the number of triphones is too
large, phonetic decision trees were used to tie states
of triphones. Several experiments were performed to
determine the best recognition results according to the
number of clustered states and also to the number of
mixtures. In all presented experiments, we used 8
mixtures of multivariate Gaussians for each of 5385
states. The baseline acoustic model was speaker and
gender independent (there were no additional infor-
mation about speaker available).

4.3 Training Data Clustering

The whole training corpus was split into several (two
or more) acoustically homogeneous classes via algo-
rithm introduced in the Subsection 2. In all cases
the initial splitting was achieved randomly due to
no additional speaker/sentence information available.
The whole set of sentences (46k) was split into four
classes in two different ways. Firstly, we used hier-
archical division method. It means that we divided
the training set into two classes (2Cl) and than each
class was split again into another two classes (finally
we had four clusters 4ClHi). Secondly, we split the
whole training set into four classes directly (4ClDi).
All splittings were done using algorithm presented
above. Examples of shifts between clusters (sen-
tences, which were moved from the one cluster to an-
other) for hierarchical division can be seen in Table 1.

Table 1: Example of the shift between clusters.

Step number of sentences [%]
(i) Cl(x)i−1→Cl(x)i Cl(x)i−1→Cl(y)i

1 83.26 16.73
2 87.30 12.70
3 92.05 7.95
4 97.10 2.90
5 98.44 1.56
6 98.81 1.18
7 99.29 0.71
8 99.32 0.67
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Where Cl(x)i−1→Cl(x)i means no-shift between
cluster x and Cl(x)i−1 →Cl(y)i means shift between
cluster x to any other cluster y (y 6= x) in two following
iteration steps (i−1,i)

4.4 Discriminative Training of
Clustered Models

Our next attention was to explore a suitable way of a
discriminative training procedure for clustered acous-
tic models. This procedure should hold favorable
characteristics of DT models on one hand, but on the
other hand developed acoustic models should not be
overly sensitive to imperfect function of a cluster-
detector, e.g. a negative impact of wrong-selected
acoustic model. Such situation could happen for in-
stance in real-time recognition tasks in case that the
reaction of the cluster-detector to a change of speaker
is not immediate and/or the detector evaluates the
change incorrectly. We performed a set of experi-
ments in which an impact of speaker-independent and
speaker-clustered acoustic models both in combina-
tion with maximum likelihood and frame-based dis-
criminative training were tested. In case when only
single acoustic model is trained, the situation is sim-
ple. The model is trained from all data under ML ap-
proach or some DT objective function. Nevertheless
some parameters could be tuned, for example a num-
ber of tied-states and a number of Gaussians per state.
In DT case, the number of tuned parameters is higher
but it is still an optimization task. In our experiments
corresponding models are marked as SC (Single Clus-
ter), precisely SC ML and SC DT for ML and DT, re-
spectively. The DT model was developed from SC via
two discriminative training iterations. The E constant
was set to one. Furthermore, the I-smoothing was ap-
plied and smoothing constant τI was set to 100. If the
training data are split into more than one cluster, the
situation is a bit complicated because of more training
strategies that we have in our disposal. Naturally the
same training procedure can be used for each part of
data. This would be concluded by a set of indepen-
dent models. For a real application such approach is
not a good option because final models have differ-
ent topology which is generated during a tied-states
clustering procedure and therefore obtained models
cannot be simply switched/replaced in the recognizer.
The better strategy is to split the training procedure
just after state clustering. In our experiments such
model sets are marked with suffix ML and DT for
ML and DT, respectively. Secondly, the ML or DT
adaptation can be applied. In our experiments the
adaptation starts from SC ML or SC DT and two it-
erations were done via MAP or DT-MAP with pa-

rameter τ equal to 25. Two models developed by
these techniques are marked with suffix MLAdapt and
DTAdapt .

4.5 Tests Description

The test set consists of 100 minutes of speech from 10
male and 10 female speakers (5 minutes from each)
which were not included in training data. In all recog-
nition experiments a language model based on zero-
grams was applied in order to judge better a quality
of developed acoustic models. In all experiments the
perplexity of the task was 3828, there were no OOV
words.

5 RESULTS

In all our experiments the recognition accuracy was
evaluated. Obtained results are shown in Table 2,
where SC ML and SC DT were trained from the
whole training data via Maximum Likelihood and
Discriminative Training, respectively. In the second
part of Table two recognition results for each training
procedure and clustering method are shown. The best
recognition result was found for each utterance across
appropriate acoustic models (the same level of clus-
tering and the same training procedure). The worst
result was found by analogical way. The difference
between corresponding results illustrates the drop of
recognition accuracy when the cluster-detector fails.
As was described in Section 4.3, 2Cl is an acoustic
model with two clusters. 4ClHi and 4ClDi are the
four-clusters acoustic models which were obtained
by hierarchical and direct clustering, respectively.
We achieved a significant gain in terms of recogni-
tion accuracy for all cluster-dependent acoustic mod-
els against standard (single-cluster) acoustic models
(SC ML and SC DT ). The two-clusters acoustic mod-
els gave only slightly better results than single-cluster
models. But in the four-clusters case the achieved im-
provement is significant. The comparison between
the hierarchical (4ClHi) and direct (4ClDi) cluster-
ing method showed that the direct method gave clus-
ters whose corresponding acoustic models yield bet-
ter recognition results. The maximum gain (improve-
ment 5.29% absolutely for SC ML) was achieved for
4ClDi DTAdapt (Discriminatively trained directly clus-
tered four-clusters acoustic models). In this case, the
accuracy 76.66% was obtained if the cluster-detector
works ideally. But on the other hand the recogni-
tion results are considerably worse when the clus-
ter information is not correct. From this point of
view the best tradeoff between recognition results
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Table 2: The results of recognition experiments.

Acc [%]
SC ML 71.37
SC DT 73.60
Cluster identification best worst
2Cl ML 71.76 66.65
2Cl DT 74.01 69.29
2Cl MLAdapt 71.64 67.53
2Cl DTAdapt 74.03 71.36
4ClHi ML 72.62 52.14
4ClHi DT 75.17 55.83
4ClHi MLAdapt 72.83 62.78
4ClHi DTAdapt 74.39 69.48
4ClDi ML 74.69 54.18
4ClDi DT 74.01 56.69
4ClDi MLAdapt 74.65 59.03
4ClDi DTAdapt 76.66 67.28

of the cluster-based acoustic model with correct and
non-correct cluster information are 2Cl DTAdapt in
the two-clusters case and 4ClDi DTAdapt in the four-
clusters case. In the two-clusters case the recognition
results are slightly worse (improvement 2.66% abso-
lutely for SC ML) than for the four-clusters approach.
But if the cluster detector information is wrong, the
recognition results were almost the same in compari-
son with the original SC ML acoustic model.

6 CONCLUSIONS

The goal of our work was to build the cluster-
dependent acoustic model which yields higher recog-
nition accuracy than non-clustered model and which
is more robust when a response of the automatic
cluster-detector is delayed or incorrect. This prob-
lem becomes serious if the recognizer works in
real-time and in tasks where speakers change fre-
quently. We tested several methods based on a
combination of unsupervised clustered training data
and discriminative/non-discriminative training proce-
dures. If the cluster-detector works ”almost” correctly
then the best cluster-dependent training procedure is
4ClDi DTAdapt . But the question is what results we
obtain if the splitting process continues, e.g. for lev-
els 8, 16 ... In our next research we would like to
concentrate on this problem and also on the question
how to build a quick cluster-detector which will work
correctly and really in real-time.
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