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Abstract: The widespread diffusion and availability of multicore architectures is going to make more and more aspects
of concurrency and distribution to be part of mainstream programming and software engineerisgvihe
framework is a recently proposed library-based extensiomef dhat introduces on top of the OO layer a
new abstraction layer based on agent-oriented concepssMBA program is organized in terms of dynamic
set of autonomous pro-active task-oriented entities -affents— that cooperate by exploiting soragtifacts,
that represents resources and tools that are dynamically constructed, shared and co-used by agents. In this
paper we promote the applicability of the agent and artifact metamodel in OO programming a step further.
Namely, we propose a core calculus that integrates techniques coming from concurrency theory and from OO
programming languages to provide a first basic formal framework for designing agent-oriented languages and
studying properties of agent-oriented programs.

1 INTRODUCTION programming and software engineering as a novel
foundational approach for modelling and engineer-
Multi-core architectures, Internet-based computing ing complex software systems (Omicini et al., 2009),
and Service-Oriented Architectures/Web Services, goes in this directionAgentsandartifactsare the ba-
are increasingly introducing concurrency issues (and sic high-level and coarse-grained abstractions avail-
distribution) in the context of a large class of appli- able in A&A: agents are used to model (pro)-active
cations and systems—up to making them key factors and task-oriented components of a system, which
of almostany complex software system. As noted in encapsulate the logic and control of their execu-
(Sutter and Larus, 2005), even though concurrencytion, while artifacts model purely-reactive function-
has been studied for about 30 years in the contextoriented components of a system, used by agents to
of computer science fields such as programming lan- support their (invidual and collective) activities.
guages and software engineering, this research has In (Ricci and Viroli, 2007) itis introducedimMPA,
not significantly impacted on mainstream software a library-based extension of\A providing program-
development. However, it appears more and more im- mers withagent-oriented abstractionsn top of the
portant to introduce higher-level abstractions, which basic OO layer, to be used as basic building blocks to
can “help build concurrent programs, just as object- define the architecture of complex (concurrent) appli-
oriented abstractions help build large component- cations. InsIMPA, the underlying OO computational
based programs” (Sutter and Larus, 2005). model of AvA is still adopted, but only for defining
The A&A (Agents andirtifacts) meta-model, re- agents and artifacts programming and data storage,
cently introduced in the context of agent-oriented namely, for defining the purely computational part of
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applications. On the other hand, agents and artifacts agent Min {
are used to define aspects related to system architec- 2¢t!vity min() { Table t = make Table(new bool ean[5]);
ture, interaction, and synchronisation spawn Phil osopher (0, 1,t); spaun Phil osopher (1,2,t);
Iﬁ this papér we )[gromote the épplicability of spaun P} osopner (2,3, 1): spaun Phil osopher (3,4, 1);
: ) spawn Phil osopher(4,0,t); }
A&A metamodel in OO programming a step fur-

ther, by introducing FAL (EATHERWEIGHT AGENT artifact Table { bool ean[] i sBusyFork;
LANGUAGE), a core calculus formalizing the key fea- operation getForks(int left, int right)
tures ofsiMPA. The formalization is largely inspired rguard ((not (. isBusyFork[left]) and (not(.isBusyFork[right])))

{ .isBusyFork[left] = true; .isBusyFork[right] = true;

to FJ, (FEATHERWEIGHT JAvA) (Igarashi et al., , ,
signal (forks_acquired);

2001), and is based on reduction rules applied at cer-
tain evaluation contexts. On the other hand, bemg operation rel easeForks(int left, int right) :guard true
Concurl’ency—oriented, thIS CalCUIUS uses techniques { _isBusyFork[left] = fal se; ,isBusyFork[ri ght] = fal se; }
coming from concurrency theory, as e.g. in process }
algebras. A system configuration is seen as a parallel agent Philosopher { Sns s;
composition of agents and artifacts instances (seen as ativity min(int left, int right, Table table)
independent and asynchronous processes), the former ~ *208nda ( prepare() :pre true, -

L s living(left,right,table) :pre menmo(hungry)
keepmg track of a tree of (sub-)qctwmes to be exe- - pers noyfmeib(st affed) LGN}
cuted in autonomy, the latter holding a set of pending  activity prepare() { +mem hungry: }
operations to be executed in response to agent actions activity living(int left, int right, Table table)
over the artifact. ;agenda ( eating(left,right,table) :pre memo(hungry),

Organisation of the Paper. Section 2 introduces the tsﬁ'utnﬁm g:: fzrlplezzggflei;') ”g))'{ }
SIMPA programming model. Section 3 presents Syn-  ..iiyity thinking() { ... /* think */ +mem hungry: }
tax, and operational semantics of the FAL calculus.  activity eating(int left, int right, Table table)
Section 4 briefly discusses the properties that result { use table. get Forks(left,right) :sns s

from type soundness. Section 5 discusses some re-  sense s :filter forks_acquired;

lated work and Section 6 concludes by outlining pos- oo et ¥

sible directions for further work. piscagRD! e. LeleaseForks(left, right);
-meno( hungry);

}

activity shutdown() { +meno(stopped); }

2 THE PROGRAMMING MODEL )

. . . ) Figure 1: The five dining philosophers problem.
In this section we describe an abstract version of

SIMPA programming model by exploiting the syntax  terminate. A basic set of internal actions is available
of the FAL calculus. to agents to work atomically with the memo-space:
The Agent Programming Model. In essence, an  +nenp is used to create a new memo with a specific
agent inSIMPA is a stateful entity whose job is to label and a variable number of argumenfteno and
pro-actively execute a structured setatdtivities as - neno to get/remove a memo with the specified label.
specified by the agent programmer, including possi-  The computational behaviour of an agent can be
bly non-terminating activities, which finally result in  defined as a hierarchy of activities (corresponding to
executing sequencesattions either internal actions  the execution of some tasks). Activities can be simple
— inspecting/changing its own state — or external ac- or structured. A simple activity is composed by just a
tions — interacting with its environment. All actions flat sequence of actions, as a single control flow, while
are executed atomically. structured activities have a non-empty agenda speci-
The state of an agent is represented by an associafying sub-activities, which in turn can be possibly ex-
tive store, callednemo-spacewhich represents the ecuted in the context of such super-activity—hence
long-term memory where the agent can dynamically leading to the hierarchical structure of behaviour. At
attach, associatively read and retrieve chunks of in- the language level, simple activities are represented
formation calledmemo A memo is a tuple, charac- byacti vity blocks, providing the name of the activ-
terised by a label and an ordered set of arguments,ity and parameters. By default each agent hesia
either bound or not to some data object (if some is not activity, which can be either simple or structured.
bound, the memo is hence partially specified). For In the dining philosophers example shown in Fig-
instance, the philosopher agent uses a meuangry ure 1, thePhi | osopher agent has the simple activ-
to take note that its state is ndwingryand it needs ities,prepare, eati ng, t hi nki ng, andshut down. A
the forks, andst opped to keep track that it needs to  structured activity has a non-empagenda specify-
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ing a set otodosrepresenting sub-activities that must Operations can be defined by method-like blocks
be executed in the context of the parent activity—also qualified asoper at i on, specifying the name and pa-
called super-activity. In the philosophers example, rameters of the operation and a computational body.
mai n and|living are structured activities. A todo It is worth noting that no return parameter is speci-
contains the name of the sub-activity to be executed, afied, since operations in artifacts are not exactly like
precondition over the inner state of the agent that mustmethods in objects. For eaodper at i on, implicitly

be hold for the specified sub-activity to start, and at- aninterface controlin the usage interface is defined,
tributes related to sub-activity execution, such as per- with the specified signature. Operations can be either
sistency. Preconditions are expressed as a booleamtomic executed as a single computational step, or
expression over a basic set of predefined predicatesstructured i.e. composed by multiple atomic opera-
Essentially, the predicates make it possible to specify tion steps. For sake of space, in this paper we con-
conditions on the current state of the activity agenda, sider only atomic operations. For each operation a
in particular on(i) the state of the sub-activitities (if guard can be specified: fuar d declaration), repre-
they started, completed, or aborted) and (i the senting the condition that must hold for the related
local inner state of the agent, that is the memo space.control in the usage interface to be enabled. For in-
For instance, the predicateno( M istrueifthe spec-  stance, theyet For ks operation inTabl e artifact is
ified memoMis found in the memo space. In the ex- available —i.e. the related control is enabled in the us-
ample, in the structured activityi vi ng, sub-activity age interface — when the specified forks are not busy.
eating is executed as soon as a meimmgry is
found in the memo space. When the precondition of
a todo item holds (for an activity in execution list-
ing such todo in the agenda), the todo is removed
from the agenda and an instance of the sub-activity
is created and executed. So, multiple sub-activities
can be executed concurrently and asynchronously, in
the context of the same parent activity. Sub-activities
execution can be then synchronized by properly spec-
ifying preconditions in todos, hence in a declarative
way. If a todo is declared persistent, as soon as the
sub-activity is completed the todo is re-inserted into
the agenda. The persistency attribute can specify als
the condition under which the activity should per-
sist. For instance, the todo item abduvi ng sub-
activity in philosopher agent is declared persistent un-
til a st opped memo is found.

To be useful, an artifact typically should pro-
vide some level ofobservability This is achieved
both by generating observable events through the
si gnal primitive, and by defining observable prop-
erties. In the former case, the primitive generates
observable events that can be observed by the agent
using the artifact — i.e. by the agent which has ex-
ecuted the operation. An observable event is repre-
sented by a labelled tuple, whose label represents the
kind of the event and the information content. For
instance, in thelabl e artifact get For ks operation
generates théor ks_acqui red(Left, Ri ght) tuple.
oActually, the observable eveop_exec_conpl et ed is
automatically generated — without explisitgnal s
— as soon as the execution of an operation is com-
pleted. In the latter case, observable properties are
instance variables qualified absprop. Any time
the property changes, an observable event of type
prop_updat ed is fired with the new value of the prop-
erty as a content. The observable events is observed
by all the agents that af®cussing(observing) the
artifact (more details in next subsection). An exam-
cple of simple artifact with observable properties is the
Count er artifact shown in Figure 2: this artifact —

which embody the computational behaviour of arti- working as an observable counter — has just a single
observable property namedunt and ani nc oper-

facts. TheTabl e artifact in the philosopher example tion t date thi ¢ Each time th i
in Figure 1 has no observable properties, an inner state2'0" "0 Ubda’e this count. t-ach fime Ine operation
variablei sBusyFor k, an array of booleans, and two 'S executed, the observable property and the event

operationsget Forks andrel easeForks, the first ~ PrOP-update(count, Val ue) are automatically gen-

used to acquire two forks and the latter for releasing erated.

forks. Both state variables and observable propertiesThe Agent-artifact Interaction Model. As already
are declared similarly to instance fields in objects; ob- stated, artifaciseandobservatiorare the basic form
servable properties are prefixedddyspr op qualifier. of interaction between agents and artifacts. Artifact
In both cases, a dot notation (e.gi sBusyFork) is use by an agent involves two basic aspediy:ex-
used both for I-value and r-value, to syntacatically dis- ecuting operations on the artifact, aijl perceiving
tinguish them from parameters. through agermsensorshe observable events generated

The Artifact Programming Model. An artifact is
composed by three main part§) observable prop-
erties, which are attributes that can be observed by
agents without an explicit agent action towards the
artifact; (i) a description of the inner non-observable
state, composed by set of state variables analogous t
private instance fields of objects; a(iii) operations
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artifact Counter { obsprop int count;
Counter(int c){ .count =c; }
operation inc() { .count = .count+l; }
}
agent Main {
activity main() {
Counter ¢ = make Counter(0);
spawn Cbserver(c); spawn User(c); spawn User(c); }
}
agent Observer { Sns s;
activity main(Counter c)

ragenda ( prepare(c),
moni toring(c) :pre conpleted(prepare)
:pers (not menmo(finished)) { }
activity prepare(Counter c) { focus (c,s); }
activity nonitoring(Counter c) {
sense s :filter prop_updated;

int value = observe c.count;
. Il do sonething

if (value >= 100 ){ +nmeno(finished); } }
}
agent User {
activity main(Counter c)
ragenda ( usingCount(c) :pers true ) {}

activity usingCount(Counter ¢) { use c.inc(); }

}

Figure 2: A simple program with a@bserver agent con-
tinuously observing &ount er Artifact, which is concur-
rently used by twdJser agents.

by the artifact. Conceptually sensors represent a kin
of “perceptual memory” of the agent, used to detect

events coming from the environment, organize them

according to some policy — e.g. FIFO and priority-

based — and finally make them available to the agent.
In the abstract language presented here, sensors use

by an agent are declared at the beginning otjent
block.

In order to trigger operation execution, thee
action is provided, specifying the target artifact, the

pended. As soon as the forks become available the
operation is executed and thee action succeeds.

Itis important to note that no control coupling ex-
ists between an agent and an artifact while an oper-
ation is executed. However, operation triggering is
a synchronization point between the agent (user) and
the artifact (used): if the use action is successfully
executed, then this means that the execution of the
operation on the artifact has started.

In order to retrieve events collected by a sensor,
thesense primitive is provided. The primitive waits
until either an event is collected by the sensor, match-
ing the pattern optionally specified as a parameter (for
data-driven sensing), or a timeout is reached, option-
ally specified as a further parameter. As result of a
successful execution ofsense, the event is removed
from the sensor and a perception related to that event
is returned. In the philosopher example, after exe-
cutingget For ks the philosopher agent blocks until a
forks_acqui red event is perceived on the sensor
If no perception are sensed for the duration of time
specified, the action generates an exception. Pattern-
matching can be tuned by specifying custom event-
selection filter: the default filter is based on regular-
expression patterns, matched over the event type (a
string).

Besides sensing events generated when explicitly

dusing an artifact, a support f@montinuous observa-

tion is provided. If an agent is interested in observ-

ing every event generated by an artifacts — includ-
ing those generated as a result of the interaction with
other agents — two actions can be uskagus and
focus. The former is used to start observing the
artifact, specifying a sensor to be used to collect the
events and optionally the filter to define the set of
events to observe. The latter one is used to stop ob-
serving the artifact. In the example shown in Figure 2,
an(oserver agent continuously observe€aunt er

operation to execute — or, more precisely, the usageyyifact, which is used by twoser agents. After exe-

interface control to act upon, which activates the op-
eration — and optionally, a timeout and the identifier

cuting af ocus on the artifact in ther epar e activity,
in the noni t ori ng activity the observer prints on a

of the sensor used o collect observable events generongole artifact the value of the observable property
ated by the artifact. The action is blocked until either .,nt as soon as it changes.

the action execution succeeds — which means that the

specified interface control has been finally selected

and the related operation has been started — or fails,

either because the specified usage interface control is3 THE CORE CALCULUS

invalid (for instance it is not part of the usage inter-

face) or the timeout occurred. If the action execution The syntax of FAL is summarised in Figure 3 where
fails an exception is generated. In the philosopher we assume a set of basic values, ranged over by the
example, aPhi | osopher agent (within itseating metavariable. Types for basic values are ranged over
activity) executes aise action so as to execute the by the metavariable. We only assume the basic val-
get For ks operation, specifying the sensor. On the  uestrue andfalse (of typeBool) which are used
artifact side, if the forks are busy tiget For ks usage as the result of the evaluation of preconditions, persis-
interface control is not enabled, and thge is sus- tency predicates and guards. We use the overbar se-
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U == G|A]|C Agent / artifact / basic value types
T == U] Sns Types
G = agent G{Snss;Act } Agent (class) definition
Act = activitya(Tx):agenda(SubAct) {e;} Activity definition
SubAct ::= a(e) :perse :pree Subactivity definition
AD = artifact A{Uf;Up, Op} Artifact (class) definition
Op = operationo(Ux):guarde {e;} Operation definition
e T x|c Expressions: variable / basic value
spawnG(e) | makeA(e) agent and artifact instance creation
e;e sequential composition
f] f=e artifact-field access / update
pl| p=e artifact-property access / update

si gnal (1(e))

.s | useeoo(e):snse | sensee:filterl
focus(e,e) | unfocus(e,e)

event generation

sensor / operation use / event sensing

focus / unfocus

observe e.p get property value
?memo(1) | -meno(1) | +meno(1(e)) memo operations
menmo(1) memo predicate
started(a) | conpleted(a) | failed(a) activity state predicates
fail activity error

Figure 3: Syntax.

guence notation according to (Igarashi et al., 2001). ranges over references to instance of agemtsyer
There are minor differences between the syntax of artifacts, o over sensors. Configurationsare non-

the calculus and the one of the language used for theempty sets of agent/artifact/sensor instances.

examples. Namely: instead of tuples for memos in ~ Sensor instanceare represented hy = (1v)5,

memo-spaces (and event in sensors) we use valuesvherea is the instance identifier, ardv is the queue

and specifiers:@genda, : pers, : pre, : guard and of association labels/values representing the events

: sns), that are optional in the language, are manda- generated (and not yet perceived) on the sensor.

tory in the calculus. Agentinstanceare represented y= (1¥,G,R)¢,
Labels are used as keys for the associative mapsWherey is the agent identifier is the type of the

representing the content of sensors and memo-space<29€nt,1v is the content of thenemo-spaced is the
The metavariabla range over labels. sequence of references to the instances of the sensors

The expressiotfail model failures in activities, that the agent uses to perceive, @b the state of

such as the evaluation 6fremo (1) and- mem(1) in the activity,mai n, that was started when the agent was

. . created. The sensor instancesimre in one-to-one
an agent in which the memo-space does not have a

memo i abet. Note hat the pes of parame- ~(0SSPorence vl e sensor varahes decared
ters, in artifact operations and the type of fields and 9 yag

properties may not be sensors so artifacts. Moreover,Set 0 f sensor Instances. . _
the signal expressionsj gnal (1(e)), does not spec- An instance of an activityR, describes a running ac-

ify a sensor. Therefore, sensors may not be explicitly :algyt.)oﬁs c?fnglgc?t?viltn ?vicggcezéobg%eI:;/ealtl;?'gg_
manipulated by artifacts. y Y P

' : . ecution of its sub-activities, so we also represent the
The language is provided with a standard type

: X .~ state of execution of the sub-activities.
system enforcing the fact that expressions occur in
the right context (artifact or agent), operation used,
and activities mentioned in todo lists are defined, and
only defined fields and properties are accessed/modi- R !
rameters of the current activity instanéey - - - Sty is

fied. the set of sub-activities running, aerds the state of
Operational Semantics. The operational semantics evaluation of the body of the activity. (Note that the
is described by means of a set of reduction rules thatevaluation of the body starts only when all the sub-
transform sets of instances of agents/artifacts/sensorsactivities have been fully evaluated.) Wittailed?
Each agent/artifact/sensor instance has a uniquewe say that activity hasfailed. If the evaluation of a
identity, provided by aeference The metavariablg sub-activity is successful then it is removed from the

R ::= a(v)[Sr1---Srnl{e} | failed?

The name of the activity is, ¥ are the actual pa-
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setSry ---Srp. SO whem = 0 starts the evaluation of
the bodye.
For a sub-activitySr, the process of evaluating its

precondition (we do not consider the persistency
predicate that would be similar), is represented by

the term,a(v)(e) wheree is different fromtrue or
false (it is the state of evaluation of the precondi-
tion) whene = true, the terma(v) (true) is replaced
with the initial state of the evaluation of the activity
with parameters. Whene = false the evaluation
of the precondition oé is rescheduled. Therefore:
Sr a(¥){e) | R

Artifact instancesare represented by = (f =
v,p = w,0,01---0n)* wherea is the artifact identi-
fier, A the type of the artifact, the sequence of pairs

£V associates a value to each the fieldipfthe se-
guence of pairgw associates a value to each property

of A, the sequence represents the sensors that agents

focusing on are using, an@;, 1 <i < n, are the op-
erations that are in execution. We consider- -0, a
gueue with first elemertt, and last0;. (For simplic-

a={(isBF=[f,f,f,f, f],000)T®e

After the initialization of the local variablethe agent
instanceyyi n becomes

| spawn Phil osopher (0,1, a); |

{ }>th n

Yvain = (D,(l).rmi n
spawn Phi | osopher (4,0, a)

The five spawn expressions are evaluated from left
to right. The evaluation of the expressiosisawn

Phi | osopher (0, 1, a) reduces toy, and adds to the
configuration the agent instance

prepare() (true) |,

— (0,00, mai
@ Yo=¢ ’oo’na'n{ ITving(0, T, o) (memo( hungry))

:| {}>Ph\|.

and the sensor instanog = (0))3”5.

Similarly, the reduction of the other spawn expres-
sions generates four agent instances and four sensor
instances producing the configuration:

= () Go=(0) - Oa={B) a=1{.) Yo={u) - Ya= ()
in which the agentu.;,, is inactive, having finished

the evaluation of its body. The artifaot does not
have any pending operation, and all the agent philoso-

ain

ity, we do not consider steps in this paper, although phgrs may stqr‘g the execut?on of the sub—gctivities of
we have a full formalization including them.) Arti- their main activity (by starting the evaluation of the
facts are single threaded and (differently from agents Preconditions oprepare andl i vi ng). Our model-

only the operatiom, is being evaluated.
A running operationO, is defined as follows.

0 = (o,0(e){e'})

whereo identifies the sensor associated with the op-

parallel execution could be modeled.

Going back to(1), since the precondition of the run-
time sub-activitypr epar e() of the activity mai n of
the agenty is true the expressioprepare() (true)

is replaced byprepare()[ ]{-+memo(hungry)} (whose

eration which was specified by the agent containing evaluation causes the insertion of the latuabry into
theuse that started the operation, and that is used to the memo ofy) and then since the body is fully eval-
collect events generated during the execution of the uatedpr epare is removed from the sub-activities of

operation bysignal. If the expressiorie) is differ-

ent fromtrue or false the operation is evaluating its
guarde. If e = true then the operation is evaluating
its body. Ife = false then the operation is removed

mai n , yielding
(2) yo = (hungry,cp,mai n [ living(0,1,a) | (memo(hungry)) } { })Ppil.

If instead of evaluating the sub-activity epare we

from the queue and put at the end of it so that when it would have evaluated the precondition of the sub-

will be rescheduled it will restart evaluating its guard.

Reduction Rules by Examples. The initial configu-
ration for the program in Fig. 1 is:

| Tabl et =make Tabl e( newBool [5]); |
spawn Phil osopher(0,1,t);

's';')awn Phi | osopher (4,0,t)

The expressiomew Bool [5] reduces to the array
if.f,1,£,11 (In the array we usef for false
and t for true.) Then the expressiomake
Table([f,f,f,f,f]) reduces to an artifact reference
a and adds to the configuration the initial artifact in-
stance that follows:

Ynain = <0~,07"ﬂi n

{ })NEII n

1The syntax of FAL does not include local variables and
array object values. In this example, we will handle the lo-
cal variablet by replacing, after its declaration/inizializa-
tion, all its occurrences with its value.

activity | i vi ng, the result would have being

prepare() (true),

V":w’“‘)’”‘ai”[ living(0,1,0) (false) ]{”PW

Next time the sub-activityi vi ng was scheduled for
executiorl i ving(0, 1, a) (false)would have been
replaced with i ving(0, 1, a) (memo(hungry)).
Continuing from(2) the preconditiormemo( hungry)

of living evaluates totrue and the sub-activity
living(0,1,a) (true)isreplaced by the correspond-
ing run-time activity resulting in the following:

eating(0, 1, a)| (memo(hungry)) |,

thinking() (compreted(eating)),
shut down() (failed(eating))

i vi ng(o,l,a){ {}

The preconditiomeno( hungry) evaluates torue
and the sub-activitgati ng(0, 1, a) (true) is replaced
by the corresponding run-time activity resulting in
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the following

|use a. get Forks(0,1) :sns gp |;
SEnse Op . fTilter forksacquired,
/

(3) eating(0,1,a)[] * eat */

use a.rel easeForks(0,1);

-meno( hungry)
(Note that both conpl eted(eating) and
failed(eating) would evaluate tofalse.) The

evaluation of the body oéating can now start by
reducing the expressiomse o. get Forks(0,1) :sns

oo, that schedules the operatiagpt Forks in the
artifact instancex yielding

o=(isBF=[f,f,f,f, f],0,0, (00,getForks (e,) {eo}))T®®

whereeg is (not (.isBF[0]) and (not(.isBF[1])))
andeg is
.isBF[0] = true; .isBF[1] =true; signal (forks.acquired).
The guarde; reduces tarue. The reduction ofkg
updates the arrayto [t, t, f, f, f] and adds the
label f orks_acqui red to the queue of events of the
sensor instancesy, Yyielding o, = (forks_acquired)ss.
Other agents may schedule operation the artifact
a. For instance, if the agent andy, invoke the
operationget Forks on a, when the evaluation of
get Forks for the agentyy was completed the state of
the artifact would be
a={(isBF=[t,t,f,f ],0,0,

(02,get Forks (ep) {e2}) (01,get Forks (ef) {e1}))™'®
So the guard’ ( ( not(.isBF(1]) and (not(.isBF(2])) ) )
would evaluate tdal se, and the associated operation

rescheduled.) Once the sub-activityi ng completes
its execution, in the example of Fig. 1 it would be
rescheduled (since its persistency conditiot is).

4 PROPERTIES

We have defined a type system for FAL — not reported
in the paper for lack of space. The soundness of the
type system implies that the execution of well-typed
agents and artifacts does not get stuck. The following
properties of interaction between well-typed agents
and artifacts, which are useful in concurrent program-
ming with sIMPA, hold: (i) there is nouse action
specifying an operation control that is not part of the
usage interface of the artifacti) there is nmbserve
action specifying an observable property that does not
belong to the specified artifact; aifidl ) an executing
activity may be blocked only in aense action over

a sensor that does not contain the label specified in
the filter—i.e., the agent explicitly stops only for syn-
chronization purposes. Moreover, a type restriction
on sensors — not present in the current type system —
may be defined to enforce that there isanse action
indefinitely blocked on sensing eventlue to the fact
that the corresponding triggered operation was not de-
signed to generate

would be rescheduled and put at the rear of the queue

yielding the following

a={(isBF=[t,t,f,f {],0,0,

(o1,9et Forks (e}) {e1}) (02,get Forks (e)) {e2}))Te0'e

so the evaluation of the guard of thet For ks opera-
tion invoked byy, may start (and will successfully ac-
quire the forks fory,). At the same time, the expres-
sionsense og :filter forks_acquired in (3) could
be evaluated, perceiving the eveft ks_acquired
and removing it from the sensor instaneg which
becomesop = (0)5'S. The code I'* eat */” may
be executed and, at the end of its execution the ex-
pressioruse a.rel easeForks(0, 1) schedules the op-
erationrel easeForks on the artifacta and then
-meno( hungry) removes the labehungry from the
memo completing the execution of the sub-activity
eating. The sub-activityeating is discarded and
therefore the predicateonpl et ed(eating) becomes
true and the sub-activitiyhi nki ng could be executed
resulting inyo to be:

thinking()[] {
/* think */  +memo(hungry) }
shutdown() (failed(eating))

(If the evaluation of the predicatenpl et ed( eat i ng)
was done before completion of predicatei ng the
result would have beefral se, and then its evaluation

{31 pm

(0,00, mai n[living(0,1,a)
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5 RELATED WORK

The extension of the OO paradigm toward concur-
rency — i.e. object-oriented concurrent programming
(OOCP) — has been (and indeed still is) one of the
most important and challenging themes in the OO
research. Accordingly, a quite large amount of the-
oretical results and approaches have been proposed
since the beginning of the 80’s, surveyed by works
such as (Briot et al., 1998; Yonezawa and Tokoro,
1986; Agha et al., 1993; Philippsen, 2000). We re-
fer to (Ricci et al., 2008) for a comparison of the
agent and artifact programming model witttive ob-
jects(Lavender and Schmidt, 1996) aadtors(Agha,
1986) and with more recent approaches extending OO
with concurrency abstractions, namelgI® PHONIC

C# (Benton et al., 2004) anaiN JavA (Itzstein and
Kearney, 2001) (both based on Join Calculus (Four-
net and Gonthier, 1996)). Another recent proposal
is STATEJ (Damiani et al., 2008), that proposstate
classesa construct for making the state of a concur-
rent object explicit. The objective of our approach is
quite more extensive in a sense, because we introduce
an abstraction layer which aims at providing an effec-
tive support for tackling not only synchronisation and
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