
EXTERNAL TOOL INTEGRATION WITH PROXY FILTERS
IN A DATA MINING APPLICATION FRAMEWORK

Lauri Tuovinen, Perttu Laurinen and Juha Röning
Department of Electrical and Information Engineering, University of Oulu, P.O. Box 4500, FIN-90014, Finland

Keywords: Data mining, Application framework, Pipes and filters, Tool integration, Proxy pattern.

Abstract: An important phase in the development of a data mining application is algorithm selection: for any given
data mining task there is likely to be a range of different model types available, as well as a number of
different methods for constructing the models. Choosing the one that best accomplishes the task is not trivial
and generally involves trials and comparisons of different configurations. It is often convenient to perform
the trials on a platform other than the ultimate implementation technology of the application; for example,
the application may be implemented in a general-purpose programming language such as C++ while model
prototyping is carried out in a scientific computing environment such as MATLAB. For this we propose a data
mining application framework that allows MATLAB and other external tools to be integrated into applications
via proxies known as gateway filters. To the framework the gateway filters appear no different from algorithms
implemented on the framework platform, so it is possible to build a full application prototype early on and then,
once the algorithms to be used have been selected, to turn the prototype into a deployable application simply by
replacing proxies with natively implemented filters. Thus the framework comprehensively supports the various
steps of application programming, from algorithm design and prototype building to final implementation.

1 INTRODUCTION

Various software packages have been created to sup-
port the development of data mining applications.
Different solutions support the development process
in different ways and at different stages. For instance,
a graphical tool for building pipe-and-filter style data
flows may be useful for rapid prototyping but not for
implementing the final product, assuming that a stan-
dalone, fully tailored application is desired. A library
of data mining algorithms, on the other hand, does not
provide a graphical interface but can be included in
the final product to speed up the programming phase.

Smart Archive (SA) (Laurinen et al., 2005; Tuovi-
nen et al., 2008) is a software framework for data min-
ing applications implemented in Java and C++. As a
traditional application framework it differs in a sig-
nificant way from both algorithm libraries and graph-
ical application builders. Like a library, it speeds up
programming, but instead of providing a vast collec-
tion of reusable algorithms it provides a generic ker-
nel into which the algorithms required by a specific
application are inserted.

SA can also be used to speed up prototype build-
ing, but instead of offering a graphical interface for

coupling algorithms it helps the development of the
algorithms themselves. A new extension to the frame-
work allows applications to include programs imple-
mented with specialized tools that are more appro-
priate for the task of algorithm design than general-
purpose programming languages like Java. SA thus
makes it possible to write an algorithm in, for exam-
ple, MATLAB, and then to test it immediately in the
context of a fully functional application prototype.

Processing algorithms in Smart Archive are
known as filters. In a deployed application these are
usually written entirely in the implementation lan-
guage of the framework (Java or C++). However,
when an algorithm is implemented using a different
tool, it is represented in SA by a proxy instead. The
proxy sends the input data to the external tool and re-
ceives the results from it while presenting to SA the
same interface that all other filters implement. The
framework therefore sees no difference between prox-
ies, known as gateway filters, and regular filters.

Since all filters appear similar to the framework,
developers can put together a complete application at
a relatively early stage—complete in the sense that
all of the filters to be included in the application are
present as regular filters, proxies or simple dummies.

249
Tuovinen L., Röning J. and Laurinen P. (2009).
EXTERNAL TOOL INTEGRATION WITH PROXY FILTERS IN A DATA MINING APPLICATION FRAMEWORK.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 249-255
DOI: 10.5220/0002256102490255
Copyright c© SciTePress



The developers can then replace the proxies and dum-
mies with regular filters once the algorithms they rep-
resent have been designed, tested and coded in the
language of the framework. Some proxies may even
be left in the final application, for example if a gate-
way filter has been used to build an interface to a
third-party algorithm library.

This paper proposes gateway filters as a means of
supporting algorithm design and prototype implemen-
tation in data mining software development. Gate-
ways provide an encapsulated and open-ended inter-
face that allows functionality provided by other tools
to be included in SA-based applications. Encapsula-
tion makes using the interface convenient by allow-
ing regular filters to be replaced with gateways and
vice versa without modifying other parts of the appli-
cation. Openness ensures that the range of supported
tools is not limited to a few or just one. A positive side
effect of openness is that gateway filters have several
potential applications besides the principal one.

Section 2 discusses related work, most impor-
tantly other data mining frameworks. The main con-
tribution is given in Section 3, which introduces the
concept of gateway filters, and Section 4, which
presents a gateway filter implementation and docu-
ments some tests performed on it. Section 5 discusses
the findings, and Section 6 concludes the paper.

2 RELATED WORK

Weka (Witten and Frank, 2005) is a library of ma-
chine learning algorithms developed at the Univer-
sity of Waikato, New Zealand. The library provides
a collection of algorithms for regression, classifica-
tion, clustering and association rule mining as well as
I/O interfaces and preprocessing, evaluation and vi-
sualization methods. The algorithms can be invoked
from Java code or operated using a set of graphical
user interfaces bundled with the library.

D2K (Automated Learning Group, 2003) is a
data mining environment developed by the Auto-
mated Learning Group of the University of Illinois.
It provides a graphical toolkit for arranging applica-
tion components, called modules, into processing se-
quences, called itineraries, but developers also have
the option of using the core components of D2K with-
out the toolkit. In addition to a selection of reusable
modules for various purposes (I/O, data preparation,
computation, visualization) there is an API for pro-
gramming new ones.

KNIME (Berthold et al., 2006), developed at the
University of Konstanz, Germany, is another data
mining environment with a graphical user interface

for manipulating components, called nodes. Although
KNIME and D2K are superficially different, there is
a close analogy between the nodes and workflows
of KNIME and the modules and itineraries of D2K.
Based on the Eclipse integrated development environ-
ment, KNIME bears more resemblance to a program-
ming tool and allows arbitrary code snippets to be in-
serted into workflows.

RapidMiner, formerly known as YALE (Mierswa
et al., 2006), was originally developed at the Univer-
sity of Dortmund, Germany. Like D2K and KNIME,
it is a graphical environment for building data min-
ing applications from components, called operators.
However, unlike D2K and KNIME, RapidMiner mod-
els the operator sequence as a tree rather than an arbi-
trary directed graph. The operator tree can be manip-
ulated either graphically or by editing the XML rep-
resentation, which is always available in its own tab
in the user interface.

Smart Archive shares with Weka, D2K, KNIME
and RapidMiner the principle of composing applica-
tions from components, with the output of one com-
ponent becoming input for the next one. The se-
quence of components, analogous to a D2K itinerary,
is called the execution graph. Another layer of func-
tionality built upon the execution graph, called the
mining kernel, is responsible for gathering data from
data sources (via interface objects known as input re-
ceivers) and feeding it into the execution graph.

A general difference between Smart Archive and
the other frameworks discussed above is the greater
emphasis that SA puts on openness and flexibility.
In practice this means that SA offers greater freedom
to work directly with application code and to use se-
lected parts of the framework to build a precisely tai-
lored application. Another significant difference is
found in the approach to using databases in applica-
tions: Smart Archive, with its data sinks embedded
in components, provides a tighter form of integration
than the other frameworks, where database inputs and
outputs are just types of components among others.

From a software engineering perspective, the inte-
gration of SA with external tools falls into the scope
of software interoperability, on which there is a con-
siderable body of literature. Since SA is a component-
based framework, research on component-based sys-
tems is of particular interest. Broadly speaking, SA
belongs to the category of open systems (Oberndorf,
1997) and this is the feature that allows external tools
to be connected to it. The concrete tool integration
approach of SA is similar to that of the generic archi-
tecture presented in (Grundy et al., 1998): the external
tools are wrapped in component-based interfaces.

Although the idea of gateway filters is not new,

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

250



applying it to tool integration does not appear to have
spread to data mining frameworks. The other frame-
works do provide components that could conceivably
be used to implement something like theRDBGateway
filter described in Section 4, but the extra effort re-
quired would be considerable and the result would be
awkward compared to the case where all the details
of exchanging data and instructions with the external
tool are taken care of by a single component. In SA
applications this connection can be established simply
by instantiating a proxy and setting its parameters.

3 THE GATEWAY FILTER
CONCEPT

Filters are the core elements of any Smart Archive
application. Each filter implements a transformation
of data, usually reducing its volume and increasing
its degree of abstraction. The desired knowledge
is extracted from raw data through a progression of
transformations. Filters are packaged in components,
which may also contain a data sink for storing the
transformed data produced by the filter.

Each filter has one or more named input channels
through which it receives data to be processed. An
input channel, in turn, has one or more input vari-
ables, which contain the actual data values. Similarly,
each filter has one or more output channels. A chan-
nel may be defined as a cohesive variable group that
plays a distinct role in the operation carried out by the
filter. When a filter is joined with a pipe to another
application element, the pipe is always attached to a
particular input or output channel.

Although a filter conceptually represents a data
transformation, it is not necessary for it to implement
the transformation. Instead, the task of executing the
transformation may be delegated to another applica-
tion by employing a gateway filter. Gateway filters
are derived from an abstract class that combines two
Gang-of-Four design patterns (Gamma et al., 1994):
proxy and template method. The proxy pattern sepa-
rates the implementation of the filter algorithm from
the filter object so that the implementation may reside
in a different environment while to the framework it
appears as if the proxy itself were implementing the
algorithm. Within the proxy, the template method de-
fines the steps of relaying inputs to the implementa-
tion and receiving outputs from it.

Smart Archive filter classes are usually derived
from the classAbstractFilter. This class declares
an abstract method,executeTransformation,
which constitutes the core of the filter, transforming
inputs into outputs. Regular filters override this

method with a concrete implementation of the
filter algorithm. With gateway filters, however, an
additional layer of abstraction is added.

The base class of all gateway filters is
ExternalToolGateway, a direct subclass of
AbstractFilter. ExternalToolGateway overrides
executeTransformation with a template method,
the essential parts of which are shown in Figure 1.
In the body of the template method there are calls
to four subroutines, each of which is an abstract
method inExternalToolGateway. Thus, in order
to create a gateway filter, a programmer must create
a subclass ofExternalToolGateway that overrides
these four methods with concrete implementations of
the corresponding steps of the template algorithm.

Each of the four abstract methods returns a
boolean value wheretrue indicates that the opera-
tion was successfully completed, in which case the
algorithm proceeds to the next step. In the case of a
false return value the algorithm terminates instantly
andexecuteTransformation returns anull output
object. In any event a fifth method,cleanUp, will be
called before returning, allowing the filter to reset any
states that the other four might have modified.

The gateway filter can be thought of as a client that
requests services from a server residing on the con-
crete implementation platform. The first subroutine
call in the template method,sendInputToExternal,
delivers a batch of input data to the server. The sec-
ond call,triggerExternal, causes the server to for-
ward the data to an implementation the filter algo-
rithm. The third call,waitForResponse, blocks the
client until the server announces either that it is ready
to send output or that the operation failed. In the for-
mer case, the fourth call,getOutputFromExternal,
pulls in the output data generated by the server. This
process is illustrated in Figure 2.

It is worth noting that the template method as-
sumes that it is not possible for the client to simply
make a single function call to the server, with the in-
put data as argument and the output data as return
value. This choice was made because it places fewer
restrictions on the implementation of the connection
between client and server. The next section presents
a gateway filter implementation where asynchronous
client-server communication is the only option.

4 IMPLEMENTATION
AND TESTING

There are many different ways to implement a
gateway filter, distinguished mainly by the means
of client-server communication. Perhaps the most

EXTERNAL TOOL INTEGRATION WITH PROXY FILTERS IN A DATA MINING APPLICATION FRAMEWORK

251



straightforward option would be to use remote
method invocation, but this option is viable only with
server platforms capable of running a Java virtual
machine. Instead, a more open-ended approach was
adopted in the implementation of the first gateway fil-
ter: indirect communication via a repository.

Because SA powerfully supports interaction with
relational databases (RDBs), they were chosen as the
repository technology to be used with the gateway fil-
ter. Thus, a subclass ofExternalToolGateway was
written that writes the filter inputs into a set of RDB
tables and reads the outputs from another set of tables.
The new class was namedRDBGateway.

Figure 3 shows the passage of signals and data
whenRDBGateway is used. The means of passing sig-
nals is a status table, which both the client and the
server can access. There are four states that occur in
sequence when the filter is executed: ‘idle’ when the
filter is inactive, ‘input’ when the client is passing in-
put to the server, ‘process’ when the server may begin
processing the data, and ‘output’ when the server has
finished and the client may read the output. Alterna-
tively, the server may set the state to ‘abort’ in the case
of an error that prohibits it from generating output. In
either case the filter will then go back to the idle state
and remain there until it is invoked again.

The server, while not executing an algorithm,
stays in a loop where it polls the status table for the
trigger signal (state change to ‘process’). Besides the
state, the status table contains information on where
to find the input data, which algorithm to invoke and
where to write the outputs. While the server is pro-
cessing, the client waits in a loop, polling the status
table for the ready signal (state change to ‘output’).
When the signal is received, the outputs are available
in tables specified to the server via the status table.

An implementation of the server has been written
for the scientific computing environment MATLAB.

Figure 1: The template method that implements
executeTransformation in the ExternalToolGateway
class.

To test the connection to MATLAB, an application
that first trains and then applies ak nearest neigh-
bors (kNN) classifier was devised. The data used
was synthetic and randomly generated. The classi-
fier was implemented as a MATLAB function and an
RDBGateway was used to represent it in the applica-
tion. The same algorithm was also implemented in
Java as a regular filter so that the performance over-
head incurred by the gateway could be estimated.

The classifier was tested with datasets of differ-
ent sizes. The results of the tests are documented in
Tables 1 and 2. These figures compare poorly to the
performance of the Java implementation, for which
the training times were consistently zero within the
accuracy of the timer and the classification task was
completed in less than 100 milliseconds even in the
NT = NC = 500 case. However, the performance of
the MATLAB implementation comprises several ele-
ments, not all of which depend on the gateway. Its
effect on classification performance can be estimated
by looking at the training performance figures.

Since training a kNN classifier involves simply
storing the training set, the training times give a fair
idea of how long it takes to transfer a dataset between
the framework and an external tool. The figures imply
that in the tests performed, the time to transfer inputs
to the classifier and the results back to the gateway
was a small fraction of the time it took to process the
inputs. In an application required to respond rapidly
to new data this overhead could be a problem, but in
an application that takes minutes to process a single
dataset, an overhead of seconds should be acceptable.

Figure 2: The operating principle of gateway filters. The
filter receives a batch of data (1), which it forwards to the
external tool (2). The filter then triggers the external tool
(3), which invokes the appropriate algorithm (4). Once the
algorithm has returned its output (5), the external tool sends
a ready signal (6) to the filter, which accepts the output (7)
and forwards it to the framework (8).

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

252



It should be noted that this example is not intended
as a realistic demonstration of howRDBGateway
might be used. A library implementation would be
a more likely choice if one were to use kNN classifi-
cation in an SA application. Also, the number of vari-
ables in the data used for the tests was considerably
smaller than what one would normally encounter in
a data mining task, so the measured processing times
do not accurately reflect the performance of the tested
implementations in a real-world situation.

Table 1: Training performance of the kNN classifier, in mil-
liseconds.NT denotes the size of the training dataset. The
times are averaged over three test runs.

NT
100 300 500

280 ms 590 ms 1060 ms

5 DISCUSSION

The chief purpose of the gateway filter concept is to
support connections to external computing tools, pri-
marily for building functional application prototypes.
It is assumed here that developing the application in-
volves designing new algorithms, not simply finding

Figure 3: The operating principle of the RDB gateway fil-
ter. Upon receiving a batch of data (1), the filter first sets
the status in the status table to ‘input’ (2) and then writes
the data into the designated input tables (3). The status is
then changed to ‘process’ (4), which triggers the external
tool to read the input data (5) and invoke the algorithm (6).
When the algorithm returns (7), the tool writes its output
into the designated output tables (8) and changes the status
to ‘output’ (9), signalling to the filter that it may read the
data (10). Finally, the filter resets the status to ‘idle’ (11)
and forwards the output data to the framework (12).

suitable parameters for off-the-shelf ones. This is
more laborious than using library algorithms, but on
the other hand it gives developers more freedom and
leverage, which is characteristic of the SA approach.

Experience from various research projects sug-
gests that algorithm developers, especially ones with
a background in mathematics, prefer to work with
scientific computing packages such as MATLAB or
R rather than directly with the implementation lan-
guage of the application to be created. Research is
also the context where the need to design custom al-
gorithms for a data mining application is most likely
to arise. This makes SA particularly useful for cre-
ating new experimental results and transferring them
into production use; this capacity of SA has already
been demonstrated (Tuovinen et al., 2008).

The MATLAB test shows that the connection from
SA to external tools through a proxy works and
does not cause an unreasonable transmission over-
head compared to the time it takes to process a moder-
ately large dataset. It is therefore possible to develop
an algorithm in MATLAB and include it in a func-
tional prototype of an SA-based data mining applica-
tion. Since the function implementing the algorithm
is completely separated from the proxy representing
it in SA and since the MATLAB programming lan-
guage is interpreted, one can make changes to the al-
gorithm without recompiling anything, even while the
main Java program is running. This makes it conve-
nient to try different variants and configurations of the
algorithm at the developer’s will.

As required, the interface between the proxy and
the external tool is completely encapsulated by the
gateway filter, which limits the scope of the changes
required to remove the dependency on the external
tool: the only differences between the two application
configurations in the kNN example are in the code for
setting up the filter for the classifier component. This
code accounts for less than ten percent of the code
lines in the main routine of the application. Since the
Java implementation of the classifier takes the same
inputs and gives the same outputs as the MATLAB
implementation, they are fully interchangeable.

The other major requirement, openness, is also

Table 2: Classification performance of the kNN classifier,
in seconds.NT denotes the size of the training dataset and
NC the size of the classification dataset. Each time is the
result of a single test run.

NT
100 300 500

NC

100 2.3 s 5.7 s 9.3 s
300 6.2 s 18.3 s 29.7 s
500 11.0 s 29.8 s 49.2 s

EXTERNAL TOOL INTEGRATION WITH PROXY FILTERS IN A DATA MINING APPLICATION FRAMEWORK

253



fulfilled becauseRDBGateway can be used to interface
with any computing tool from which it is possible to
access a relational database. Since RBD technology
is firmly established and widely employed, this is a
fairly loose constraint: any tool designed to be used
for processing structured data is likely to have the op-
tion of importing the data from a database, either as
a built-in function or via some kind of add-on. The
external tool could even be one of the other frame-
works reviewed in Section 2, configured to run an ap-
plication that reads its original inputs from the input
tables ofRDBGateway and writes its final outputs into
the output tables. It would also be possible to use
the MATLAB server with another framework, since it
does not depend on SA; however, this would still be
more awkward than using SA since a suitable client
component would first have to be implemented.

If none of the available gateway classes are sat-
isfactory, it is possible to derive a new one from
ExternalToolGateway, which places no restrictions
on the means of communication with the external
tool. The solution is therefore genuinely open-ended,
but openness also has its disadvantages. To keep the
set of possible external tools as inclusive as possible,
the implementation of the gateway concept makes de-
liberately few assumptions about the server side, but
this also means more work for a developer imple-
menting a new server because it limits what the frame-
work can do for the developer. On the other hand, the
absence of many restricting assumptions makes gate-
way filters potentially suitable for a variety of pur-
poses that were never considered as primary design
goals. We discuss some notable possibilities below.

Before an application is deployed, gateway filters
used in the prototype will probably need to be re-
placed with regular filters: it is likely that some of the
tools used by the algorithm developers are not avail-
able in the production environment, and in any event
the overhead from communicating with them would
be undesirable. However, a gateway could also be
used as an interface to a free algorithm library, in
which case the overhead would probably be accept-
able and the library could be distributed with the ap-
plication. For example, a gateway that can serve as
a proxy for any Weka algorithm would significantly
increase the effective number of reusable filters avail-
able. Developers could then focus on designing those
filters that can not be implemented simply by picking
the right library algorithm.

Another purpose that gateway filters could serve
in the finished application is distributed computing.
This would involve creating a gateway that can in-
voke a function residing on a remote server; unlike
an external tool, the remote code could work directly

with the data structures used by SA for internal com-
munication. In an application that includes two or
more computationally heavy components that can be
executed in parallel, gateway filters could be used to
distribute the workload of these components. Alter-
natively, one could write a gateway that divides the
batch of input data into work units and sends each
unit to a different remote machine to be processed.
It is worth noting that SA has already been used to
implement a distributed application, but in this case it
was entire SA instances that were executed in parallel,
not individual components (Tuovinen et al., 2008).

Finally, since it makes no difference to the frame-
work how the external tool generates its results, a
gateway could be used to employ a human expert in
lieu of a filter algorithm. In this case the external tool
would be an interactive application, not just a pas-
sive platform for algorithm execution. The role of the
framework would be to prepare data for the applica-
tion and possibly to process its output further. For ex-
ample, one might want to use a tool like SignalPlayer
(Siirtola et al., 2007) for exploratory analysis of time
series data when the problem at hand is not under-
stood well enough to allow a non-interactive solution.

The principal problem identified in the current
RDBGateway implementation is that although inputs
and outputs are automatically transferred between the
proxy and the external tool, there is no similar mech-
anism for transferring algorithm parameters. There-
fore, when working on an application containing an
external algorithm, a developer has to switch from the
main application to the external tool to change the pa-
rameters of the algorithm. This has proven somewhat
inconvenient, so it would be a significant improve-
ment if proxy filters could mediate parameter values
to externally implemented algorithms.

6 CONCLUSIONS

In this paper we described a solution to the problem of
including algorithms implemented with external tools
in data mining applications built using a software
framework. The framework, called Smart Archive,
is an object-oriented application framework based
on the pipes-and-filters architectural style. Smart
Archive applications can interface with external tools
through special filters known as gateways. A gateway
filter serves as a proxy that represents an externally
implemented algorithm to the framework and trans-
fers data between the framework and the external tool.

A typical example of an external tool that one
might want to use in conjunction with Smart Archive
is the scientific computing environment MATLAB.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

254



The proxy filter concept was demonstrated by estab-
lishing a gateway to MATLAB and using it to per-
form a classification task on synthetic data. The per-
formance of the classifier was compared to that of the
same classification algorithm implemented as a reg-
ular Smart Archive filter. The performance of the
MATLAB version proved substantially worse, but the
effect of data transfer overhead caused by the gateway
was found to be comparably small.

To the framework, a gateway filter appears no dif-
ferent from any other kind of filter, so it can be con-
veniently replaced with a filter implemented in the
language of the framework once the details of the al-
gorithm have been settled. In the classification test,
for instance, replacing the MATLAB gateway with a
regular filter could be accomplished with minor and
bounded modifications to the application code. An-
other desirable feature of the gateway mechanism is
that it is highly open-ended: the gateway used to com-
municate with MATLAB could be used with many
other tools as well, and developers are also free to
create their own gateway implementations to suit their
particular purposes.

Proxy filters were introduced into Smart Archive
primarily to allow developers of data mining applica-
tions to build a functional application prototype from
algorithms created with specialized tools that are bet-
ter suited to such work than general-purpose program-
ming languages. This ability was demonstrated by
the MATLAB test. Other possible uses of proxies in-
clude interfacing with algorithm libraries and devel-
oping distributed applications. There could also be a
gateway to an external tool operated interactively by a
human expert, who would effectively assume the role
of a filter by using the tool to produce the output to be
sent back to the framework.

ACKNOWLEDGEMENTS

The authors would like to thank the Finnish
Funding Agency for Technology and In-
novation (http://www.tekes.fi), Rautaruukki
(http://www.ruukki.com) and Polar Electro
(http://www.polar.fi) for funding the research on
Smart Archive in the SAMURAI project. L.
Tuovinen wishes to thank the Graduate School in
Electronics, Telecommunications and Automation
(http://signal.hut.fi/geta/) and the Tauno Tönning
Foundation (http://www.tonninginsaatio.fi) for
funding his postgraduate work.

REFERENCES

Automated Learning Group (2003). D2K Toolkit
User Manual. Technical manual, available at
http://alg.ncsa.uiuc.edu.

Berthold, M. R., Cebron, N., Dill, F., di Fatta, G., Gabriel,
T. R., Georg, F., Meinl, T., Ohl, P., Sieb, C., and
Wiswedel, B. (2006). KNIME: The Konstanz infor-
mation miner. InProceedings of the 4th Annual In-
dustrial Simulation Conference, Workshop on Multi-
Agent Systems and Simulation.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-
Wesley.

Grundy, J., Mugridge, R., Hosking, J., and Apperley, M.
(1998). Tool integration, collaboration and user inter-
action issues in component-based software architec-
tures. InProceedings of TOOLS 28: Technology of
Object-Oriented Languages and Systems, pages 299–
312.

Laurinen, P., Tuovinen, L., and Röning, J. (2005). Smart
Archive: a component-based data mining application
framework. InProceedings of the Fifth International
Conference on Intelligent Systems Design and Appli-
cations (ISDA 2005), pages 20–25.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and
Euler, T. (2006). YALE: Rapid prototyping for com-
plex data mining tasks. InProceedings of the 12th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 935–940.

Oberndorf, P. A. (1997). Facilitating component-based
software engineering: COTS and open systems. In
Proceedings of the Fifth International Symposium on
Assessment of Software Tools and Techniques, pages
143–148.

Siirtola, P., Laurinen, P., and Röning, J. (2007). Sig-
nalPlayer - a time series visualization system. InPro-
ceedings of the Finnish Signal Processing Symposium
(FINSIG 2007).

Tuovinen, L., Laurinen, P., Juutilainen, I., and Röning, J.
(2008). Data mining applications for diverse indus-
trial application domains with Smart Archive. InPro-
ceedings of the IASTED International Conference on
Software Engineering (SE 2008), pages 56–61.

Witten, I. H. and Frank, E. (2005).Data Mining: Practi-
cal machine learning tools and techniques. San Fran-
cisco: Morgan Kaufmann, 2nd edition.

EXTERNAL TOOL INTEGRATION WITH PROXY FILTERS IN A DATA MINING APPLICATION FRAMEWORK

255


