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Abstract: We address the need to realize a runtime self-modifiable architecture for autonomic systems, specified and 

generated with the ASSL (Autonomic System Specification Language) framework. This framework 

generates such systems with a special hierarchical multi-granular architecture composed of singleton 

classes. Base ASSL is designed to support runtime evolving systems, whereas in this approach, we extend 

the generated architecture to allow for both code generation and code management at runtime. We provide a 

tailored algorithm to demonstrate how this approach can be applied to customized ASSL models specified 

to trigger runtime changes in the structure of the generated autonomic systems. 

1 INTRODUCTION 

Ongoing developments demonstrate that many 

information systems are moving towards service-
oriented architectures running on grids that may 

include thousands of geographically distributed 

systems. In addition, such systems are dependent on 

multi-site collaboration and fast, reliable access to 

shared resources and data. The success of such 

systems depends on their ability to follow changes in 

the business environment and requirements by 

reacting and adapting so as to better handle their 

service-level objectives. In practice, such reaction 

and adaptation is typically a manual process of 

identification, redesign and change. By contrast, 
autonomic computing (AC) (Murch, 2004) is widely 

regarded as a suitable approach to the development 

of software systems capable of self-management. In 

general, AC strives to fulfill two main objectives – 

self-regulation and complexity hiding.  

The Autonomic System Specification Language 

(ASSL) (Vassev, 2008) is a tool dedicated to AC 

development that addresses the problem of formal 

specification and code generation of autonomic 

systems (ASs) within a framework. The work 

described here is motivated by the need to 

complement the ASSL framework with suitable 
constructs and in-built mechanisms for specifying 

and generating runtime evolving ASs. With such 

extents, ASSL can generate ASs capable of 

architecture self-modification at runtime. ASSL 

currently defines statements allowing runtime 

changes in the AS structure but those are not 

implemented at the level of code generation, and 

thus, generated systems do not have the ability to 

change their structure at runtime. 

The rest of this paper is organized as follows. In 

Section 2, we review related work on adaptive 
architectures for software systems. As a background 

to the remaining sections, Section 3 provides a brief 

description of the ASSL framework. Section 4 

presents both the current and the future adaptive 

ASSL architecture for ASs. In addition, this section 

presents our algorithm for AS architecture evolution 

at runtime. Finally, Section 5 presents some 

concluding remarks and future work.   

2 RELATED WORK 

Considerable research effort has been directed at the 

question of self-adaptation of systems, from 

rewriting schemes to multi-agent systems. Kitano 

proposes an approach to evolving architectures of 

artificial neural networks using a special matrix 

rewriting system that manipulates adjacency 

matrices (Kitano, 1990). 

Oreizy et al. propose an architecture-based 

approach to self-adaptation. In their approach, new 
software components are dynamically inserted into 
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deployed, heterogeneous systems without requiring 

a system restart. The architecture changes rely on 

autonomous analysis that includes feedback of 

current performance. Changes are encoded in the 
system behavior by the application developers. In 

the case of major changes, the system can request 

and require human approval (Oreizy et al., 1999). 

Rainbow (Garlan et al., 2004) is a framework 

that relies on adaptation mechanisms to specify 

adaptation strategies for multiple system concerns. 

These help Rainbow to integrate a reusable 

infrastructure into software architectures to support 

self-adaptation of software systems. The adaptation 

strategies let developers of self-adaptation 

capabilities choose what aspects of a system to 
change and how to adapt the system.  

Brogi et al. target the problem of adapting 

heterogeneous software components (Brogi et al. 

2006). Their approach is based on a special 

adaptation methodology where components are 

presented with interfaces extended with protocol 

information to describe their interaction behavior. In 

addition, a high-level notation is used to express the 

intended connection between component interfaces. 

In this approach, a special adaptor is specified as a 

component-in-the-middle to help two components 

interact successfully, considering certain constraints. 
A special compositional adaptation approach is 

tackled by McKinley et al. where to improve the 

system’s fit to its environment, both algorithms and 

structural components are exchanged with other 

systems (McKinley et al., 2004). Here, by adopting 

new algorithms, a system can address concerns 

unforeseen during development.  

In general, adaptive software provides some of 

the functionality required for building AC systems, 

as it allows system behavior or structure to be 

changed at runtime to fulfill high-level objectives 
(Murch, 2004). Research in autonomic architectures 

consists of general architectures for individual 

components or complete ASs, based on the 

integration of advanced technologies such as grid 

computing, web services, and multi-agent 

technologies, e.g., intelligent swarm systems 

(Truszkowski et al., 2004).   

The work presented here is an AC approach 

where the ASSL framework is extended to provide 

more suitable constructs for exploiting the benefits 

of AC. Note that in our approach both formal 

notation and tools help ASs adapt at runtime by 
changing their structure if necessary. Moreover, we 

also consider runtime exchange of structures and 

algorithms together with code generation and hot 

plugging of system components.  

3 ASSL 

The ASSL framework is a development environment 

that delivers a powerful combination of ASSL 

notation and ASSL tools (Vassev, 2008). The tools 

allow specifications written in the ASSL notation to 

be edited and validated. ASSL can generate an 

operational implementation per a valid specification. 

3.1 Multi-tier Specification Model 

In general, ASSL considers ASs as composed of 
autonomic elements (AEs) interacting over 
interaction protocols. To specify ASs, ASSL 
exposes a multi-tier specification model that exposes 
a judicious selection of infrastructure elements and 
mechanisms needed by an AS. By their nature, the 
ASSL tiers are abstractions of different aspects of 
the AS in question, including self-management 
policies, communication interfaces, execution 
semantics and actions. There are three major tiers, 
each composed of sub-tiers (cf. Figure 1). 
 

 

Figure 1: ASSL multi-tier specification model. 

Here, the AS tier forms a general and global AS 
perspective, where we define the general system 
rules, e.g., service-level objectives (SLO) and self-
management policies; the AS Interaction Protocol 
(ASIP) tier defines the means of communication 
between AEs; and the AE tier forms a unit-level 
perspective, where we define interacting sets of 
individual AEs with their own behavior.  
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3.2 ASSL Runtime-Evolving Systems 

Initially, ASSL was conceived as a software 

development approach that provides a means for 

modifying the internal structure of an AS at runtime. 

Moreover, the original idea is that an AS specified 

with ASSL should have a runtime-evolving 

specification; i.e., a specification that can be updated 

dynamically to keep up with any architectural 

changes. Here, an ASSL-generated AS should carry 

its specification and change it at runtime; i.e., both 

implementation and specification evolve together.  

ASSL currently allows for the specification of 
ASs evolving over time. The evolution of such 

systems takes place in the ASSL actions (specified at 

the action tiers; cf. Figure 1) of the system. Via a 

finite set of special ASSL statements — CHANGE, 

REMOVE, ADD and CREATE, the ASSL actions can 

prompt changes in the tiers and sub-tiers of the AS 

under consideration (Vassev, 2008). ASSL currently 

supports these statements at the level of ASSL 

specification but not at the level of code generation.  

4 ASSL ARCHITECTURE  

FOR AUTONOMOUS SYSTEMS 

By using the ASSL framework, we specify an AS 

(autonomic system) at an abstract formal level. Next, 

that formal model is translated into a Java program 
consisting of packages and classes that inherit names 

and features from the ASSL specification.  

4.1 Current Architecture 

The current ASSL architecture (cf. Figure 2) for ASs 

conforms to the ASSL multi-tier specification model 

(cf. Section 3.1). Here, every AS is generated with:  

 a global AS autonomic manager (implements 

the AS tier specification) that takes care of the 

AS-level policies and SLO;  

 a communication mechanism (implements the 
specification of both ASIP and AEIP tiers) 

that allows AEs to communicate; 

 a set of AEs (implement the AE tier 

specification) where each AE takes care of its 

own self-management policies and SLO. 
 

AS Autonomic 

Manager

AE1 AE2 AEn

ASSL Channels

AS Policies, AS SLO, AS Events, AS Actions, AS Metrics

 

Figure 2: ASSL architecture for ASs – a design view 

Both the AS manager and distinct AEs embed a 

special control loop (cf. Figure 2) generated by the 

framework to allow an AS manage critical situations 

with a sort of problem-solution mapping. In 

addition, the generated AS manager and the AEs 

orchestrate the self-management policies of the AS.  

Here, the AS manager coordinates the AEs via AS-

level self-management policies, SLO, events, actions 
and metrics (cf. Figure 1). 

4.1.1 AS Class Model 

 

Figure 3: AS UML class diagram. 

The ASSL architecture model for ASs (depicted in 

Figure 2) is mapped to a hierarchically organized set 

of Java classes. The ASSL framework generates a 

Java class with optional supplementary classes for 

each ASSL-specified tier. The generated tier classes 

are grouped into distinct tier Java packages derived 

from the ASSL specification model.  
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Figure 4: (a) AS runtime object model; (b) AE runtime object model. 

Figure 3 presents a UML diagram depicting the class 
structure of ASs generated with ASSL. Here an 
ASSL-generated AS has, at a minimum, a main AS 
class (mapped to the AS tier and presenting the AS 
manager; cf. Figure 2) and classes implementing the 
AS manager’s control loop (classes denoted as 
AS_ASSLMONITOR, AS_ASSLANALYZER, AS_ASSLSIMULATOR, and 
AS_ASSLEXECUTOR). In addition, the AS class maintains 
collections (pools) of references to tier instances. 
The latter are objects instantiated from the classes 
generated for the AS tiers/sub-tiers specified in the 
ASSL specification.  

As shown in Figure 3, such tier classes are nested 
in proper packages. Each generated AE has a similar 
class structure nested in a proper AE package. In 
addition, all the classes generated by the ASSL 
framework and mapped to ASSL tiers are 
implemented as singletons; i.e., they define only 
private constructors and ensure a single instance. 

4.1.2 AS Object Model 

Instead of building a monolithic application for each 
ASSL-specified AS, the ASSL framework strives to 
organize generated ASs in a granular fashion. Here, 
at runtime, an ASSL-generated AS has a multi-
granular structure composed of tier instances. All the 
tier instances form together the runtime object model 
of an AS (cf. Figure 4). Similar to the ASSL 
specification model (cf. Section 3.1), the AS runtime 
object model has a hierarchical composition where 
tier instances are grouped around instances of their 
host tiers (nesting other sub-tiers). Figure 4(a) 
depicts the runtime object model of an AS generated 
with ASSL and Figure 4(b) presents the runtime 
object model for AEs composing that AS. Note that, 
both Figure 4(a) and Figure 4(b) present generic 
object models. Thus, concrete models have an 
arbitrary number and types of nodes derived from 

their corresponding ASSL specification. As depicted 
by Figure 4, each node is a tier instance that 
possibly can be grouped around a host tier instance. 
For example, the AS node  acts as a host tier instance 
for the nodes generated for the AS-level sub-tiers 
such as SLO, policies, actions, events, and metrics.  
Note that the AS node organizes around itself other 
host tier instances, such as AE nodes (generated for 
the AEs specified at the AE tier) and the ASIP node 
(cf. Section 3.1). Here both the AE nodes and the 
ASIP node have their own surrounding nodes, these 
being instances of sub-tiers specified at the AE tier 
and at the ASIP tier respectively. The presence of 
host tier nodes (AEs and ASIP) in the global AS 
runtime object model (cf. Figure 4(a)) makes that 
model multi-granular where we distinguish different 
levels of granularity.  
Figure 4(b) presents the granular structure of the AE 
runtime object model. Here, at the core of the AE we 
can see four objects forming the AE control loop. As 
depicted, the latter is composed of the objects: M 
(monitor), A (analyzer), S (simulator), and E 
(executor). The AE node coordinates the tier 
instances of the sub-tiers specified for that AE; i.e., 
metrics (m nodes), events (e nodes), actions (a 
nodes), self-management policies (policy nodes), 
service-level objectives (slo nodes), behavior models 
(bm nodes), outcomes (o nodes), recovery protocols 
(rp nodes), and its private interaction protocol (aeip 
node). Here both the policy nodes and the aeip node 
are host tier instances themselves.    

4.2 Proposed Architecture 

As mentioned previously, the starting point for this 
work is the fact that ASSL allows the specification 
of ASs evolving over time, but not for the code 
generation of the same (cf. Section 3.2). Here our 

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

166



 

primary goal is to augment the architecture model 
for ASSL-generated ASs (cf. Section 4.1) with the 
necessary components that allows for both code 
generation and code management at runtime. To 
meet these requirements we augment both the AS 
object model and the AE object model with a code 
generator (CG) and a code manager (CM). 

Figure 5 represents the new runtime object 
model for AEs generated with ASSL. Compared to 
the model presented in Section 4.1, this model has 
two more host nodes (note that these are not host tier 
nodes) — CM and CG, organizing objects needed to 
make the AE capable of self-modification at 
runtime. Here at runtime, the CG generates the 
needed code and compiles it by using a java 
compiler (javac). The CM is responsible for 
integrating the generated code in the currently 
running AS by relying on the Java VM hosting that 
AS. Note that both the CG and the CM access the 
ASSL specification, and thus, the latter should be 
carried with the generated AS and its AEs. 
Moreover, the new architecture requires a CG-CM 
pair be deployed with every generated AE and also 
with the main AS package (AS host tier node; cf. 
Figure 4.a). Note that the CG is the original ASSL 
code generator (Vassev, 2008), but deployed with 
every generated AE and with the AS manager. The 
deployed CMs are responsible for maintaining the 
runtime structure of the associated AE/AS object 
model, which includes adding new tier instances, 
deleting tier instances, and replacing tier instances.  

Figure 5: New AE runtime object model. 

It is important to note that there are two cases where 
both code generation and code management are 
required at runtime: 

1) The ASSL-generated AS calls an action 
that performs one of the ASSL statements CHANGE, 
REMOVE, ADD or CREATE, these triggering changes 
in the AS structure (cf. Section 3.2). Here while 
generating an AS, the ASSL framework does not 

generate the Java code for such statements but 
embeds a system call to a runtime CG with a 
reference to the ASSL specification block specifying 
structural changes in the AS.  

2) An AE receives an ASSL message 
carrying the specification of a specific tier or sub-
tier (AEs can negotiate and exchange ASSL 
messages in the form of ASSL-specified tiers/sub-
tiers (Vassev, 2008)). Thus, if such a message has 
been received, a runtime CG can generate the 
necessary code and then compile it. 
Once the code is generated, the associated CM 
integrates the generated code by instantiating objects 
and plugging those into the running AS. 
Plugging/unplugging objects at runtime (known as 
hot-plugging) is a difficult task. However, there a 
few key features of the ASSL-generated code, which 
facilitate this task: 

1) As we have mentioned before, all the tier 
objects (instances) instantiate singleton classes; i.e., 
there is one object per tier class. This reduces the 
number of objects that CMs need to take care of at 
runtime, and also, the tier objects reference to each 
other via a singleton class access point. 

2) All the host tier instances (as, ae, asip, aeip, 
policy, etc., cf. Figures 4 and 5) maintain pools of 
references to associated tier instances (singleton 
class instances, cf. the following example). 
Moreover, access to those pools is provided via 
predefined put(), get(), and remove() public methods, 
and tier instances do not keep local reference copies 
to other tier instances. Hence, only host tier pools 
keep references to tier instances. 

3) An ASSL-generated system is generated 
as a complex multi-threaded Java application, where 
some of the tier instances (e.g., event tier instances) 
run as synchronized Java threads. Thus, an ASSL-
generated AS can be easily synchronized on a 
―pause‖ system event; i.e., the entire AS can transit 
to a ―pause‖ state where all the threads can be put on 
hold, thus allowing CMs make the needed code 
changes at runtime. 
The following is an example of adding an event tier 
instance to the EVENTS pool of an AE.  

EVENTS.put("NODEFIXED", generatedbyassl.as. 

aes.ae1.events.NODEFIXED.getInstance()); 

Adding a new tier instance to, or deleting an old one 
from an AS should be split into three steps – 1) put 
the AS on ―pause‖; 2) use the public methods put() 

and remove() to add or delete references to a tier 
instance to/from all the referee host tier pools; 3) if 
this is about deleting only (not replacing) then 
generate a stub (dummy instance) and replace the 
old tier instance with the latter, thus keeping the AS 
runtime object model consistent. 
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In order to make hot plugging possible, we 
should make CMs know at runtime the host tier pools 
that keep or must keep references to the tier instance 
that is about to be added, replaced, or deleted. A 
possible solution is to make existing tier instances 
know all the referencing host tier pools. For new tier 
instances this information should be derived by CGs 
from the ASSL specification while generating code 
for the same. The following is the hot plugging 
algorithm for replacing an old tier instance with a 
new one. Algorithms for hot plugging in adding or 
deleting tier instances can be deducted from this one.       

1) A CG generates the code for a new tier 
class with all necessary supplementary classes that 
must replace an old tier instance. 

2) That CG compiles the generated code by 
using a javac Java compiler.  

3) The same CG notifies its paired CM that a 
specific tier instance is going to be replaced.  

4) A CM (paired with the CG) loads the 
generated tier classes into the currently running Java 

VM running the AS and creates all the needed objects 
to create the replacement tier instance.  

5) That CM puts the AS on hold; i.e., makes 
the latter transit to a ―pause‖ state. 

6) The same CM asks the tier instance to be 
replaced for the referee host tier pools keeping a 
reference to it. 

7) The same CM asks each referee host tier 
pool to replace the old reference with the one of the 
new tier instance. 

8) The same CM deletes the old tier instance 
through the Java VM garbage collector. 

9) The same CM restarts the AS; i.e., makes 
the latter transits to a ―running‖ state.  
Both runtime code generation and hot plugging of 
tier instances will introduce certain overhead to the 
overall performance of an AS. Here, the problem is 
the tradeoff between the AC objectives (SLO and 
self-managing policies) that an AS must constantly 
follow and the need of restructuring to better follow 
these objectives. We are planning benchmark 
analysis to better understand the overall impact. 

5 CONCLUSIONS 

This paper presents our approach to the realization 
of a self-modifiable architecture, for ASs specified 
and generated with ASSL. The latter supports 
specification of special ASSL actions allowing for 
AS evolution at runtime. Via a finite set of special 
ASSL statements - CHANGE, REMOVE, ADD and 
CREATE, such ASSL actions can prompt changes in 
the tiers and sub-tiers of an ASSL-specified AS. 

However, ASSL currently does not support these 
statements at the level of code generation, and thus, 
the ASs are generated without the ability to modify 
their structure at runtime. Moreover, ASSL-specified 
AEs can exchange ASSL messages in the form of 
ASSL tiers, which can be used to modify the 
runtime structure of an AS.  

To allow for runtime modifications in the 
structure of an AS, we propose to add a special 
runtime code generation mechanism and a special 
code management mechanism to the architecture of 
the ASSL-generated ASs. These mechanisms allow 
for runtime code generation of ASSL specifications 
and hot plugging of the generated code. The 
structure granularity of the ASs and key features of 
the generated code help to ensure that the difficult 
task of hot plugging is straightforwardly achieved. 

Future work is primarily concerned with further 
development of the proposed mechanisms and 
evaluation of the degree of complexity and 
computational overhead these mechanisms bring to 
the entire system.   

It is our belief that allowing ASSL-generated 
ASs to evolve in structure at runtime will enable 
broad scale development of autonomic systems.  
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