
A SELF-ADAPTIVE ARCHITECTURE FOR AUTONOMIC

SYSTEMS DEVELOPED WITH ASSL

Emil Vassev
1
, Mike Hinchey

2
 and Aaron Quigley

1

1Lero – The Irish Software Engineering Research Centre, University College Dublin, Ireland
2Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland

Keywords: Autonomic Systems, Software Architecture, Adaptive Architecture, ASSL, Runtime.

Abstract: We address the need to realize a runtime self-modifiable architecture for autonomic systems, specified and

generated with the ASSL (Autonomic System Specification Language) framework. This framework

generates such systems with a special hierarchical multi-granular architecture composed of singleton

classes. Base ASSL is designed to support runtime evolving systems, whereas in this approach, we extend

the generated architecture to allow for both code generation and code management at runtime. We provide a

tailored algorithm to demonstrate how this approach can be applied to customized ASSL models specified

to trigger runtime changes in the structure of the generated autonomic systems.

1 INTRODUCTION

Ongoing developments demonstrate that many

information systems are moving towards service-
oriented architectures running on grids that may

include thousands of geographically distributed

systems. In addition, such systems are dependent on

multi-site collaboration and fast, reliable access to

shared resources and data. The success of such

systems depends on their ability to follow changes in

the business environment and requirements by

reacting and adapting so as to better handle their

service-level objectives. In practice, such reaction

and adaptation is typically a manual process of

identification, redesign and change. By contrast,
autonomic computing (AC) (Murch, 2004) is widely

regarded as a suitable approach to the development

of software systems capable of self-management. In

general, AC strives to fulfill two main objectives –

self-regulation and complexity hiding.

The Autonomic System Specification Language

(ASSL) (Vassev, 2008) is a tool dedicated to AC

development that addresses the problem of formal

specification and code generation of autonomic

systems (ASs) within a framework. The work

described here is motivated by the need to

complement the ASSL framework with suitable
constructs and in-built mechanisms for specifying

and generating runtime evolving ASs. With such

extents, ASSL can generate ASs capable of

architecture self-modification at runtime. ASSL

currently defines statements allowing runtime

changes in the AS structure but those are not

implemented at the level of code generation, and

thus, generated systems do not have the ability to

change their structure at runtime.

The rest of this paper is organized as follows. In

Section 2, we review related work on adaptive
architectures for software systems. As a background

to the remaining sections, Section 3 provides a brief

description of the ASSL framework. Section 4

presents both the current and the future adaptive

ASSL architecture for ASs. In addition, this section

presents our algorithm for AS architecture evolution

at runtime. Finally, Section 5 presents some

concluding remarks and future work.

2 RELATED WORK

Considerable research effort has been directed at the

question of self-adaptation of systems, from

rewriting schemes to multi-agent systems. Kitano

proposes an approach to evolving architectures of

artificial neural networks using a special matrix

rewriting system that manipulates adjacency

matrices (Kitano, 1990).

Oreizy et al. propose an architecture-based

approach to self-adaptation. In their approach, new
software components are dynamically inserted into

163

Vassev E., Hinchey M. and Quigley A. (2009).
A SELF-ADAPTIVE ARCHITECTURE FOR AUTONOMIC SYSTEMS DEVELOPED WITH ASSL.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 163-168
Copyright c© SciTePress

deployed, heterogeneous systems without requiring

a system restart. The architecture changes rely on

autonomous analysis that includes feedback of

current performance. Changes are encoded in the
system behavior by the application developers. In

the case of major changes, the system can request

and require human approval (Oreizy et al., 1999).

Rainbow (Garlan et al., 2004) is a framework

that relies on adaptation mechanisms to specify

adaptation strategies for multiple system concerns.

These help Rainbow to integrate a reusable

infrastructure into software architectures to support

self-adaptation of software systems. The adaptation

strategies let developers of self-adaptation

capabilities choose what aspects of a system to
change and how to adapt the system.

Brogi et al. target the problem of adapting

heterogeneous software components (Brogi et al.

2006). Their approach is based on a special

adaptation methodology where components are

presented with interfaces extended with protocol

information to describe their interaction behavior. In

addition, a high-level notation is used to express the

intended connection between component interfaces.

In this approach, a special adaptor is specified as a

component-in-the-middle to help two components

interact successfully, considering certain constraints.
A special compositional adaptation approach is

tackled by McKinley et al. where to improve the

system’s fit to its environment, both algorithms and

structural components are exchanged with other

systems (McKinley et al., 2004). Here, by adopting

new algorithms, a system can address concerns

unforeseen during development.

In general, adaptive software provides some of

the functionality required for building AC systems,

as it allows system behavior or structure to be

changed at runtime to fulfill high-level objectives
(Murch, 2004). Research in autonomic architectures

consists of general architectures for individual

components or complete ASs, based on the

integration of advanced technologies such as grid

computing, web services, and multi-agent

technologies, e.g., intelligent swarm systems

(Truszkowski et al., 2004).

The work presented here is an AC approach

where the ASSL framework is extended to provide

more suitable constructs for exploiting the benefits

of AC. Note that in our approach both formal

notation and tools help ASs adapt at runtime by
changing their structure if necessary. Moreover, we

also consider runtime exchange of structures and

algorithms together with code generation and hot

plugging of system components.

3 ASSL

The ASSL framework is a development environment

that delivers a powerful combination of ASSL

notation and ASSL tools (Vassev, 2008). The tools

allow specifications written in the ASSL notation to

be edited and validated. ASSL can generate an

operational implementation per a valid specification.

3.1 Multi-tier Specification Model

In general, ASSL considers ASs as composed of
autonomic elements (AEs) interacting over
interaction protocols. To specify ASs, ASSL
exposes a multi-tier specification model that exposes
a judicious selection of infrastructure elements and
mechanisms needed by an AS. By their nature, the
ASSL tiers are abstractions of different aspects of
the AS in question, including self-management
policies, communication interfaces, execution
semantics and actions. There are three major tiers,
each composed of sub-tiers (cf. Figure 1).

Figure 1: ASSL multi-tier specification model.

Here, the AS tier forms a general and global AS
perspective, where we define the general system
rules, e.g., service-level objectives (SLO) and self-
management policies; the AS Interaction Protocol
(ASIP) tier defines the means of communication
between AEs; and the AE tier forms a unit-level
perspective, where we define interacting sets of
individual AEs with their own behavior.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

164

3.2 ASSL Runtime-Evolving Systems

Initially, ASSL was conceived as a software

development approach that provides a means for

modifying the internal structure of an AS at runtime.

Moreover, the original idea is that an AS specified

with ASSL should have a runtime-evolving

specification; i.e., a specification that can be updated

dynamically to keep up with any architectural

changes. Here, an ASSL-generated AS should carry

its specification and change it at runtime; i.e., both

implementation and specification evolve together.

ASSL currently allows for the specification of
ASs evolving over time. The evolution of such

systems takes place in the ASSL actions (specified at

the action tiers; cf. Figure 1) of the system. Via a

finite set of special ASSL statements — CHANGE,

REMOVE, ADD and CREATE, the ASSL actions can

prompt changes in the tiers and sub-tiers of the AS

under consideration (Vassev, 2008). ASSL currently

supports these statements at the level of ASSL

specification but not at the level of code generation.

4 ASSL ARCHITECTURE

FOR AUTONOMOUS SYSTEMS

By using the ASSL framework, we specify an AS

(autonomic system) at an abstract formal level. Next,

that formal model is translated into a Java program
consisting of packages and classes that inherit names

and features from the ASSL specification.

4.1 Current Architecture

The current ASSL architecture (cf. Figure 2) for ASs

conforms to the ASSL multi-tier specification model

(cf. Section 3.1). Here, every AS is generated with:

 a global AS autonomic manager (implements

the AS tier specification) that takes care of the

AS-level policies and SLO;

 a communication mechanism (implements the
specification of both ASIP and AEIP tiers)

that allows AEs to communicate;

 a set of AEs (implement the AE tier

specification) where each AE takes care of its

own self-management policies and SLO.

AS Autonomic

Manager

AE1 AE2 AEn

ASSL Channels

AS Policies, AS SLO, AS Events, AS Actions, AS Metrics

Figure 2: ASSL architecture for ASs – a design view

Both the AS manager and distinct AEs embed a

special control loop (cf. Figure 2) generated by the

framework to allow an AS manage critical situations

with a sort of problem-solution mapping. In

addition, the generated AS manager and the AEs

orchestrate the self-management policies of the AS.

Here, the AS manager coordinates the AEs via AS-

level self-management policies, SLO, events, actions
and metrics (cf. Figure 1).

4.1.1 AS Class Model

Figure 3: AS UML class diagram.

The ASSL architecture model for ASs (depicted in

Figure 2) is mapped to a hierarchically organized set

of Java classes. The ASSL framework generates a

Java class with optional supplementary classes for

each ASSL-specified tier. The generated tier classes

are grouped into distinct tier Java packages derived

from the ASSL specification model.

A SELF-ADAPTIVE ARCHITECTURE FOR AUTONOMIC SYSTEMS DEVELOPED WITH ASSL

165

Figure 4: (a) AS runtime object model; (b) AE runtime object model.

Figure 3 presents a UML diagram depicting the class
structure of ASs generated with ASSL. Here an
ASSL-generated AS has, at a minimum, a main AS
class (mapped to the AS tier and presenting the AS
manager; cf. Figure 2) and classes implementing the
AS manager’s control loop (classes denoted as
AS_ASSLMONITOR, AS_ASSLANALYZER, AS_ASSLSIMULATOR, and
AS_ASSLEXECUTOR). In addition, the AS class maintains
collections (pools) of references to tier instances.
The latter are objects instantiated from the classes
generated for the AS tiers/sub-tiers specified in the
ASSL specification.

As shown in Figure 3, such tier classes are nested
in proper packages. Each generated AE has a similar
class structure nested in a proper AE package. In
addition, all the classes generated by the ASSL
framework and mapped to ASSL tiers are
implemented as singletons; i.e., they define only
private constructors and ensure a single instance.

4.1.2 AS Object Model

Instead of building a monolithic application for each
ASSL-specified AS, the ASSL framework strives to
organize generated ASs in a granular fashion. Here,
at runtime, an ASSL-generated AS has a multi-
granular structure composed of tier instances. All the
tier instances form together the runtime object model
of an AS (cf. Figure 4). Similar to the ASSL
specification model (cf. Section 3.1), the AS runtime
object model has a hierarchical composition where
tier instances are grouped around instances of their
host tiers (nesting other sub-tiers). Figure 4(a)
depicts the runtime object model of an AS generated
with ASSL and Figure 4(b) presents the runtime
object model for AEs composing that AS. Note that,
both Figure 4(a) and Figure 4(b) present generic
object models. Thus, concrete models have an
arbitrary number and types of nodes derived from

their corresponding ASSL specification. As depicted
by Figure 4, each node is a tier instance that
possibly can be grouped around a host tier instance.
For example, the AS node acts as a host tier instance
for the nodes generated for the AS-level sub-tiers
such as SLO, policies, actions, events, and metrics.
Note that the AS node organizes around itself other
host tier instances, such as AE nodes (generated for
the AEs specified at the AE tier) and the ASIP node
(cf. Section 3.1). Here both the AE nodes and the
ASIP node have their own surrounding nodes, these
being instances of sub-tiers specified at the AE tier
and at the ASIP tier respectively. The presence of
host tier nodes (AEs and ASIP) in the global AS
runtime object model (cf. Figure 4(a)) makes that
model multi-granular where we distinguish different
levels of granularity.
Figure 4(b) presents the granular structure of the AE
runtime object model. Here, at the core of the AE we
can see four objects forming the AE control loop. As
depicted, the latter is composed of the objects: M
(monitor), A (analyzer), S (simulator), and E
(executor). The AE node coordinates the tier
instances of the sub-tiers specified for that AE; i.e.,
metrics (m nodes), events (e nodes), actions (a
nodes), self-management policies (policy nodes),
service-level objectives (slo nodes), behavior models
(bm nodes), outcomes (o nodes), recovery protocols
(rp nodes), and its private interaction protocol (aeip
node). Here both the policy nodes and the aeip node
are host tier instances themselves.

4.2 Proposed Architecture

As mentioned previously, the starting point for this
work is the fact that ASSL allows the specification
of ASs evolving over time, but not for the code
generation of the same (cf. Section 3.2). Here our

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

166

primary goal is to augment the architecture model
for ASSL-generated ASs (cf. Section 4.1) with the
necessary components that allows for both code
generation and code management at runtime. To
meet these requirements we augment both the AS
object model and the AE object model with a code
generator (CG) and a code manager (CM).

Figure 5 represents the new runtime object
model for AEs generated with ASSL. Compared to
the model presented in Section 4.1, this model has
two more host nodes (note that these are not host tier
nodes) — CM and CG, organizing objects needed to
make the AE capable of self-modification at
runtime. Here at runtime, the CG generates the
needed code and compiles it by using a java
compiler (javac). The CM is responsible for
integrating the generated code in the currently
running AS by relying on the Java VM hosting that
AS. Note that both the CG and the CM access the
ASSL specification, and thus, the latter should be
carried with the generated AS and its AEs.
Moreover, the new architecture requires a CG-CM
pair be deployed with every generated AE and also
with the main AS package (AS host tier node; cf.
Figure 4.a). Note that the CG is the original ASSL
code generator (Vassev, 2008), but deployed with
every generated AE and with the AS manager. The
deployed CMs are responsible for maintaining the
runtime structure of the associated AE/AS object
model, which includes adding new tier instances,
deleting tier instances, and replacing tier instances.

Figure 5: New AE runtime object model.

It is important to note that there are two cases where
both code generation and code management are
required at runtime:

1) The ASSL-generated AS calls an action
that performs one of the ASSL statements CHANGE,
REMOVE, ADD or CREATE, these triggering changes
in the AS structure (cf. Section 3.2). Here while
generating an AS, the ASSL framework does not

generate the Java code for such statements but
embeds a system call to a runtime CG with a
reference to the ASSL specification block specifying
structural changes in the AS.

2) An AE receives an ASSL message
carrying the specification of a specific tier or sub-
tier (AEs can negotiate and exchange ASSL
messages in the form of ASSL-specified tiers/sub-
tiers (Vassev, 2008)). Thus, if such a message has
been received, a runtime CG can generate the
necessary code and then compile it.
Once the code is generated, the associated CM
integrates the generated code by instantiating objects
and plugging those into the running AS.
Plugging/unplugging objects at runtime (known as
hot-plugging) is a difficult task. However, there a
few key features of the ASSL-generated code, which
facilitate this task:

1) As we have mentioned before, all the tier
objects (instances) instantiate singleton classes; i.e.,
there is one object per tier class. This reduces the
number of objects that CMs need to take care of at
runtime, and also, the tier objects reference to each
other via a singleton class access point.

2) All the host tier instances (as, ae, asip, aeip,
policy, etc., cf. Figures 4 and 5) maintain pools of
references to associated tier instances (singleton
class instances, cf. the following example).
Moreover, access to those pools is provided via
predefined put(), get(), and remove() public methods,
and tier instances do not keep local reference copies
to other tier instances. Hence, only host tier pools
keep references to tier instances.

3) An ASSL-generated system is generated
as a complex multi-threaded Java application, where
some of the tier instances (e.g., event tier instances)
run as synchronized Java threads. Thus, an ASSL-
generated AS can be easily synchronized on a
―pause‖ system event; i.e., the entire AS can transit
to a ―pause‖ state where all the threads can be put on
hold, thus allowing CMs make the needed code
changes at runtime.
The following is an example of adding an event tier
instance to the EVENTS pool of an AE.

EVENTS.put("NODEFIXED", generatedbyassl.as.

aes.ae1.events.NODEFIXED.getInstance());

Adding a new tier instance to, or deleting an old one
from an AS should be split into three steps – 1) put
the AS on ―pause‖; 2) use the public methods put()

and remove() to add or delete references to a tier
instance to/from all the referee host tier pools; 3) if
this is about deleting only (not replacing) then
generate a stub (dummy instance) and replace the
old tier instance with the latter, thus keeping the AS
runtime object model consistent.

A SELF-ADAPTIVE ARCHITECTURE FOR AUTONOMIC SYSTEMS DEVELOPED WITH ASSL

167

In order to make hot plugging possible, we
should make CMs know at runtime the host tier pools
that keep or must keep references to the tier instance
that is about to be added, replaced, or deleted. A
possible solution is to make existing tier instances
know all the referencing host tier pools. For new tier
instances this information should be derived by CGs
from the ASSL specification while generating code
for the same. The following is the hot plugging
algorithm for replacing an old tier instance with a
new one. Algorithms for hot plugging in adding or
deleting tier instances can be deducted from this one.

1) A CG generates the code for a new tier
class with all necessary supplementary classes that
must replace an old tier instance.

2) That CG compiles the generated code by
using a javac Java compiler.

3) The same CG notifies its paired CM that a
specific tier instance is going to be replaced.

4) A CM (paired with the CG) loads the
generated tier classes into the currently running Java

VM running the AS and creates all the needed objects
to create the replacement tier instance.

5) That CM puts the AS on hold; i.e., makes
the latter transit to a ―pause‖ state.

6) The same CM asks the tier instance to be
replaced for the referee host tier pools keeping a
reference to it.

7) The same CM asks each referee host tier
pool to replace the old reference with the one of the
new tier instance.

8) The same CM deletes the old tier instance
through the Java VM garbage collector.

9) The same CM restarts the AS; i.e., makes
the latter transits to a ―running‖ state.
Both runtime code generation and hot plugging of
tier instances will introduce certain overhead to the
overall performance of an AS. Here, the problem is
the tradeoff between the AC objectives (SLO and
self-managing policies) that an AS must constantly
follow and the need of restructuring to better follow
these objectives. We are planning benchmark
analysis to better understand the overall impact.

5 CONCLUSIONS

This paper presents our approach to the realization
of a self-modifiable architecture, for ASs specified
and generated with ASSL. The latter supports
specification of special ASSL actions allowing for
AS evolution at runtime. Via a finite set of special
ASSL statements - CHANGE, REMOVE, ADD and
CREATE, such ASSL actions can prompt changes in
the tiers and sub-tiers of an ASSL-specified AS.

However, ASSL currently does not support these
statements at the level of code generation, and thus,
the ASs are generated without the ability to modify
their structure at runtime. Moreover, ASSL-specified
AEs can exchange ASSL messages in the form of
ASSL tiers, which can be used to modify the
runtime structure of an AS.

To allow for runtime modifications in the
structure of an AS, we propose to add a special
runtime code generation mechanism and a special
code management mechanism to the architecture of
the ASSL-generated ASs. These mechanisms allow
for runtime code generation of ASSL specifications
and hot plugging of the generated code. The
structure granularity of the ASs and key features of
the generated code help to ensure that the difficult
task of hot plugging is straightforwardly achieved.

Future work is primarily concerned with further
development of the proposed mechanisms and
evaluation of the degree of complexity and
computational overhead these mechanisms bring to
the entire system.

It is our belief that allowing ASSL-generated
ASs to evolve in structure at runtime will enable
broad scale development of autonomic systems.

REFERENCES

Brogi, A., Canal, C., and Pimentel, E., 2006. On the
semantics of software adaptation. In Science of
Computer Programming, vol. 61(2). Elsevier.

Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste,
P., 2004. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. In IEEE
Computer. IEEE Computer Society Press.

Kitano, H., 1990. Designing Neural Networks Using
Genetic Algorithms with Graph Generation System. In
Complex Systems, vol. 4(4).

McKinley, P. K., Sadjadi, S. M., Kasten E. P., Cheng, B.
H. C., 2004. Composing Adaptive Software. In IEEE
Computer, vol. 37 (7). IEEE Computer Society Press.

Murch, R., 2004. Autonomic Computing: On Demand
Series. IBM Press, Prentice Hall.

Oreizy P., Gorlick, M. M., Taylor, R. N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum,
D. S., Wolf, A. L., 1999. An Architecture-Based
Approach to Self-Adaptive Software. In IEEE
Intelligent Systems. IEEE Computer Society Press.

Truszkowski, W., Hinchey, M., Rash, J., Rouff, C., 2004.
NASA's Swarm Missions: The Challenge of Building
Autonomous Software. In IT Professional, vol. 6(5).
IEEE Computer Society Press.

Vassev, E., 2008. Towards a Framework for Specification
and Code Generation of Autonomic Systems, PhD
Thesis. Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

168

