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Abstract: In this work, a preliminary study as regards the possibility to define optimal control strategies for the 
hazmat (hazardous material) traffic flowing towards one critical road infrastructure (e.g. as in the case study 
a tunnel) at the macroscopic level is introduced. Specifically, the simplified model that is studied is related 
to part of a highway, on which the hazmat traffic can flow from one entrance. The control variables are 
represented by the number of vehicles that are allowed to enter the highway during a specific time interval, 
while the state variables are the queue of vehicles before the entrance, the number of vehicles in the various 
tracts of the highway, and the number of vehicles that enter the tunnel. The objective function to be 
minimized is characterized by three main terms: the queue, the hazard over the road, and the hazard related 
to the tunnel.  

1 INTRODUCTION 

Hazardous materials cover a wide range of products 
(explosives, gases, flammable liquids and solids, 
radioactive materials, hazardous wastes, etc. (Verter 
and Kara, 2008)). Transportation of these materials 
(that is, in general, multi-modal: road, pipelines, 
railway, ship) is a relevant problem to be considered 
because of the significant amount of material that 
flows among roads, territory and infrastructures 
(Bersani et al., 2008). Defining strategies for 
hazardous materials (hazmat) transportation  
management is a complex task because it is 
necessary to take into account different objectives 
(minimize risks, satisfy goods demand 
transportation), different decision makers (fleet 
managers, local authorities, infrastructures 
managers), and different approaches (mainly based 
on the different spatial-temporal scales to be 
considered: strategic planning, tactical planning, 
operational management).  

In the literature of hazardous materials 
transportation on road, there are few, thought 
important and relevant, works on this subject (for 
example: Berman et al., 2007; Verter and Kara, 
2007; Kara and Verter, 2004; Sadjadi, 2007; Bell, 
2009; Bell and Cassir, 2002, Bersani et al., 2008a; 

Serafini, 2006; Beroggi and Wallace, 1994). The 
majority of these works is based on optimization 
models for planning and design purposes. The 
preliminary approach presented in this work is 
instead based on real time operational management 
(like the work presented by Bersani et al., 2008b) 
with specific reference to the case of critical 
infrastructures. 

The transportation of hazardous materials 
(hazmat) on road has important consequences in the 
overall traffic management (Minciardi et al., 2008). 
This fact is more evident when a vehicle requires to 
move towards a critical road infrastructure, such as a 
tunnel or a bridge. The control of traffic networks 
has been the subject of a great amount of literature 
from different viewpoints. The main articles related 
to the case of a tunnel are reported in (Minciardi et 
al., 2008). The aim of this preliminary study regards 
the possibility to define optimal control strategies for 
the hazmat traffic flowing towards one critical road 
infrastructure (e.g. as in the case study a tunnel). 

A given number of vehicles transporting 
hazardous material has to use a highway and to 
reach one critical infrastructure (e.g. a tunnel). They 
can stop in a park before the highway entrance and 
start their travel according to the exigencies of a 
decision maker that can be identified as the tunnel 
manager. The park may be taken into account as an 
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inventory in which the state of the system is 
represented by the vehicles that are present at a 
specific time instant. The flow dynamics of 
hazardous material vehicles on the highway has also 
to be modelled. In particular, the problem is defined 
at a macroscopic level, in which the state and the 
control variables correspond to the number of 
vehicles, for which the integrity condition may be 
relaxed, in order to obtain a continuous-variable 
decision problem. The control variables are 
represented by the number of vehicles that are 
allowed to enter the highway during a specific time 
interval, while the state variables are the queue of 
vehicles before the entrance, the number of vehicles 
in the various tracts of the highway, and the number 
of vehicles that enters the tunnel. The objective 
function to be minimized is characterized by three 
main terms: the queue, the hazard over the road, and 
the hazard related to the tunnel. 

The resulting optimal control problem is linear 
quadratic with non-negativity constraints over the 
state and control variables. A receding horizon 
control scheme is used to derive the solution and to 
allow the model to be suitable in real time decision 
frameworks. An optimization package (Lingo 9.0, 
www.lindosystems.com) is used to solve the 
problem at each step.  

In fact, the explicit form of the optimal control 
law of a given linear, discrete-time, time-invariant 
process subject to a quadratic cost criterion is well 
known in the unconstrained case, while, even for 
simple constraints, solution is hard to achieve. In 
(Castelein and Johnson, 1989), the authors use the 
controllable block companion transformation and 
derive sufficient conditions on the weighting 
matrices of the cost criterion to ensure that the 
closed-loop response of the original process with the 
standard, unconstrained optimal feedback law will 
be nonnegative. Bertsimas and Brown (2007) assess 
that the celebrated success of dynamic programming 

for optimizing quadratic cost functions over 
linear systems is limited by its inability to tractably 
deal with even simple constraints, and present an 
alternative approach based on results from robust 
optimization to solve the stochastic linear-quadratic 
control (SLQC) problem.  

For this reason, interesting developments of this 
work will be devoted to the definition of 
methodologies to find efficient solutions for the 
optimal control strategies. 

In the next subsections, the system model is 
described in detail. Then, the decision problem is 
formalized. Finally, results and conclusion are 
drawn. 

2 THE SYSTEM MODEL 

Figure 1 shows the schematic representation of the 
decision framework: the highway directed towards 
one critical infrastructure is modelled as a line 
divided in highway tracts. As a simplification, two 
highway tracts have been considered. 
 

tV

tI
tX Yt Zt

 
Figure 1: The considered system. 

The physical inputs of the whole system are the 
quantities tV , i.e., the (known) number of vehicles 

entering the park near the highway entrance in time 
interval (t, t +1), t = 0,…,T-1. The control variables 
correspond to the number  of vehicles that enter the 
highway tX  in a specific time interval (t, t+1), 
while the state variables correspond to the number of 
vehicles in the inventory/queue, tI , the number of 

vehicles per tract of the highway ( tN1 , tN2 ), and the 
number of vehicles going out from tract 1 and 
entering the tunnel ( tt ZY , ). 
Two different kinds of state equations have to be 
introduced, regarding, respectively, the queue in the 
park at the highway entrance, and the highway 
tracts. Moreover, the hazard has been formalized as 
a function of the state and control variables. 

2.1 The Queue State Equation 

The state equation is: 
)(1 tttt XVII −+=+        t=0,…, T-1           (1) 

where: 
 tI  is the number of vehicles stored, at time 
instant t, in the park near the entrance, i.e., the 
inventory of the entrance park area, in time 
interval (t, t+1); 
 tX  is the number of vehicles that enter the 
highway in time interval (t, t+1), from the 
entrance park area; 
 tV  is the (known) number of vehicles that enters 
the entrance park in time interval (t, t+1). 
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2.2 The Highway Tract State 
Equations 

These state equations describe the evolution over 
time of a state variable that represents the number of 
hazmat vehicles (per unit length) present in a 
specific tract of the highway. The speed of these 
vehicles is related to the overall vehicle density over 
the considered tract. It is assumed that the vehicle 
flow can be represented through an average speed, 
which is common to hazmat and non-hazmat 
vehicles. In agreement with the literature dealing 
with traffic models, it is assumed that the (average) 
vehicle speed is never so high to allow the complete 
covering of a highway tract within a single time 
interval (of course, this may be also seen as a 
constraint over the space discretization of the 
highway). The equations are given by 
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with 

tvelNY ttt Δ= 11                      t=0,…, T-1         (4) 

tvelNZ ttt Δ= 22                     t=0,…, T-1         (5) 
 

where: 
 tN1 , tN2  are the number of (hazmat) vehicles per 
unit length that is present in the highway road in 
tracts 1 and 2, in time instant t; 
 21 , LL  are the tracts lengths; 
 tΔ  is the time interval length; 
 tt velvel 21 ,  are the (average) velocities in the tracts 
in time interval (t, t+1), which is assumed to be 
imposed by the ordinary traffic (i.e., non 
hazmat), assuming that the hazmat vehicle flow 
is only a negligible part of the overall traffic 
flow; 
 tY  is the number of vehicles that passes from 
tract 1 to tract 2 in time interval (t, t+1); 
 tZ  is the number of vehicles that reaches the 
tunnel in time interval (t, t+1). 

2.3 Hazard Assessment 

The hazard of accidents depends on different 
structural and environmental parameters that may 

vary for each time interval and for each highway 
tract, and on the number of vehicles (Fabiano et al., 
2002; Fabiano et al., 2005). In this work, the hazard 

tHAZ  is simply represented as a time-varying a-

dimensional parameter t
HAZη  multiplied by the 

number of vehicles in the specific tract. That is, 
 

tt
HAZ
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HAZ

tt
HAZ

t ZLNLNHAZ 3122111 ηηη ++=  
  t=0,…, T-1                                                         (6) 

3 THE DECISION PROBLEM 

The objective function has to take into account the 
number of vehicles in the park entrance, the number 
of vehicles per unit length in each tract of the 
highway, and the number of vehicles that enter the 
tunnel. In particular the following terms have to be 
minimized:  

 the number of vehicles waiting in the park 
entrance; 

 the number of vehicles per unit length for tract 
1, tN1 ; 

 the number of vehicles per unit length for tract 
2, tN 2 ; 

 the difference between the number of vehicles 
per unit length in tract 1 and tract 2, tt NN 21 − ; 

 the number of vehicles that enter the tunnel. 
 
Thus, the objective function can be expressed as 
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where:  
 tN1 , tN2  are the number of (hazmat) vehicles per 
unit length that is present in the highway road in 
tracts 1 and 2, in time instant t; 
 tI  is the number of vehicles stored, at time 
instant t, in the park near the entrance, i.e., the 
inventory of the entrance park area, in time 
interval (t, t+1); 
 tZ  is the number of vehicles that reaches the 
tunnel in time interval (t, t+1); 
 α , β , γ , δ  are specific weighting factors. 
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4 THE STATEMENT OF THE 
OPTIMAL CONTROL 
PROBLEM 

The optimal control problem reported in equations 
(1)-(7) can be expressed in the following form 

                         ∑
−

=
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                     (8) 

where tx is the space vector and tQ  a matrix of time 
dependent parameters. Specifically, 
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ttttt dubxAx ++=+1       t=0,…,T-1    (11) 

 

0≥tu                      t=0,…,T-1    (12) 
 

0≥tx                       t=0,…,T-1    (13) 

where tt Xu =  are the control variables, tA  is a 
matrix of time dependent parameters, b  a vector of 
parameters, and td  a vector of time dependent 
parameters. 
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The optimal control problem expressed by equations 
(8)-(16) is a linear-quadratic one, with non 
negativity constraints over the state and control 
variables. 

5 RESULTS 

The space-time discretization of equations (2)-(3) 
has been chosen in order to avoid instability of the 
traffic flow (i.e., in the time interval, the vehicles are 
not allowed to pass the tract length), and in order to 
have a meaningful time interval for traffic flow 
simulation (Kotsialos and Papageorgiou, 2004). That 
is, 
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Firstly, the optimization problem (1)-(7) has been 
solved, with the following inputs: 

0] 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 2, 3, 10,[=V , and the 
following weights in the objective function:  

5444 102,102,102,102 ⋅=⋅=⋅=⋅= δγβα . 
A receding-horizon control scheme has been applied 
and, in Table 1 and Table 2, the optimization results 
are reported. 

Table 1: Results of the optimization problem: tX , tZ , 
tI . 

Time tX tZ  tI  
0 8.38 0 0 
1 0.56 0 1.62 
2 0.6 41026.0 −⋅  4.06 
3 0.66 41026.0 −⋅  5.46 
4 0.74 41025.0 −⋅  4.8 
5 0.86 41024.0 −⋅  4.06 
6 1 41023.0 −⋅  3.2 
7 1.19 41021.0 −⋅  2.2 
8 1 41019.0 −⋅  1 
9 2 41017.0 −⋅  0 

10 2.23 41014.0 −⋅  0 
11 0.77 41012.0 −⋅  0.76 
12 0 51083.0 −⋅  0 
13 0 51044.0 −⋅  0 
14 0 0 0 
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Table 2: Results of the optimization problem: tN1 , tN 2 , 
tY . 

Time tN1  tN 2  tY  
0 0 0 0 
1 1101.0 −⋅  0 1.74 
2 2109.0 −⋅  21022.0 −⋅  1.49 
3 21079.0 −⋅  2104.0 −⋅  1.3 
4 21071.0 −⋅  21057.0 −⋅  1.17 
5 21065.0 −⋅  21071.0 −⋅  1.08 
6 21063.0 −⋅  21085.0 −⋅  0.04 
7 21062.0 −⋅  21098.0 −⋅  1.03 
8 21064.0 −⋅  11011.0 −⋅  1.06 
9 21063.0 −⋅  11012.0 −⋅  1.05 

10 21075.0 −⋅  11014.0 −⋅  1.25 
11 21087.0 −⋅  11015.0 −⋅  1.45 
12 21079.0 −⋅  11017.0 −⋅  1.31 
13 21063.0 −⋅  11019.0 −⋅  1.04 
14 21049.0 −⋅  1102.0 −⋅  0.82 

 
The overall hazard is (summation over time of 
equation (6)) equal to 1978, with 

10321 === t
HAZ

t
HAZ

t
HAZ ηηη . 

Then, the non-negativity constraints have been 
removed. The optimal values are the same like in the 
constrained case.  

Similar results, in the unconstrained case, can be 
found through the use of the Riccati equation. 
Instead, for the constrained case an efficient method 
of solution has to be found. A possible approach can 
be the one reported in (Bertsimas and Brown, 2007). 
Otherwise, one can try to use dynamic programming 
and reduce the explosion of computation that arises. 

6 CONCLUSIONS  

A preliminary approach for the optimal control of 
hazardous materials traffic flow has been presented. 
The novelties of the presented approach in the 
literature of hazmat transportation have been 
highlighted, as well as the methodological 
approaches that might characterize the solution of 
the optimal control problem. 

Future research related to the present work will 
regard the development of methods to derive the 
optimal control law to the considered problem in a 

closed form. After that, the decision problem could 
be extended to the optimal control of two fleets of 
hazardous material that have to flow through a 
tunnel in both competitive and collaborative cases. 
Moreover, a hierarchical control can be formalized 
in which a decision maker related to the tunnel has 
to decide the price to assign to the two fleets on the 
basis of the costs, the goods demand, and the risk to 
be minimized in the overall system, while the fleets 
aim at minimizing their own benefits and hazards.  
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