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Abstract: This paper presents a conceptual framework to integrate a spatial memory, derived from a 3D simulator, with
a visual attention model. The proposed system is inspired from brain research that explicitly accounts for
the use of spatial memory structures in intelligent object recognition and navigation by humans in the three
dimensional space. The experiments presented here extend the capability of visual attention modeling to work
in 3D space by connecting it to simulated maneuvers in virtual reality. The introduction of this concept opens
new directions for work to reach the goal of intelligent machine vision, especially by mobile vision systems.

1 INTRODUCTION

Spatial memory is an important part of the human
brain that is responsible to store three dimensional
structures of environments, landmarks, and objects
(Moscovitch et al., 2005). The stored environments
in this memory help during navigation through known
routes and maps like walking through corridors or
driving through streets of everyday routine. The ob-
ject data in this memory is also useful for collision
avoidance in an automatic way, for example during
car driving a decision to overtake a long vehicle is
made quite involuntarily after estimating the vehi-
cle’s length using its memorized 3D model recalled
by looking at its rear only.

Construction of scenes and objects in the spatial
memory has a close relation with visual attention.
Research on vision systems of primates reveals that
the natural vision views and recognizes objects (es-
pecially large ones) by fixating on their constituent
parts rather than perceiving them as a whole. This is
managed by the visual attention mechanism that se-
lects salient portions of objects (or scenes) and fo-
cuses upon them one after the other. In artificial vi-
sion systems, such selective viewing can help to filter
out redundant and non-relevant data.

This paper presents design of a memory driven vi-
sion system that integrates artificial visual attention
with a 3D spatial memory. A robotic vision system
able to perform overt visual attention will focus on
salient objects or their visible parts and use this vi-
sual information to activate the complete 3D model

of the object from the spatial memory. Utilization of
a virtual reality simulation framework is proposed as
storage mechanism for the learned environments and
objects. Such a proposal not only leads to knowledge
driven machine vision but introduces a very useful
utility of 3D simulation engines as well.

Literature in psychophysics has described the role
of spatial memory and its role in navigation, object
recognition, self localization, and intelligent maneu-
vers. The work presented in (Oman et al., 2000)
shows capability of learning three dimensional struc-
ture not only by looking at the target object or envi-
ronment from different directions but by imagining to
view it from these orientations as well. The ability of
the brain to visualize a scene from an orientation in
space that was not actually experienced by it is shown
in (Shelton and Mcnamara, 2004). A relation between
visual attention and spatial memory is established in
(Aivar et al., 2005) with a conclusion that a detailed
representation of the spatial structure of the environ-
ment is typically retained across fixations and it is also
used to guide eye movements while looking at already
learnt objects. Formation of object representation by
human vision through snapshots taken from different
view angles is discussed in (Hoshino et al., 2008) and
it is suggested that such procedure is followed only
for the objects under visual attention while the unat-
tended scene may be processed as a 2-D representa-
tion bound to the background scene as a texture.

The natural visual attention mechanism rapidly
analyzes the visual features in the viewed scene to
determine salient locations or objects (Treisman and
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(a) (b) (c)
Figure 1: (a) Proposed model for integrating visual attention with 3D spatial memory. (b) Architecture of the region-based
attention model used as the selection mechanism for regions of interest in real world (Aziz and Mertsching, 2007). (c)
Architecture of the simulation framework SIMORE that is used as spatial memory of the mobile robot (Kutter et al., 2008).

Gelade, 1980)(Wolfe and Horowitz, 2004). After at-
tending the current focus of attention a process of in-
hibition of return (IOR) (Cutzu and Tsotsos, 2003)
suppresses the attended location so that other less
salient objects may also get a chance to be attended.
Existing attention models have shown success in se-
lection and inhibition of return in two dimensional
view frames. The natural visual attention, on the
other hand, works in three dimensional world despite
its perception of a two dimensional projection on the
retina. In order to make advancement in the state-of-
the-art, the model proposed in this paper attempts to
integrate a spatial memory with the visual attention
process in order to extend the scope of attention and
IOR towards 3D.

2 PROPOSED MODEL

The objective of the current status of the proposed
model is to associate a spatial memory to the visual
attention process and activate the three dimensional
structure of the attended object for use in decision
making procedures. Figure 1(a) shows the architec-
ture of the proposed model. As this model involves
visual attention and a spatial memory to perform its
task, the design of the two involved components is
also discussed here.

The architecture of the attention model is pre-
sented in figure 1(b). The primary feature extrac-
tion function F produces a set of regions (Aziz and
Mertsching, 2006) and associates feature magnitudes
of color, orientation, eccentricity, symmetry, and size
with each region. Computation of the bottom-up
saliency using rarity criteria and bottom-up contrast
of region features with respect to its neighborhood
is performed by the group of processes S (see (Aziz

and Mertsching, 2008a) for details) whose output is
combined by the procedure W . The function G con-
siders the given top-down conditions to produce fine
grain saliency maps that are combined by the function
C. The function P combines the saliency maps into
a master conspicuity map and applies a peak selec-
tion mechanism. Inhibition of return (IOR), denoted
by R, suppresses the already attended location(s) us-
ing a saccadic memory. Explanation of the internal
steps and functions of this attention model can be
seen in (Aziz and Mertsching, 2007) and (Aziz and
Mertsching, 2008b).

The simulation system used as spatial memory is
a 3D robot simulation framework SIMORE (SImula-
tion of MObile Robots and Environments) developed
in our group (Mertsching et al., 2005) (Kutter et al.,
2008). Figure 1(c) shows its architecture with its ma-
jor components exposed. The core of simulator is
based upon the open source library Open Scene Graph
(OSG) (Burns and Osfield, 2004) which is a hierarchi-
cal graph consisting of drawable meshes in a forward
kinematic order. The physics simulation component
represents the dynamic engine for collision detection
and force based physics using Open Dynamics En-
gine (ODE) which is an open source library for simu-
lating rigid body dynamics (Smith, 2009). Extensions
for sensor and meta information have been done using
specialized nodes for these purposes. These enhance-
ments of the existing scene graph allows to rely on an
existing library and enables the system to import and
export from available 3D modeling software such as
3D Studio Max.

The simulation framework SIMORE has the abil-
ity to maneuver a simulated robot in the virtual en-
vironment by driving, taking turns, rotating its cam-
era head, and turning other movable sensors by con-
trol commands from an external computer program.

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

472



The master control program, for example a compu-
tational model of visual attention, manipulates the
physical robot in the real world and maneuvers the
virtual agent in the simulation framework. Therefore
the simulated robot can act as an agent of the real plat-
form. The readings from the simulated sensors are ob-
tained according to their position and direction in the
virtual environment while they are aligned with the
physical ones. Such a mechanism allows the vision
system to recall a complete 3D model of an attended
object even by looking at only a part visible from the
current view angle.

According to the proposed model, the vision sys-
tem selects an object to attend from its viewed scene
and performs overt attention using its pan-tilt camera.
Whenever the vision system finds an object of interest
(or its part) it consults the spatial memory by look-
ing at the virtual scene through its simulated camera.
The visible features of the attended object in the real
camera view, information about location of robot (in
real and virtual environment), and angles of camera
direction can guide to pick the right object from the
virtual scene matching with the object under the fo-
cus of attention. Knowing the identity of the modeled
object its complete set of attributes will be loaded into
the working memory. Using the current status of our
experimental platforms we demonstrate a spatial inhi-
bition of return on the previously focused object(s) so
that they remain inhibited even after the robot motion
in 3D space.

3 CURRENT SYSTEM STATUS

In the current status, the interface between the visual
attention module and the simulation engine is suc-
cessfully established and work is underway to enable
the synchronized selection of the attended objects
from the spatial memory. We are able to present here
the expected results from the proposed model with
manual configurations in the synchronization part.

Figure 2 shows the arrangement in which the vi-
sion system appearing at the right side of the subfigure
(a) drives forward while searching for red objects (the
ball and the robot in the left-bottom corner). Figure
2(b) shows the global camera view of the arrangement
in the simulation framework.

Results of the first attempt of attentional search
are provided in figure 3 in which subfigure (a) shows
camera view of real robot and (b) is the view from
the aligned simulated camera. Figure 3(c) shows the
region selected by the attention mechanism and (d)
shows the camera view after bringing the ball into
center of view frame. Figure 3(e) shows the virtual

Figure 2: Initialization of the robotic platform and align-
ment of the agent in terms of location and orientation. (a)
Real robot at initialization (b) Global view in virtual reality.

Figure 3: Results of first attempt of attention. (a) Camera
view of real robot (b) Camera view of virtual robot (c) Fo-
cus of attention detected by real robot (d) Overt attention
to object of interest (e) View of the simulated environment
(spatial memory) after synchronized rotation of the simu-
lated camera (f) 3D model of first FOA activated (inactive
objects are shown in wireframe).

Figure 4: Results of second attempt of attention. (a) Cam-
era view of real robot after moving ahead (previous FOA
inhibited). (b) After moving further ahead the second target
found (previous FOA still remains inhibited). (c) Aligned
camera view of virtual robot. (d) Overt attention to second
object of interest. (e) Orientation synchronization of simu-
lated camera. (f) 3D model of second FOA activated.

camera view after aligning it with the current status of
the real camera. Figure 3(f) demonstrates the selected
3D model from the spatial memory whose activation
not only exposes its hidden portion to the vision sys-
tem but its volume information as well.

Figure 4 shows results of the second attempt of
attention after moving ahead subsequent to attending
the first target (the ball). The first focus of attention
remains under inhibition of return during this attempt
(shown by dark (blue) rectangle). In subfigure (a) the
vision system moves ahead but no new object of inter-
est comes into view, whereas the already attended ball
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remains under inhibition of return due to the use of
spatial memory even when its 2D location in the view
frame and size has changed with respect to its last at-
tended instance. Figures 4(b) shows attention on the
second target whereas the ball is still under inhibition.
The subfigure (c) shows the view in the spatial mem-
ory after aligning its sensors to the real world. Fig-
ures 4 (d) and (e) demonstrate views in the real world
and the simulation framework after overt attention on
the second target while the activated model of the at-
tended object (the robot) can be seen in figure 4(f).

4 DISCUSSION

A conceptual framework of integrating a spatial mem-
ory with the vision procedures has been presented
here and the feasibility of using a 3D simulator as a
spatial memory is introduced. The area of integration
of vision and spatial memory, their interaction, and
cooperation needs to be explored further as there are
many issues to be resolved. For example the phys-
ical system can gain error of localization and orien-
tation over time due to inaccuracy in its sensors and
wheel slippages that lead to synchronization problem
between the real robot and its agent.

Using the spatial memory can increase the poten-
tials of vision in 3D world and intelligence in au-
tonomous decision making. Work needs to be done
for handling further complexities in the scenario. For
example, activation of the 3D models of objects will
be more useful when positions of movable objects
are not known in advance. Using the visual informa-
tion from the camera, the robot could recognize an
object and activate its whole model there. This can
be helpful in navigation planning while roaming in
known environments in which a bunch of known ob-
jects are moving around or located at arbitrary loca-
tions, for example 3D models of different types of ve-
hicles could be used for intelligent autonomous drive
on a known road map.
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