
 

USAGE OF DESIGN BY CONTRACT 
From Component-based Engineering to SOA Design 

Diana Berberova and Boyan Bontchev 
Dep. of Software Engineering, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria 

Keywords: Design by Contract, Service Contract, SOA Design. 

Abstract: Modern SOA research is focused more and more on fundamental service design issues such as means for 
creation of formal, standardised service contracts. A possible way for achieving standardised service 
contracts goes through application of the design by contract approach. Such an approach promises offering a 
lot of benefits especially when applied for description and management of quality of services. The paper 
tries to reveal the potential advantages of design by contract when applied for SOA design. It discusses 
similarities and differences between component based software engineering and SOA, as far as design by 
contract has been successfully used for component design. Also, it shows the importance of service contract 
and traces usage of design by contracts for Web service design and how it could be applied for SOA. 

1 INTRODUCTION 

Design by contract (DbC) is a methodology based 
on the principle that the interfaces between modules 
of a software system, especially the critical ones, 
should be governed by precise specifications 
(Meyer, 1991). The main goal of Design by Contract 
(DbC) is to improve correctness and robustness of 
software systems. The contracts cover mutual 
obligations called pre-conditions, benefits called 
post-conditions, and consistency constraints called 
invariants. DbC was first introduced by Bertrand 
Meyer in Eiffel programming language. This 
methodology is very powerful and has already been 
approved as a technique for building high-quality, 
reliable solutions in object-oriented architectures. 
The concept solves an age-old problem of having 
accessible, up-to-date and readable documentation 
of the code without requiring additional resources. 
In addition, exception handling is guided by precise 
definition of “normal” and “abnormal” cases 
(Meyer, 1999). The faults occur close to their cause 
and all this helps to find the problems earlier and 
faster. 

In the last years, software technologies have 
changed tremendously and the software products 
have become more complex and more critical than 
ever. New paradigms like Component Based 
Software Engineering (CBSE) and Service Oriented 
Architecture (SOA) have come in the place of 

object-oriented programming. With the evolution of 
software architectures, DbC concept has also 
evolved. It was successfully used in CBSE (Owe, 
Schneider and Steffen, 2007) and, currently, it is 
applied in Web Service development (Warmer and 
Kleppe, 2007). It seems obvious that next step is to 
apply the DbC concepts in SOA but still there is no 
solution that provides support for DbC on a 
conceptual level. 

As fas as DbC has been used in CBSE, which 
relates in many aspects to SOA, some good practices 
regarding DbC usage can be transffered from CBSE 
to SOA. Thus, article describes principles of CBSE 
and SOA and relation between these two 
methodologies. It continues with the nature of 
service contract and finished with explaination of 
DbC usage for Web services and its potential 
benefits when applied for service contracts. 

2 RELATIONS BETWEEN SOA 
AND CBSE 

2.1 Principles of CBSE 

The CBSE introduces a new software development 
paradigm in which systems are no longer 
implemented from scratch, but glued together from 
existing components. Component Based Software 
Engineering is concerned with the assembly of pre-

 299
Berberova D. and Bontchev B. (2009).
USAGE OF DESIGN BY CONTRACT - From Component-based Engineering to SOA Design.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 299-304
DOI: 10.5220/0002244402990304
Copyright c© SciTePress



 

existing software components into larger pieces of 
software.  

CBSE emerged from the failure of object-
oriented development to support effective reuse 
(Sommerville, 2004). Single object classes in OOP 
are too detailed and specific. Components are more 
abstract entities than classes. Each component is a 
single standalone service provider. Component 
based software development goal is to reduce 
development costs by promoting rapid development 
of software systems that are agile, flexible and easily 
maintainable. 

Component Based Software Development 
encompasses two processes: 

 developing reusable components. 
 assembling software systems from software 

components 
Some of the main principles of Component 

Based Software Engineering are as follows 
(Breivold and Larsson, 2007): 

 Multiple reuse 
 Composability (with other components)  
 Encapsulation and hidden component 

implementation – the component is accessible 
only through its interfaces 

 Exactly specified communication interfaces 
 Independent deployment and versioning 
 Component independence – the components 

do not interfere with each other 

2.2 Principles of SOA 

2.2.1 SOA Definitions 

There are different definitions of Service Oriented 
Architecture. One of the most widespread 
understandings of that SOA provides a framework 
for design and implementation of rapid, agile, high 
quality and low-cost systems. Another definition is 
that SOA unifies business processes by structuring 
large applications as a collection of services. The 
goal of SOA is to provide a way of software 
development in which the developers do not need to 
provide redundantly the same functionality over and 
over again.  

The interfaces of software applications that 
provide common logic should have the same look 
and feel and the same level and type of input data 
validation.  

SOAs build applications using software services. 
Services are independent components of 
functionality. A service can be a simple business 
capability, a more complex business transaction or a 
system service. Each service no matter if smaller or 

bigger does not call implicitly other services. 
Services provide a new way of software reuse on a 
larger scale. The goal of SOA is to build 
applications of fairly large pieces of functionality. 
This goal leads to some amount of processing 
overhead so a thorough performance consideration 
should be done. 

There are three types of roles in SOA 
environment: 

 Service provider - owns and provides the 
business information content of services, and 
in addition a specification for accessing these 
services.  

 Service consumer - incorporates services into 
applications and designs the flow of the 
services 

 Service registry – used by Service provider to 
register and make accessible the service and 
by Service consumer to find a service and 
access it. 

In a SOA environment, the service consumers 
can access independent services without knowledge 
of their underlying platform implementation. 

2.2.2 Service Interface and Service 
Contracts 

The service in SOA is a stand-alone unit of 
functionality available only via a formally defined 
interface. The interface defines the required 
parameters and the result - the nature of the service, 
not the technology used to implement it. The system 
must manage the invocation of the service and 
management includes many aspects (Erl, 2007):  

 Security - authorizaton of requests, 
encryption and decryption of data, data 
validation 

 Deployment - allows the service to be moved 
around to maximize performance and provide 
maximum availability 

 Logging - provides auditing and metering 
capabilities 

 Dynamic rerouting - provides fail-over or 
load-balancing capabilities 

 Maintenance - manages efficiently the new 
versions of the service 

 

 
Figure 1: Service interface. 

 

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

300

http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Information_hiding


 

The Service interface describes the behaviour of 
the service and the messages required to interact 
with that service. The service interface should 
describe:  

 The operations that a service provides  
 The format for information being passed to 

and from operations  
 The message exchange patterns that the 

service implements (request/reply, one-way, 
and duplex)  

2.2.3 Principles 

The guiding principles of SOA concern the rules for 
development, maintenance and usage of services. 
These common principles include issues as follows: 

 Reuse, granularity, modularity, 
composability, componentization, portability, 
and interoperability (Erl, 2007) 

 Standards compliance (both common and 
industry-specific) 

 Services identification, categorization, 
provisioning and delivery, monitoring and 
tracking 

There are also specific architectural principles 
that concern the system’s design and behaviour (Erl, 
2007): 

 Service statelessness – in order to promote 
reusability and scalability, state data should 
be carried by exchanged messages but not 
retained at the service 

 Service encapsulation – logic is encapsulated 
by a service so that it becomes an enterprise 
resource capable of functioning beyond the 
boundary for which it is initially delivered 

 Service loose coupling - services relationship 
should have minimum dependencies and only 
requires that the services maintain an 
awareness of each other 

 Service contract - services adhere to a 
communications agreement 

 Service abstraction - services hide all logic 
from the outside world that is not included in 
the service contract 

 Service reusability – logic is divided into 
services with the intention to be reused 

 Service composability - collections of 
services can be assembled to form composite 
services 

 Service autonomy – services have control 
over the logic they encapsulate 

 Service optimization – all else equal, high-
quality services are generally considered 
preferable to low-quality ones 

 Service discoverability – services are 
designed to be most descriptive so that they 
can be found and accessed via available 
discovery mechanisms 

 Services independence - service operates as 
“black box”. Service consumers do not know 
or care how the services perform 

2.3 Comparison Study 

There is no clear division between Service Oriented 
Architecture and Component Based Architecture 
(Petritsch, 2006). SOA can be considered as 
enhancement of components methodology. Each 
service is a single component and can be linked to 
gain new business logic, new services or a new 
component.  

2.3.1 Differences 

The big difference between SOA is CBA is the 
connection between units and the possibilities of 
offering single services for third parties. Other 
important differences are: 

 The services provide better granularity of the 
functionality, than the components 

 The services provide better abstraction and 
easier usage 

 The services are more loosely coupled than 
components and hide completely their 
implementation  

 In SOA the division between server and 
provider is bigger and more clearly specified 

 In SOA the communication is message driven 
and in CBA is communication is object 
oriented 

 The services provide a more dynamic linking 
of resources, than components 

2.3.2 Similarities 

Component based architectures and Service-oriented 
architectures seem to have the same goals. They 
provide a foundation for loosely coupled and highly 
interoperable software architecture. They enable 
efficient, error-free, highly reusable software 
development. The similarities are: 

 Main goal is reuse of software functionality 
 Both services and components provide a way 

to communicate units developed on different 
operational systems, programming languages 
and hardware platforms.  

 Both components and services offer 
predefined services 

 

USAGE OF DESIGN BY CONTRACT - From Component-based Engineering to SOA Design

301

http://en.wikipedia.org/wiki/Modularity_%28programming%29
http://en.wikipedia.org/wiki/Interoperability


 

 Both services and components are a higher 
abstraction of the objects  

 Both techniques lead to decreased 
performance due to the processor and system 
communication  

 Both architectures use the idea of the Facade 
software design pattern 

An exact differentiation between service oriented 
architecture and component based architecture is not 
easy. These techniques have the same goals but 
provide a different way of handling the same issues 
but in different situation. In this SOA can be seen as 
a normal extension of CBSE. 

3 SERVICE CONTRACTS 

3.1 The Service Contract Concept 

A service contract represents the terms and 
conditions by which a service is provided and 
consumed (Berre, 2008). The service contract is the 
specification of collaboration between the provider 
and consumer – it specifies the roles each party 
plays, the interfaces they offer and the behavior of 
enacting the service. It is an exchange agreement 
between specific bound participants, also called 
signed contract. The service contract represents 
service’s collective metadata is a single specification 
of a service without regard for implementation or 
dependencies and is defined by the service provider 
(fig. 3). This representation is required to be in 
formal, standardized form (Erl, 2007). Thus, the 
service contract consists of several documents 
describing technical contract (i.e. technical content 
such as WSDL, XSD and WS policies – consumed 
run time) and non-technical information such as 
Service Level Agreement (SLA). It plays 
cornerstone role in SOA, as far as it supports other 
principles in a consistent way (table 1). For example, 
a standardized contract improve consistency and 
coupling between services. It should be well 
balanced, as far as very detailed contracts restrict 
service abstraction. It is required for a consistent 
composability but its constraints restrict the reuse. 

 
Figure 2: The place of service contract. 

Table 1: Service contract’s support of other SOA 
principles.  

Se
rv

ic
e 

co
nt

ra
ct

 

facilitates loose coupling and 
independence 

provides metadata for service  
abstraction 

is used for searching, i.e. 
for  

discoverability, 
interoperability 

is required for composability 

determines granularity and 
categorization 

controls delivery, monitoring and 
tracking 

restricts reuse 
 

A service contract needs to have the following 
components: 

 Header – containing name of the service, 
version of this service contract, owner and 
persons in charge of the service (Responsible, 
Accountable, Consulted, Informed)  

 Type - the type of the service helps for 
distinguishing the layer in which it resides. 
Different implementations will have different 
service types such as Presentation, Process, 
Business, Data and Integration. 

 Functional requirements – service operations 
and their invocations 

 Non-functional requirements – information 
about security constraints, Quality of Service, 
SLA, semantics and process. 

Services express their purpose and capabilities 
via a service contract. The principle for Standardized 
Service Contract is probably the most fundamental 
one in service orientation design. It specifies that 
specific considerations should be taken into account 
when the service’s public technical interface is 
designed.   

The goal of this principle goal is to define the 
specific aspects of contract design in way that 
service contracts are optimized and in standardized, 
granular and in the same way usable, consistent 
granular and governable.  

3.2 SOA Patterns Related to Service 
Contract 

The software patterns provide description of a 
solution for a problem that appears often in software 
design, architecture and development. There are two 
SOA design patterns introduced (Erl, 2008) that 
relate directly to the service contract creation and 
management: Contract Denormalization and 
Contract centralization patterns. 
 
 

 

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

302



 

3.2.1 Contract Centralization Pattern 

Contract centralization pattern resolves the issue of 
direct coupling between consumer and 
implementation. The service consumer programs can 
access the functionality provided by a service using 
different entry points. This leads to different forms 
of implementation dependencies that can influence 
on the service in a way that the service is not able to 
change and evolve. 

The solution provided by the Contract 
centralization pattern is to limit the access to service 
logic and in this way force the customers to avoid 
implementation coupling and references. This 
pattern of course can lead to performance overhead 
and also requires additional effort for 
standardization. To implement it properly the 
Service Abstraction principle should be applied 
when service is designed and created.  

3.2.2 Contract Denormalization Pattern 

Contract denormalization pattern provides solution 
for the service contract to facilitate consumer 
programs with differing data exchange requirements. 
A problem that often rises in SOA development is 
that services which have strictly normalized 
contracts can impose unnecessary functional and 
performace demands on some service consumer 
programs. 

The solution that is provided is to denormalize 
the service contracts to a measured extent. By this 
contract denormalization it will be possible that 
provide multiple core functions of the service in 
different ways and multiple capabilities. Each type 
of capability will be created for a different type of 
service consumer programs. This pattern should be 
used extremely cautiously because if overused, it 
can increase enormously the service contract size 
and make it difficult to interpret and use effectively. 

4 DESIGN BY CONTRACT FOR 
SERVICES 

4.1 Usage of Design by Contract for 
Web Services 

Design by Contract concept is similar to the notion 
of establishing a legal contract. The contract 
describes what a service component expects of its 
clients and what the service clients can expect. The 
service contract defines the responsibilities of both 
parties and how these are accomplished. 

The notions of contracts for Web services allow 
the usage of Design by Contract both on provider 
and requestor’s side.  

To inform the service consumer about its rights 
and obligations, the service contracts have to be 
transferred from the service provider to the service 
consumer. To achieve this, the representation of 
contracts during the development process of a Web 
Service can appear on three different levels (Heckela 
and Lomanna, 2005) - implementation level, XML 
level and Model level.  

There are two approaches that can be used for 
developing Web services contracts - code-first and 
contract-first approaches. The schema based 
contract-first design is the better approach as it 
defines the service messages in XML using SOAP 
standard and makes the services more interoperable. 
It is easier to define the contract first and then 
generate the code specific for the concrete platform 
and programming language. The biggest challenge 
in this approach is the lack of modelling concepts 
and tools support. Generally there are five steps in 
the contract-first design approach: 

 Modelling data and defining data structures 
which should be exchanged in messages 

 Modelling messages that should be 
exchanged by using XML Schema 

 Modelling interface and operations provided 
to the Web service consumer.  

 Generate code skeletons and defines message 
and interface contracts code  

 Iterate contract design and code generation.  
The Web Service Contract First (WSCF) tool is 

a Schema-Based Contract-First Web Services code 
generator and WSDL wizard. It supports designing 
messages, interfaces and data for contract-first style 
web services, acting as a replacement for XSD and 
WSDL. It removes all exhaustive details of WSDL 
and does not allow making errors and wrong 
assumptions when trying to use and apply the 
original WSDL specification. WSCF provides 
means for defining the schema for service types, 
messages and WSDL definitions before creating 
implementation. There are two steps in WSCF – first 
design contract's data, messages and interface and 
then generate code from the contract.  

4.2 SOA DbC Concept 

For achieving standardised service contracts, DbC 
i.e. “contract-first” design approach should be taken. 
It should be supported by tools importing 
customized service contracts. One of the great 
challenges here is Quality of Service (QoS) 

 

USAGE OF DESIGN BY CONTRACT - From Component-based Engineering to SOA Design

303



 

 

management. The service oriented enterprise 
systems should be dynamic, flexible, secure and 
high quality. To achieve all these characteristics 
QoS management must be integrated into service-
oriented enterprise architectures. It must support the 
most common and valuable QoS characteristics and 
provide comprehensive services. 

SLA is used to establish agreements on the 
quality of a service between a service provider and a 
service consumer. SLA sets the expectations 
between the consumer and provider and helps 
defining the relationship between the two parties. 
Properly defined SLAs cover the following aspects 
(Bianco, Lewis and Merson, 2008): 

 The provider obligations  
 How delivery of the service at the specified 

level of quality will be realized 
 Which metrics will be collected, and how 
 Actions and penalties to be taken when the 

service is not delivered at specified QoS 
 How and whether the SLA will evolve as 

technology changes.  
Thus, the service level agreement defines mutual 

understandings and expectations of a service 
between the service provider and service consumers. 
The service guarantees are about what transactions 
need to be executed and how well they are executed.  

The parameters and metrics defined in an SLA 
define the Quality of Service of the service. QoS 
parameters may include response time, availability, 
throughput, latency, etc. The QoS defines contracts, 
and obligations between service provider and 
consumer. To perform this task the service level 
agreements include negotiation, agreement, 
quantifying service levels, and clarification of 
responsibilities (Blackwell and Dixon, 2005). The 
Quality of Service provisioning and management is 
of great importance for development of Service 
Oriented Architecture solutions. It is also one of the 
greatest challenges and there is still no solution for 
continuous handling of QoS attributes. There are 
works in the area of definition and enforcement of 
QoS service management, but there is no systematic 
way to do this. The existing gap with QoS may be 
filled by several efforts: 

1) Creation of a unified QoS specification 
supporting the most important QoS characteristics 
and providing a way to describe the requirements, 
contracts and policies based on them;  

2) A language and compliant tools that supports 
SLA and QoS attribute management; 

3) Intensive usage of contract-first approach 
which will facilitate QoS management and will bring 
better consistency, maintenance and reuse in SOA. 

5 CONCLUSIONS 

Design by Contract methodology has already been 
proved as a technique for building high-quality and 
reliable solutions in Object Oriented and Component 
based architectures. With the evolution of software 
architectures DbC concepts have also evolved and 
currently they are successfully applied in Web 
Service development. The next step is to apply the 
Design by Contract concepts in service oriented 
development but still there is no solution that 
provides support for DbC on a conceptual level.  

The Design by Contract can extend the service 
contracts with additional logic about the processes 
and quality attributes which cannot be expressed 
with simple schema descriptions. There are issues of 
modeling, implementing and assuring the QoS 
characteristics in large scale infrastructures and 
domain services that should be resolved. The goal 
set for our future investigations and practical work is 
integration of QoS management in SOA architecture 
using Design by Contract concept.  

REFERENCES 

Sommerville I., 2004. Software Engineering, Addison 
Wesley. 7th edition, ISBN-13: 978-0321210265. 

Petritsch H., 2006. Service-Oriented Architecture (SOA) 
vs. Component Based Architecture, VTU int. report.  

Berre A. J., 2008. Services Oriented Architecture Profile 
SOA-Pro: A UML Profile and Metamodel for Services, 
SINTEF internal report. 

Erl T., 2007. SOA: Principles of Service Design, Prentice 
Hall, ISBN-13: 978-0132344821. 

Erl T., 2008. SOA Design patterns, Prentice Hall, ISBN-
13: 978-0136135166. 

Heckela R., M. Lohmanna, 2005. Towards Contract-based 
Testing of Web Services, Electronic Notes in 
Theoretical Comp. Sci., Vol. 116, 2005, pp.145-156. 

Blackwell M., J. Dixon, 2005. Service level agreements: a 
framework for the quality management and 
improvement of central support services, Monash. 

Breivold H.P., M Larsson, 2007. Component-Based and 
Service-Oriented Software Engineering: Key Concepts 
and Principles, Proc. of 33rd EUROMICRO, pp.13-20. 

Meyer B. 1999,  DESIGN BY CONTRACT and Genericity 
for Java, http://archive.eiffel.com/doc/talks/sigs/ 

Meyer B. 1991, Design by Contract, in Advances in 
Object-Oriented Software Engineering. Prentice Hall. 

Owe O., G. Schneider and M. Steffen 2007., Components, 
Objects, and Contracts, ACM SIGSOFT Symposium 
on the Foundations of Software. 

Warmer J., A. Kleppe, 2007. The Object Constraint 
Language: Precise Modeling With UML.  

Bianco P., G. A. Lewis, P. Merson 2008. Service Level 
Agreements in Service-Oriented Architecture 
Environments, Techn. Note, CMU/SEI-2008-TN-021. 

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

304

http://www.amazon.com/exec/obidos/ASIN/0201379406/ref=ase_objectsbydesign/102-1353808-4268953
http://www.amazon.com/exec/obidos/ASIN/0201379406/ref=ase_objectsbydesign/102-1353808-4268953

