
MAPPING FEATURE DIAGRAMS TO UML MODELS
A Transformational Approach

Miguel A. Laguna, Bruno González-Baixauli and Rubén Fernández
Department of Computer Science, University of Valladolid

Campus M. Delibes, 47011 Valladolid, Spain

Keywords: Feature Models, Software Product Line, Model Transformation.

Abstract: Variability and commonality management is one of the key aspects in the development of software product

lines. Feature models embody various different variability facets that must be mapped to UML models to

trace the variability from requirements to the architecture (and implementation) of the product line. In this

context, this article presents the experiences with pattern identification in feature models and their relation

with the corresponding architectural UML counterparts. The work includes the definition and

implementation of the meta-model based transformations between these models. Finally, an example of

application of the transformations completes the article.

1 INTRODUCTION

The product line (PL) paradigm of software

engineering involves many technical and

organizational challenges (Bosch, 2000). The

development of a product line includes two main

categories of software artifacts: the artifacts shared

by the members of the product line and the product-
specific artifacts. The product line itself is a set of

reusable assets, where three abstraction levels can be

clearly identified (requirements, design and

implementation assets). In the requirement level, one

of the key activities is the specification of the

variability and communality of the product line. The

design of a solution for these requirements

constitutes the domain architecture of the product

line. Later, in the application engineering process,

the application architecture must be derived from the

domain architecture. In this process the customer
functional and non-functional requirements are used

for choosing among alternative features. This

activity is essentially a transformation process where

a set of decisions at the requirements level generates

the initial feature product model and, consequently,

via traceability paths, the architecture of the product

(Bosch, 2000).

One of the most critical points is the elicitation

and analysis of variability in the product line

requirements. In addition to the information that

expresses the requirements themselves, it is

important to know the variability of the

requirements, and the dependencies between them.

In this context, feature models (Kang et al., 1990)

are the basic instrument to analyze and configure the

variability and communality of the software family.

On the other hand, the PL architecture is

documented using UML diagrams that are organized

in packages. Apart from the base package, each

optional feature must have a counterpart in a

package which includes the set of class diagrams,

use cases and sequence diagrams that are the
solution that achieve this feature. The packages are

structured using the UML package merge

mechanism. In (Laguna et al., 2007), we explained

the application of this technique to the general

organization and configuration of the product line

architecture.

The experiences so far consist of manually

designing and implementing each package of the

UML models, adding later the user interface and

persistence details. This manual approach has been

successfully applied to the development of several

product lines in the Web and mobile applications
domains. However, the productivity (and the

complexity in non trivial product lines) demands to

automate the construction and configuration of the

diverse product line models, following a Model

Driven Engineering (MDE) approach. The

transformation from goal to feature model has been

treated by Yu et al. in their work on Goal-Oriented

295

Laguna M., González-Baixauli B. and Fernández R. (2009).
MAPPING FEATURE DIAGRAMS TO UML MODELS - A Transformational Approach.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 295-298
Copyright c© SciTePress

requirement engineering (Yu et al., 2008). Basically

they use a catalog of goal patterns and their

corresponding feature constructions. This article

deals with the analogous transformation of the
feature models into architecture models, including

the package organization and a first cut of the

package contents.

The rest of the paper is as follows: the next

Section describes a catalog of feature patterns and

their correspondences with architectural UML

models and the transformation between these

models. Section 3 presents an analysis of the results

obtained in a comparative case study. Section 4

introduces related work and Section 5 concludes the

paper and proposes additional work.

2 A CATALOG OF FEATURE

AND UML PATTERNS

Once the feature diagram of a product line is

established, several design level UML models must

be developed. Our intention is to build a catalog of

commonly used derivations of feature to UML

models. Sochos (Sochos et al., 2004) have reviewed

recently the approaches apart from proposing a new

one. The classical works of Kang (Kang et al.,

1998), Czarnecky (Czarnecki & Eisenecker, 2000),

Griss (Griss et al., 1998), or Bosh (Bosch, 2000),

between others have allowed to identify a set of

feature patterns that potentially can populate the

catalog. A revision of the literature has revealed that
it is naive to pretend a simple and univocal

transformation from feature models to UML

diagrams. Therefore, we have adopted a pragmatic

and multi-view approach: separate the different

categories of features in a variability model and treat

each of these categories in a different way, with an

emphasis in structural features.

 In previous work (Laguna & González-Baixauli,

2008) we have described two different approaches of

these feature transformations patterns. The first

approach, based on the cited literature, directly
transforms feature models into classes, relationships,

and attributes. The general mapping creates class

and attributes from features. Mandatory features

imply a 1..1 composition relationship, optional

features imply a 0..1 composition relationship and

groups of features originate specialization

relationships.

The problem is that this approach does not take

into account the difference between PL variability

and the possible variability of the product, for that

reason in we proposed a second approach that

combine the existing transformations wiht the

package merge mechanism of UML 2. The strategy

is based on the three subtypes of Feature. The root
of every tree in a feature model (RootFeature) is

transformed into a base package (and an initial class,

which will generally be discarded) and a recursive

transformation of SolitaryFeatures and

FeatureGroups linked to every feature is carried out.

The presence of a group implies a class associated to

the parent feature that is specialized in several

subtypes (one per alternative feature). Previously, a

new merging package is created if the feature is

optional.

The feature meta-model and the QTV
transformations have been presented in (Laguna &

González-Baixauli, 2008). The package content

must be revised and completed, but the package

structure itself can be used afterwards to

automatically derive the product model by selecting

the desired features. This possibility compensates for

the overcharge of complexity that the traceability

management and the extensive use of packages in

the architectural models entail.

 Concerning the implementation details, the C#

language and the Microsoft .NET platform have

been selected because of the direct support of the
package merge mechanism by means of partial

classes. For this reason, we have developed, using

the Microsoft DSL tools, a specific domain

language, functionally equivalent to the fmp eclipse

plug-in (Antkiewicz & Czarnecky, 2004),

integrating all the steps of the process, from feature

model definition to UML generation and the

package configuration of each final product inside

the Microsoft Visual Studio platform. This tool

implements internally the transformation of the

feature models serializing and manipulating the
feature and UML package models as XML (and

XMI) files.

3 EMPIRICAL EVALUATION

To validate the proposed catalog and

transformations, a case study was selected. In

particular, it is a portion of the electronic commerce

product developed in (Lau, 2006). This election
provides us with an interesting starting point to

contrast our techniques, since the manually

implemented packages are imposed by an external

independent study, avoiding the temptation of

proposing a problem once we have a predefined

solution. The PL architecture was obtained

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

296

therefore in two independent ways: in a fully manual

development process (employing the package merge

approach) and using the proposed transformations.

The first option was carried out by a group of
graduate students and the results are available at the

GIRO Web. At this moment, the common part of the

product line and a dozen packages have been fully

developed. Hundreds of e-commerce systems can

be generated, from a minimal combination to a

typical portal with registered users, shopping cart,

credit card secure payment, multiple categories

catalogs, search criteria, etc.

Once the manual development was achieved, a

derivation of the package an internal structure was

carried out, using the mentioned transformations.
Comparing the results with the manually obtained,

we can have an idea of the utility of the process.

Table 1 summarizes the results.

The manual elements column is the reference

and, logically, has many more elements than the

generated version as this last aims only to be a first

cut of the architecture. The present elements column

indicates in percentage how many automatically

generated elements exist in the manual version.

The coincidence in the basic structure (packages

and merge relationships) is almost a 100%, so it

looks reasonable to use this automatic
transformation to create the framework structure of

the PL. The problem comes with classes, attributes

and relationships generation. The accuracy between

the manual example and the automatic

transformation is not so good. Only the 37% of the

classes are present in both the manual and generated

packages and the percentage of attributes and

relationships are even lower.

Table 1: Structural UML elements generated from feature
models and percentages of usefulness.

Type of

elements

Manual

elements

Percentage

of present

elements

Percentage

of useful

elements

packages 14 81 % 87 %

merge rel. 12 100 % 100 %

classes 39 37 % 58 %

generalize

tions

10 30% 100 %

associatio

ns

27 16 % 46%

attributes 56 5 % 100 %

However the useful elements (how many of the

generated elements would have been used directly to
define the architecture) is much better in the class,

relationships, and attribute rows. The percentage of

useful classes is almost 60%, which is a satisfactory

result. The results of attributes are even better,

because all attributes generated automatically have

been used in the manual development. A similar
situation occurs with the generalizations and

associations rows (100 and 46% respectively). These

observations imply that, in spite of the need of

manual completion, many packages can be partially

generated. Studying results by packages, typed

features and group/grouped combination features are

the best candidates to the automatic transformation.

On the contrary, the base package is clearly the most

difficult to generate or at least the package that will

suffer more changes by the manual intervention of

the PL developer.

4 RELATED WORK

Schobbens et al. (Schobbens, Heymans, & Trigaux,

2006) have revised the diverse variant of feature

diagrams, clarifying the differences and establishing

a generic formal semantics. The influence of non

functional requirements preferences in variant

selection has been faced by several authors. The
original FODA proposal uses the feature models for

representing all the types of variability, functional

and non functional (Kang et al., 1990). Bosch

(Bosch, 2000) proposes an assessment method that

addresses design decisions and non functional

requirements in product-line development. In his

approach, different profiles are used in relation to

different “ilities” (usage profile for reliability or

change profile for maintainability). Finally Yu et al.

present in (Yu et al., 2008) a model-driven extension

to their Early Requirements Engineering tool
(OpenOME) that generates an initial feature model

from stakeholder goals.

Also the work devoted to relate feature
constructions and architectural designs is abundant.
Recent proposals express variability with UML
models modifying or annotating these models.
Structural, functional or dynamical models have
been used. Concerning structural models, either the
mechanisms of UML are used directly (through the
specialization relationship, the association
multiplicity, etc.), as in the case of Jacobson
(Jacobson et al., 1997) or the models are explicitly
annotated using stereotypes. The work of Gomaa is
an example of this approach, since it uses the
stereotypes <<kernel>>, <<optional>> and
<<variant>> (corresponding to obligatory, optional,
and variant classes) (Gomaa, 2000). Similarly, Clauß
proposes a set of stereotypes to express the

MAPPING FEATURE DIAGRAMS TO UML MODELS - A Transformational Approach

297

variability in the architecture models: <<optional>>,
<<variationPoint>> and <<variant>> stereotypes
designate respectively optional, variation points (and
its sub-classes), and variant classes (Clauß, 2001).

 Finally, we have already mentioned the works
of Sochos (Sochos et al., 2004), the FORM method
(Kang et al., 1998), the generative approach of
Czarnecky (Czarnecki & Eisenecker, 2000), or the
RSBE method (Griss et al., 1998) as references in
order to populate the feature pattern catalog.

5 CONCLUSIONS

The main contribution of this article is the
identification of patterns in the feature models and
the mapping of these patterns with the correspondent
architectural diagrams. The feature patterns catalog
allows the automated creation of traceability links
between the product line feature and the
architectural models, consequently improving the
product derivation process.

Our approach to product lines is based on the
MDE paradigm, aiming to automate many of the
phases of product line development. In particular
and using the proposed catalog, the UML domain
models can be obtained from feature models using
QVT pattern transformations (though these models
must be manually completed). The implementation
of the transformations as part of a conventional IDE
tool facilitates the work of the product line
developers. And, using its configuration capabilities,
the tool is also useful for the developer in charge of
deriving the final products. A first experience has
allowed the contrast with reality and the obtained
results are encouraging.

As future work, we consider an alternative
configuration process. The design level (instead of
fully implemented) packages can be merged into a
monolithic model (using existing MDE tools). The
resulting (platform independent) model will be used
as input to code generators tools. These tools are
precisely intended to generate the platform specific
models and the final code. We are evaluating some
of the best known tools in order to assess the
practical possibilities of this product line and MDE
alliance.

ACKNOWLEDGEMENTS

This work has been supported by the Junta de
Castilla y León (project VA018A07) and Spanish
MICIINN (project TIN2008-05675).

REFERENCES

Antkiewicz, M., & Czarnecki, K. (2004). Feature
modeling plugin for Eclipse. OOPSLA’04 Eclipse

technology exchange workshop.
Bosch, J. (2000). Design & Use of Software Architectures.

Adopting and Evolving a Product-Line Approach.
Addison-Wesley.

Clauß, M. (2001). Generic modeling using Uml extensions
for variability. Workshop on Domain Specific Visual
Languages at OOPSLA.

Czarnecki, K., & Eisenecker, U. W. (2000). Generative

Programming: Methods, Tools, and Applications.
Addison-Wesley.

Gomaa, H. (2000). Object Oriented Analysis and
Modeling for Families of Systems with UML. IEEE
International Conference for Software Reuse (ICSR6),
(pp. 89–99).

Griss, M. L., Favaro, J., & d'Alessandro, M. (1998).
Integrating feature modeling with the RSEB.
Proceedings of the Fifth International Conference on

Software Reuse, (pp. 76-85).
Halmans, G., & Pohl, K. (2003). Communicating the

Variability of a Software-Product Family to
Customers. Journal of Software and Systems
Modeling , 15--36.

Jacobson, I., Griss, M., & Jonsson, P. (1997). Software
Reuse. Architecture, Process and Organization for
Business Success. ACM Press. Addison Wesley

Longman.
Kang, K. C., Kim, S., Lee, J., & Kim, K. (1998). FORM:

A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures. Annals of Software
Engineering , 143-168.

Kang, K., Cohen, S., Hess, J., Nowak, W., & Peterson, S.
(1990). Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report, CMU/SEI-90-

TR-21, Software Engineering Institute (Carnegie
Mellon), Pittsburgh, PA 15213.

Laguna, M. A., González-Baixauli, B., & Marqués, J. M.
(2007). Seamless Development of Software Product
Lines: Feature Models to UML Traceability.
GPCE 07.

Laguna, M. A. & González-Baixauli, B (2008). Feature
Patterns and Product Line Model Transformations.

DSDM’08.
Lau, S. (2006). Domain Analysis of E-Commerce Systems

Using Feature-Based Model Templates”, . MASc
Thesis, ECE Department, University of Waterloo,
Canada.

Schobbens, P.-Y., Heymans, P., & Trigaux, J.-C. (2006).
Feature diagrams: A survey and a formal semantics.
RE , 136–145.

Sochos, P., Philippow, I., & Riebish., M. (2004). Feature-

oriented development of software product lines:
mapping feature models to the architecture. En LNCS
3263 (pp. 138-152).

Yu, Y., Lapouchnian, A., Leite, J., & Mylopoulos, J.
(2008). Configuring Features with Stakeholder Goals.
ACM SAC RE Track.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

298

