
TRANSFORMATION OF ORGANIZATION OF SOFTWARE

REQUIREMENTS SPECIFICATIONS

Yusuke Matsuo and Atsushi Ohnishi
Department of Computer Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

Keywords: Organization of Software Requirements Specification, Transformation of Software Requirements

Specification.

Abstract: Specific software functional requirements can be organized with different ways, such as user class oriented

organization, functional hierarchy oriented organization, stimulus oriented organization, and so on. User

class oriented software requirements specification is easy to understand for each class of the user’s

behaviours, but difficult to understand functional hierarchy. We adopt a controlled requirements language

named X-JRDL as a requirements language and propose a transformation method between two software

requirements specifications organized in different ways.

1 INTRODUCTION

In software development and maintenance, a

software requirements specification (SRS) is often

referred for revising requirements, designing
software, and modifying the specification. Specific

requirements of an SRS can be organized with

different ways (IEEE 1998). In (IEEE 1998) eight

templates of specific requirements of an SRS are

proposed. These are two temples organized by mode,

a template organized by user class, a template

organized by object, a template organized by feature,

a template organized by stimulus, a template
organized by functional hierarchy, and a template by

multiple organizations. Even if each of differently

organized SRSs specifies exactly the same software

requirements, the understandability of them are

different each other.

For example, user oriented SRSs may be

organized by user class, so readers who want to

know what kind of functions should be used by a
certain user and what kind of inputs should be

entered by a certain user prefer SRSs organized by

user class, while the readers cannot easily know

them in case of SRSs organized by functional

hierarchy. If an SRS organized by functional

hierarchy can be transformed into an SRS organized

by user class, the above problem can be solved, but

manual transformation of SRSs with different ways
is difficult in case of large SRSs especially.

Actually, only the section 3.2 of these templates

are different, but other sections are same each other

(IEEE 1998). The authors propose a method to

automatically transform SRSs of different

organizations and have developed a prototype

system based on the method.

2 REQUIREMEMTS LANGUAGE:

X-JRDL

We developed requirements model named
Requirements Frame and a text-base requirements

language named X-JRDL based on the model

(Ohnishi 1996). In this research we adopt X-JRDL

as a requirements language, since it is quite easy to

transform SRSs with X-JRDL organized differently.

Since X-JRDL aims to specify requirements of

file-oriented applications, this language provides 6

noun types (human, function, file, data, control, and
device) and 16 concepts including data flow, control

flow, data creation, file manipulation, data

comparison, and structure of data/file/function. The

16 concepts (10 verb type concepts and 6 adjective

type concepts) are shown in Table 1.

291

Matsuo Y. and Ohnishi A. (2009).
TRANSFORMATION OF ORGANIZATION OF SOFTWARE REQUIREMENTS SPECIFICATIONS.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 291-294
Copyright c© SciTePress

Table 1: Concepts provided by X-JRDL.

Concept Meaning

DFLOW Data flow

CFLOW Control flow

ANDSUB And-tree structure

ORSUB Or-tree structure

GEN Data creation

RET Retrieve a record in a file

UPDATE Update a record in a file

DEL Delete a record in file

INS Insert a record in a file

MANIP File manipulation

EQ, NE, LT, GT,
LE, GE

Logical operators

There are several verbs to represent one of these

concepts. For example, to specify a concept data

flow, we can use input, output, print out, display,

and send, and so on. Each concept has its own case

structure. The “cases” (Fillmore 1968) mean concept

about agents, objects, goals of the operations (Shank

1977). For example, the data flow (DFLOW)
concept has object, source, goal, and instrument

cases. The object case object corresponds to a data

which is transferred from the source case object to

the goal case object. So, a noun assigned to the

object case should be a data type noun. A noun in

the source or goal cases should be either a human or

a function type noun. If and only if a human type

noun is assigned to source or goal cases, some
device type noun should be specified as an

instrument case. These are illustrated in Fig. 1.

DFLOW

object

instrument

source
goal

deviceinstrument

function,

human

goal

function,

human

source

dataobject

noun typecase

Figure 1: Case structure of data flow (DFLOW).

When a user wants to write requirements of

another application domain, he may need a verb not

categorized into these 16 concepts. In such a case, he

can use a new verb if he defines its case structure.

Since a newly defined verb, its concept, and its
case structure can be registered in the verb

dictionary, he can use his own verbs as well as

provided verbs.

The case structure of each verb enables to detect
illegal usages of data and lack of cases. Suppose a

requirement sentence, "A user enters a retrieval

command with a terminal." Since the objective is “a

retrieval command” that is data type noun, “enters”

should be categorized into the DFLOW concept.

With the case structure of the DFLOW, this sentence

will be analyzed as shown in Table 2.

Table 2: Analysis of a requirement sentence "A user enters
a retrieval command with a terminal."

Concept: DFLOW

object source goal instrument

retrieval
command

user NOT
specified

terminal

In this sentence the goal case noun is not

specified. If indispensable case is not specified,

previously specified nouns of the same type become

candidates of the omitted case. In this way, a

requirement sentence is transformed into an internal

representation named CRD (Conceptual

Requirements Description). CRD is exactly based on
the case structures.

X-JRDL provides to use pronouns and omission

of nouns. We frequently come across such features

in Japanese sentences. The X-JRDL analyzer

automatically assigns a concrete word into a

pronoun or a lacked case.

The X-JRDL analyzer has a dictionary of nouns,

verbs and adjectives. When a requirements definer
uses a word which is not appeared in the dictionary,

the analyzer guesses a type of new noun and a

concept of new verb and adjective with the

Requirements Frame (Ohnishi 1996).

3 TRANSFORMATION OF SRS

ORGANIZATION

Specific requirements in SRS can be organized

differently and there exist several templates for SRS

(IEEE 1998). The section 3.2 of these templates are

different, but other sections are same each other. In
other words, only functional requirements are

differently specified.

As shown in section 2, each requirement

sentence with X-JRDL can be transformed into CRD

representation. We can express same requirement

sentence differently. For example, “User inputs

commands to system with keyboard” can be

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

292

expressed as “System accepts commands from user

with keyboard” or “Commands form user with

keyboard are received by system.” These three
sentences can be transformed into the same CRD

representation. This fact means that the CRD

representation is independent of surface expression

and shows conceptual meaning. We can derive

surface expression depending on organizations from

CRD representation.

For the organization of user class, we focus on

human type nouns in an SRS with X-JRDL, because
these nouns are external users of the SRS. Then we

make sections for each of the nouns.

For the organization of stimulus, we focus on

requirements sentences of data flow. If a human type

noun is assigned as the source case object, a noun

assigned as the object case of the sentence can be

regarded as an external input. Then we make

sections for each of the external inputs.
For the organization of functional hierarchy, we

focus on function type nouns. Then we make

sections for each of the nouns. Figure 2 shows a part

of SRS of stock management system organized by

functional hierarchy.

1) Stock management system consists of stock-in
manager, stock-out manager, and stock file
manager.
1.1) Stock-in manager

It receives a control from stock managing
officer and also gets stock-in data including
item name and amount via keyboard, then with
them updates stock master file and returns the
control to stock managing officer.

1.2) Stock-out manager
 It consists of retriever, stock-deliverer, and

orderer.
 1.2.1) Retriever

It receives control from stock managing officer.
….

Figure 2: SRS organized by functional hierarchy.

X-JRDL analyzer first clarifies unknown words

by asking to describer, and then divides complex

sentences and compound sentences into simple

sentences each of which has just one verb. Next, it

transforms each simple sentence into internal

representation, namely CRD representation. Table 3
shows transformed eight CRD representations of the

SRS shown in Figure 2.

In order to transform into SRS of user class

organization, we focus on human type nouns. There

exists only one human type noun in the example.

Table 3: CRD representations.

1: concept ANDSUB

agent stock management system

object stock-in manager

object stock-out manager

object stock file manager

2: concept CFLOW

source stock managing officer

goal stock-in manager

3: concept ANDSUB

agent stock-in data

object item name

object amount

4: concept DFLOW

agent stock-in data

source stock managing officer

goal stock-in manager

instrument keyboard

5: concept UPDATE

agent stock-in manager

source item name

goal stock master file

6: concept CFLOW

source stock-in manager

goal stock managing officer

7: concept ANDSUB

agent stock-out manager

object retriever

object stock-deliverer

object orderer

8: concept CFLOW

source stock managing officer

goal retriever

That is stock managing officer. In Table 3, there

exist 4 CRD representations including “stock

management officer.” So, we can select these 4
representations and transform them into 4

requirements sentences whose subjects are stock

managing officer as shown in Figure 3.

1) Stock managing officer
Stock managing officer passes control to stock-
in manager and retriever. He enters stock-in
data to stock-in manager with keyboard. He
gets control from stock-in manager.

Figure 3: SRS organized by user-class.

In the above example, requirements including

stock managing officer are specified and other

requirements such as functional structures are

TRANSFORMATION OF ORGANIZATION OF SOFTWARE REQUIREMENTS SPECIFICATIONS

293

omitted. So, each class of the users can easily

confirm the correctness of transformed requirements.

Other requirements will be attached to the
transformed requirements in order to keep the

completeness of the SRS.

In order to transform into SRS of stimulus

organization, we focus on external inputs in the SRS.

There exists only one external input, that is, “stock-

in data.” There exist two representations including

“stock in data.” We can select the 3rd representation

and the 4th representation in Table 3 and transform
them into two requirements sentences whose

subjects are stock-in data as shown in Figure 4.

1) Stock-in data
Stock-in data consists of item-name and
amount. Stock-in data is transferred from
stock managing officer with keyboard to
stock-in manager.

Figure 4: SRS organized by external inputs.

In Figure 4, only external input is specified and it
is very easy to check what kind of functions receives
these inputs.

We have developed a prototype system based on
our method with Java. Although our system is based
on Japanese-base language, our method is
independent of Japanese language.

We applied our method to an SRS of stock
management system using the prototype system This
SRS consists of 27 requirements sentences with X-
JRDL and organized by functional hierarchy. We
transformed this SRS into SRS by user class and
SRS by stimulus correctly, but some requirements
such as functional hierarchy are not transformed,
because requirements of functional hierarchy are not
categorized into user-class requirements or stimulus
requirements.

4 RELATED WORKS

In (Nuseibeh, Kramer, and Finkelstein, 1994), they
claim that SRS is specified from multiple viewpoints
and propose a consistency check method among
requirements form different viewpoints.

In (Martinez, Arias, Vilas, 2005), they propose a
merging method of requirements described by
different stakeholders.

In (Heitmeyer, Jeffords, Labaw, 1996), authors
propose a consistency checking method of formally
specified SRS. The above three methods cannot
generate SRS of differently organized.

In the author’s previous work (Zhang and
Ohnishi, 2004), a scenario from a certain viewpoint
can be transformed into a scenario from a different
viewpoint. The previous method enables to
transform scenarios from different viewpoints, but it
cannot be applied to SRS transformation.

5 CONCLUSIONS

We have developed a transformation method for
SRS by different organizations. We can transform
SRSs by user-class, functional hierarchy, and
stimulus organizations. Automatic transformation of
SRSs will contribute to generate differently
organized SRSs of high quality and lessen efforts of
specifying differently organized SRSs.

In (IEEE 1998) more types of organizations are
specified. These are organization by mode,
organization by object, organization by feature. The
enhancement of the transformation method for SRS
by these three organizations is left as a future work.

REFERENCES

Fillmore C.J., 1968. The Case for Case, Universals in
Linguistic Theory, ed. Bach & Harrms, Holy, Richard
and Winston Publishing, Chicago.

Heitmeyer C., Jeffords R., Labaw B., 1996. Automated
Consistency Checking of Requirements Specifications,
ACM Transactions on Software Engineering and
Methodology (TOSEM), Vol.5, Issue 3, pp.231-261.

IEEE, 1998. IEEE Recommended Practice for Software
Requirements Specification, IEEE std 830-1998.

Martinez A., Arias J., Vilas A., 2005. Merging
Requirements Views with Incompleteness and
Inconsistency, IEEE Australian Software Engineering
Conference (ASWEC’05), pp. 58-67.

Nuseibeh B., Kramer J., and Finkelstein A., 1994. A
Framework for Expressing the Relationships Between
Multiple Views in Requirements Specification, IEEE
Transactions on Software Engineering, Vol.20, No.4,
pp.760-763.

Ohnishi A., 1996. Software Requirements Specification
Database based on Requirements Frame Model, IEEE

2nd International Conference on Requirements
Engineering (ICRE96), pp.221-228.

Shank R., 1997. Representation and Understanding of
Text, Machine Intelligence 8, Ellis Honrood Ltd.,
Cambridge, pp.575-607.

Zhang H., Ohnishi A., 2004. A Transformation Method of
Scenarios from Different Viewpoints, IEEE 11th Asia-
Pacific Software Engineering Conference
(APSEC2004), pp.492-501.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

294

