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Abstract: A mobile ad hoc network is an autonomous system that is made up of collaborative mobile nodes. Nodes in 
mobile ad hoc networks have limited capabilities and dynamic topology. Authentication of network nodes 
and the establishment of secret keys among nodes are both target security objectives in ad hoc networks. 
The constrained devices and other special properties of ad hoc networks make achieving those security 
properties a challenging task. This paper proposes an authentication protocol, Ad-hoc On Demand 
Authentication Chain Protocol (AOAC), which allow individual node to authenticate each other and to 
establish a shared key for secure peer-to-peer communication, the authentication does not rely on any 
centralize trusted authority or fixed server and is not based on public key cryptography. To provide both 
node authentication and pair-wise authenticated key establishment we proposed a transitive authentication 
technique by which active attacks, specially the man-in-the-middle attack, can be prevented. The security of 
our protocol is analyzed using GNY logic. We also provided simulation and performance analysis of the 
proposed authentication protocol. 

1 INTRODUCTION 

Mobile ad hoc networks are gaining popularity as 
these networks are self organizing without requiring 
fixed infrastructure such as servers or access points. 
The parties involved might not have a common 
history. The devices forming an ad-hoc network are 
often small and portable. Therefore, they do not 
have much memory or computational power and 
they are probably not tamper-resistant. Connections 
are formed by jumping from point to point via other 
peer devices and not through dedicated router 
networks. These limitations pose some drastic 
demands on authentication protocols (Murthy and 
Manoj, 2004). 

Authentication service has become a challenging 
task in securing ad-hoc networks. Recent research 
work has come up with a variety of protocol for 
authentication. Most of the existing protocols have 
been devised and engineered based on some specific 

scenarios. More precisely they are not general 
solution rather they are application specific. 

Most of authentication techniques are based on 
public key cryptography, (Zhou and Haas, 1999), 
(Kong et al., 2001), (Narasimha et al., 2003), (Luo et 
al., 2002). Although such techniques have become 
quite mature and are widely deployed in wired 
networks such as the Internet, they usually do not 
adapt well to ad hoc networks. 

In this paper we proposed an efficient and secure 
authentication scheme for ad-hoc networks. The 
proposed scheme supports dynamic topology, 
limited resources and lack of central management of 
ad-hoc networks. The proposed authentication 
protocol allow individual node to authenticate each 
other and to establish a shared key for secure peer-
to-peer communication, the authentication does not 
rely on any centralize trusted authority or fixed 
server and is not based on public key cryptography. 
To provide both node authentication and pairwise 
authenticated key establishment we proposed a 
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transitive authentication technique by which active 
attacks, especially the man-in-the-middle attack 
(MITM), can be prevented. 
The rest of the paper is organized as follows. Section 
 2 gives a background of our proposed schemes. 
Section  3 describes our proposed authentication 
scheme. In Section  4 we present the security and 
complexity analysis of our proposed schemes. 
Finally we draw the conclusion in Section  5. 

2 BACKGROUD 

AOAC protocol is based on the technique used in 
the establishment of the network and groups keys 
proposed in (Hamad et al., 2008a). The main idea 
that the scheme proposed in (Hamad et al., 2008a) is 
based on is that active attacks, like MITM attack, 
can not be launched against nodes within the 
transmission range of each other. This is true 
because if node A sends a message to node B, an 
attacker E cannot intercepts the message because the 
original message will reach B since it is within A 's 
transmission range, see Figure 1. Active attacks like 
MITM attack can be launched against mobile ad-hoc 
networks nodes only when any two nodes are out of 
the transmission range of each other, so an attacker 
can easily intercept a message sent from one node, 
modify it and send it to the other node, see Figure 2. 
By the definition of ad-hoc network, during the 
formation phase of ad-hoc networks, nodes meet 
each other for the first time. So, the main concern in 
this phase is how a node can be sure that a message 
received from a certain node is really come from that 
node and not from another one, we call this message 
authentication. Entity authentication in this phase is 
not a concern because by the definition of ad-hoc 
network, nodes meet each other for the first time in 
this phase, so there is no shared key between them 
and public keys are not exchanged. So, nodes within 
the transmission range of each other can provide 
data origin authentication. The scheme we proposed 
in (Hamad et al., 2008a) is based on the above 
concept; each group of node within the transmission 
range of each other starts a key establishment 
process.  

In this section we give an overview of the key 
establishment scheme proposed in (Hamad et al., 
2008a). It is based on both key agreement and key 
transport algorithms proposed in (Hamad et al., 
2008b). The protocol is divided into four sub-
protocols. 
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Figure 1: Node A and B are within the transmission range 
of each other. 
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Figure 2: Node A and B are out of the transmission range 
of each other 

2.1 The Network Leader Election 
Protocol (NLEP) 

Each node in the network participates in this 
protocol to elect a node that will be the network 
leader, R, by locally broadcasting the group of its 
direct neighbours that form a complete graph. This 
leader should have the maximum number of 
immediate neighbours that form a complete graph 
i.e. graph with maximum size,  , among other nodes. 
Nodes apply the algorithm developed by Patric R. J. 
Östergård (Östergård, 2002) to calculate the 
maximum number of its immediate neighbours that 
form a complete graph. 

2.2 The Network Leader Confirmation 
Protocol (NLCP) 

After applying the network leader election protocol, 
each node learned the network leader and 

maxq nodes. To be sure that the elected node is really 
the network leader, other nodes wait for "Root 
Confirmation Message" (RCM) from maxq nodes to 

confirm that R belongs to maxq . We call maxq  
nodes, excluding R, the "Witness Group" (WG). 

2.3 The Network Key Establishment 
Protocol (NKEP) 

The network leader performs the network key 
establishment protocol with WG members to create 
the Network Key RK . Since WG members meet 
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each other for the first time and since they are within 
the transmission range of each other, they use ECBD 
key exchange algorithm (Hamad et al., 2008b) to 
establish the network key. We call the function that 
applies the key exchange algorithm, ECBD, "Key 
Exchange Function" (KEF). In NKEP KEF applies 
ECBD key exchange algorithm.  We assume that a 
base point P = (x, y) on elliptic curve in Eq(a, b) is 
chosen and both Eq(a, b) and P are universally 
known and used among the network members. We 
also assume that each node iN has generated its 
elliptic curve DH (ECDH) public and private keys, 

iNKU and 
iNKR respectively. The protocol works 

as follows: 
1. R finds the set of all cliques in its graph Rg , 

1 2{ , ,..., }R R R
R mQ q q q= , 

, 1,...,R
iR q i m∈ = and max Rq WG Q= ∈ , 

using the algorithm proposed by Patric R. J. 
Östergård (Östergård, 2002). 

2. To generate the network key RK , R performs 
key establishment between itself and WG 
members using ECBD algorithm (Hamad et al., 
2008b).  

To distribute the network key to the whole 
network, each node should have a shared key with a 
group of its immediate neighbours; we call this key 
the group key. 

2.4 The Groups Key Establishment 
Protocol (GKEP) 

To propagate the network key to all node, the 
network leader has to authenticate it self to the rest 
of the network; WG members including R trust each 
other because they are within the transmission range 
of each other. So, for the rest of nodes to trust R they 
should be within its transmission range, but this is 
infeasible, so other nodes should inherit this trust 
from WG members. This can be done by performing 
a key establishment between each member of WG 
and its immediate neighbours such that these 
neighbours form a complete graph. Using this key 
each WG member can propagate the network key to 
its immediate neighbours. The protocol assumes that 
all nodes do not change their position during the 
group key establishment protocol.  

The process of propagated group key 
establishment starting form R, continue until each 
node in the network either belongs to just one group 
leaded by a group leader or  be a leader of at least 
one group which implies that it belongs to a group. 

3 AOAC PROTOCOL 

AOAC protocol is based on the technique that we 
proposed in the establishment of the network and 
groups keys, see (Hamad et al., 2008a). It assumes 
that the network is partitioned into a set of groups 
and each group is leaded by one leader with leaders 
connecting these groups. When we say that leaders 
connecting groups, we do not mean a physical 
connection, we mean an authentication connection 
i.e. if node Ni connects two group (Ni belongs to one 
group and leads another one or leads both groups), 
then the only way for these two groups to 
authenticate each other is through Ni; because Ni 
shares a key with the first group and shares another 
key with the other group. So, when a source node 
wants to authenticate a destination node, it has to 
find a set of group leaders that authenticate the 
source to destination. 

AOAC is a protocol for creating chain of group 
leader nodes that authenticate the source node to the 
destination node. Also, the created chain will 
authenticate the destination node to the source node. 
This will be done by constructing a forward path that 
authenticate the source node to the destination node 
and a reverse path that authenticate the destination 
node to source node. We assume that the source and 
destination nodes belong to different groups. In case 
that the source and destination nodes belong to the 
same group (trivial case), they can authenticate each 
other through their group leader and their peer-to-
peer session key, , iL NK (A. M. Hamad et al., 
2008b), without using the AOAC as described 
below.  

Before establishing the Transitive Authentication 
Protocol, discussed below, of AOAC protocol, both 
the source and the destination nodes should know 
the ID and the group ID of each other, we mean by 
the group, the group that each of them belongs to, 
not they lead. This piece of information (the group 
ID) help the AOAC to improve the performance of 
the authentication chain discovery protocol as 
discussed in the next section. They also should 
exchange the ECDH public keys (Hamad et al., 
2008b) of each other, this will prevent the inside 
man-in-the-middle attack as discussed later. These 
three pieces of information, node ID, group ID and 
public key along with a nonce value to prevent 
replay attacks, of both the source and destination 
nodes should be signed by the network key to 
prevent outside MITM attack. AOAC protocol is 
divided into two sub-protocols:  
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• Authentication Chain Discovery Protocol: This 
is used to find a chain of leader nodes that 
authenticate the source node to the destination 
node and vise versa  

• Transitive Authentication Protocol: This 
protocol allows two nodes to use the 
authentication chain to authenticate each other 
and to establish a direct pairwise shared key 

3.1 Authentication Chain Discovery 
Protocol 

In this protocol we assume that the group leader ID 
is part of the group ID i.e. we can identify the group 
leader ID from the group ID, So when the source 
node want to find an authentication chain to a 
destination node which does not belongs to groups it 
leads or belongs to, first it checks if the destination 
group leader is one of the leader members of the 
groups it leads or belongs to. If it is one of them, it 
sends it a "Chain Request (CREQ)", this will save 
communication cost; because other nodes are not 
able to deliver the request to the destination node, 
otherwise the source node sends a (CREQ) to its 
group leader and to leader members of the groups it 
leads. For example Figure 3 shows the trivial case 
when node L4 (leader of group G4) wants to 
communicate with node L1 (leader of group G1) and 
both nodes belongs to the same group (group G1). 
So they can authenticate each other using their 
shared session key. Note that gray nodes represent 
leader nodes and white nodes represent non-leader 
nodes. 

In Figure 4, the source node is L4 and the source 
group is G1 leaded by L1, the destination node is L8 
and the destination group is group G6 leaded by 
node L6. As we see L8 neither belongs to group G4, 
leaded by L4, nor group G1, but its leader L6 
belongs to group G4. So, L4 will forward the CREQ 
to leader node L6 and nodes L1, L5, L2, and L3 are 
ignored because they are not able to deliver the 
CREQ message to L8. 

If the source node is the network leader, it sends 
the CREQ message to leader members of groups it 
leads; this is because the network leader does not 
belong to any group (does not have a leader) and set 
the source group ID to the witness group ID. When a 
node N sends or forwards a CREQ message to a 
given node, this node should belongs to groups that 
N leads or belongs to. CREQ is also sent to leader 
members to save communication cost; because non-
leader members are not able to forward CREQ 
message to nodes outside the group it belongs to. 
The CREQ message contains the following: 

• Source node: this is an ID that uniquely 
identifies the source node. 

• Source group: the ID of the group that the 
source node belongs to.  

• Destination node: this is an ID that uniquely 
identifies the destination node  

• Destination group: the ID of the group that the 
destination node belongs to. 

• Authenticator count:  it is similar to hop count, 
it is simply a counter that count the number of 
node in the authentication chain 

• Sequence Number: Serves as a unique ID of the 
CREQ, this sequence number allows nodes to 
know which "Chain Reply (CREP)", described 
latter, corresponds to a given CREQ. 
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Figure 3: L4 and L1 are leader nodes and belong to the 
same group (group 1). 
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Figure 4: The destination node L8 neither belongs to 
group 4 nor group 1. 

3.2 Transitive Authentication Protocol 

If the source node qN
i pN G∈  wants to 

communicate with the destination node vN
j uN G∈ : 

1. Ni unicasts a communication request message 
(MREQ), its ID (Ni), group ID ( qN

pG ), its 

public key 
iNKU  and a nonce value ir  signed 
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by RK i.e. 
( { , , , })q

R i

N
i p N iK

Sign MREQ N G KU r , to 
Nj.  

2. When Nj receives a MREQ from Ni it extracts 
the data from the message and store it then send 
a communication reply message (MREP), 

( { , , , })u
R j

N
j v N jK

Sign MREP N G KU r  

signed by RK  to Ni and wait for 
Authentication Request Message (AREQ), 
explained later, from one of leader members 
that belongs to vN

uG or belongs to one of groups 
it leads. AREQ message has the following 
fields: 
1. The source node ID  
2. The source group ID. 
3. The destination node ID  
4. The destination group ID. 
5. The hash value of the Session Key (KS) 

generated by the two parties Elliptic Curve 
Diffie-Hellman (ECDH) group key 
agreement using the source and destination 
node's public key 

iNKU and 
jNKU  that 

Ni and Nj extract from the MREQ and 
MREP respectively along with the nonce 
value 1jr +  to prevent replay attack. This 
key is used for authentication between the 
source and destination node and for peer-
to-peer communication between the source 
and destination if needed. 

3. Node Ni applies the "Ad-hoc On-Demand 
Authentication Chain (AOAC)" described 
above, to find an "Authentication Chain (AC)" 
to Nj. The authentication chain is a set of group 
leader nodes that authenticate the source node to 
the leader of the destination group or to a leader 
member leaded by the destination node which 
authenticate the source node to the destination 
node. Also, the created chain will authenticate 
the destination node to the source node. 

4. Node Ni search its authentication chain table for 
an authentication chain to the destination group 
then sends an Authentication Request (AREQ) 
message to the first member of the 
authentication chain, 1h , pointed to by "Next 
Leader" field in its authentication chain table. 
This message is signed by the common group 
key between itself and h1. The first member of 

the authentication chain should be one of the 
following: 
i. A member of a group leaded by Ni i.e. 

1
iN

xh G∈ , where iN
xG is group number x 

leaded by node Ni. In this case Ni sends h1 
an AREQ message signed by the common 
group key between itself and h1 after 
incrementing jN 's nonce by one ( 1jr + ),  

( { , , , , ( , 1)}).q v
N i

Gx

N N
i p j u jK

Sign AREQ N G N G H KS r +

Note that 1h is already has an authenticated 
copy of its group leader's public key 

iNKU ; so Ni have not to authenticate 
itself to h1. 

ii. A member of qN
pG which means that 

1, qN
i pN h G∈ with qN as their leader: In 

this case iN appends its public key signed 

by ,q iN NK to the AREQ message and send 

the whole message to h1 signed by the 
common group key between itself and h1 

after incrementing jN 's nonce by one 

( 1jr + ). 

,

( { , , , , ( , 1)}

|| || ( ))

q v
Nq

Gp

i N N iq i

N N
i p j u jK

N K N

Sign AREQ N G N G H KS r

KU Sign KU

+ . 

iii. The leader of group qN
pG i.e. 1 qh N= : In 

this case iN appends its public key signed 

by 
1 ,h iN NK to the AREQ message and send 

the whole message to h1 signed by the 
common group key between itself and h1 

after incrementing jN 's nonce by one 

( 1jr + ). 
1

1

,1

( { , , , , ( , 1)}

|| || ( ))

h v
N h
Gp

i h N ii

N N
i p j u jK

N K N

Sign AREQ N G N G H KS r

KU Sign KU

+ . 

5. When the first member of the authentication 
chain, h1, receives the AREQ message, it 
verifies the signature of 

iNKU i.e. get an 
authenticated copy of the public key of Ni. We 
have three cases: 
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i. If 1
iN

xh G∈ , then h1 is already has an 

authenticated copy of 
iNKU ; because Ni 

is  h1's leader and each node should have an 
authenticated copy of its group leader's 
public key as discussed above.  

ii. If 1, qN
i pN h G∈ , then h1 sends iN 's 

public key signed by ,q iN NK along with its 

public key 
1hKU to qN . When 

qN receives 
1
,

ih NKU KU  and 

,
( )

N N iq iK NSign KU from h1, it generates 

,q iN NK  using the KDF, 

, ( , )
q i q iN N N NK KDF KM KU=  then 

verifies the signature 

,
( )

N N iq iK NSign KU . Node qN  generates 

1 1, ( , )
qN h q hK KDF KM KU= and signs 

iNKU with
1,qN hK , 

, 1
( )

N h iqK NSign KU , 

then sends both 
iNKU  and 

, 1
( )

N h iqK NSign KU  to h1. When h1 

receives 
, 1

( )
N h iqK NSign KU , it verifies 

the signature using 
1,qN hK and get the 

authenticated copy of iN 's public key. 

iii. If 1 qh N= , then h1 generates 
1 , ih NK  

using the KDF, 

1 1, ( , )
i ih N h NK KDF KM KU=  then 

verifies the signature 
,1

( )
h N iiK NSign KU  

received before from iN  and get the 

authenticated copy of iN 's public key. 

6. After h1 verifies the signature, it append the 
authenticated 

iNKU to the AREQ message, 
1{ , , , , ( , 1)} ||h v

i

N N
i p j u j NAREQ N G N G H KS r KU+

,and sign the whole message by the common 
group key between itself and the next member 
in the authentication chain, h2 pointed to by 
"Next Leader" field in its authentication chain 
table; because both h1 and h2 belong to the same 
group which mean that they trust each other. As 

we mentioned before, every two successive 
nodes in the authentication chain trust each 
other because they are belong to same group. 

7. Upon receiving the signed AREQ message from 
the last member of the authentication chain nh , 
Nj verifies the signature using the group key it 
shares between itself and the nh  then compare 

the two copies of 
iNKU (the one from MREQ 

and the one that it received from nh ). The 

destination node generates KS, increment jr by 

one, compute the hash value ( , 1)jH KS r +  

and compare it to that it received form nh in the 
AREQ message. This means that the destination 
node got a confirmation from the source node 
that it received the destination node's public 
key, 

jNKU , by the MREP message. Node Nj, 

then, sends an Authentication Reply (AREP) 
message to the last member of the 
authentication chain nh  pointed to by "Next 
Leader" field in its authentication chain table, 
this message is signed by the common group 
key between itself and nh . The last member of 
the authentication chain should be one of the 
following: 
i. A member of a group leaded by Nj i.e. 

JN
n yh G∈ , where jN

yG is group number y 

leaded by node Nj.: In this case Nj sends nh  
an AREP message signed by the common 
group key between itself and nh  after 

incrementing iN 's nonce by one ( 1ir + ) 
to prevent replay attack,  

( { , , , , ( , 1)})q v
N j

Gy

N N
i p j u iK

Sign AREP N G N G H KS r +  

ii. A member of vN
uG which means that 

, vN
j n uN h G∈ with vN as their leader: In 

this case jN appends its public key signed 

by ,v jN NK to the AREP message and send 

the whole message to nh signed by the 

common group key between itself and nh  

after incrementing iN 's nonce by one 

AD-HOC ON DEMAND AUTHENTICATION CHAIN PROTOCOL - An Authentication Protocol for Ad-hoc Networks

279



 

( 1ir + ). 

,

( { , , , , ( , 1)}

|| || ( ))

q v
Nv

Gu

j N N jv j

N N
i p j u iK

N K N

Sign AREP N G N G H KS r

KU Sign KU

+  

iii. The leader of group vN
uG i.e. n vh N= : In 

this case jN appends its public key signed 

by ,n jh NK to the AREP message and send 

the whole message to nh  signed by the 

common group key between itself and nh  

after incrementing iN 's nonce by one 

( 1ir + ).

,

( { , , , , ( , 1)}

|| || ( ))

q n
hn
Gu

j h N jn j

N h
i p j u iK

N K N

Sign AREP N G N G H KS r

KU Sign KU

+  

8. When the last member of the authentication 
chain, nh , receives the AREP message, it 

verifies the signature of 
jNKU i.e. get an 

authenticated copy of the public key of Nj. We 
have three: 
i. If jN

n yh G∈ , then nh is already has an 

authenticated copy of 
jNKU ; because Ni 

is  nh 's leader and each node should have 
an authenticated copy of its group leader's 
public key as we discussed above. 

ii. If , vN
j n uN h G∈ , then nh sends jN 's 

public key signed by ,v jN NK along with its 

public key 
nhKU to vN . When 

vN receives ,
n jh NKU KU  and 

,
( )

N N jv jK NSign KU from nh , it generates 

,v jN NK  using the KDF, 

, ( , )
v j v jN N N NK KDF KM KU=  then 

verifies the signature 

,
( )

N N jv jK NSign KU . Node vN  

generates 

, ( , )
v n nN h v hK KDF KM KU= and 

signs 
jNKU with ,v nN hK , 

,
( )

N h jv nK NSign KU , then sends both 

jNKU  and 
,

( )
N h jv nK NSign KU  to nh . 

When nh receives 
,

( )
N h jv nK NSign KU , it 

verifies the signature using ,v nN hK and get 

the authenticated copy of jN 's public key. 

iii. If n vh N= , then nh  generates ,n jh NK  

using the KDF, 

, ( , )
n j n jh N h NK KDF KM KU=  then 

verifies the signature 
,

( )
h N jn jK NSign KU  

received before from jN  and get the 

authenticated copy of jN 's public key. 

9. After hn verifies the signature, it append the 
authenticated 

jNKU to the signed AREP 

message 
{ , , , , ( , 1)} ||q v

j

N N
i p j u i NAREP N G N G H KS r KU+

and sign the whole message by the common 
group key between itself and the previous 
member in the authentication chain, 1nh −  
pointed to by "Next Leader" field in its 
authentication chain table; because both hn and 

1nh −  belong to the same group which mean that 
they trust each other. As we mentioned before, 
every two successive nodes in the authentication 
chain trust each other because they are belong to 
one group. 

10. Upon receiving the signed AREP message from 
the first member of the authentication chain 1h , 
Ni verifies the signature using the group key it 
shares between itself and the 1h  then compare 

the two copies of 
jNKU (the one from MREP 

and the one that it received from 1h ). The 

source node generate KS, increment ir by one, 

compute the hash value ( , 1)iH KS r +  and 

compare it to that it received form 1h in the 
AREP message. If they are the same, the source 
node is sure that the destination node gets the 
right session key. AREP message format is 
similar to AREQ message format. 
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4 DISSCUSION AND ANALYSIS 

In this section we provide a detailed analysis 
evaluating the security and performance of our 
proposed authentication protocol. The metrics for 
the performance evaluation are the communication 
overhead and computation costs (Du et al., 2005). 
The security analysis of our proposed scheme is 
based on formal verification techniques. We present 
a detailed verification of our proposed key AOAC 
authentication protocol using the logic of Gong, 
Needham and Yahalom (Gong et al., 1990). 

4.1 Security Analysis 

In our AOAC protocol, node-to-node authentication 
depends on TAP protocol. So, in this section we 
discuss the security analysis of TAP protocol 
discussed in section 3.2 by applying formal analysis 
and the GNY logic. Without lose of generality we 
suppose that the authentication chain consists of 
three nodes ( 1 2 3, ,h h h ) and the sender node is A 

and the receiver node is B where 1 1, LA h G∈ , in 

this case 1
2 2

hh G∈ , 2
3 3

hh G∈ , 3
4
hB G∈ ; since 

each node must belongs to only one group leaded by 
only one leader. This case is the most general case. 
The protocol works as follows: 

M1. : ,a AA B r KU→  

M2. : ,b BB A r KU→  

M3. 
3

1

,

1 1 4: ( { , , , , ( , 1)}

|| || ( ))

L
G

L A

hL
bK

A K A

A h Sign AREQ A G B G H KS r

KU Sign KU

→ +  

M4. 
1 ,1 : , ( )

L Ah K Ah L KU Sign KU→  

M5. 
, 11 : ( , )

L hK AL h Sign T KU→  

M6. 3
1
2

1 2 1 4: ( { , , , , ( , 1)}

|| || )

h
G

hL
bK

A

h h Sign AREQ A G B G H KS r

T KU

→ +  

M7. 3
2
3

2 3 1 4: ( { , , , , ( , 1)}

|| || )

h
G

hL
bK

A

h h Sign AREQ A G B G H KS r

T KU

→ +  

M8. 3
3
4

3 1 4: ( { , , , , ( , 1)}

|| || )

h
G

hL
bK

A

h B Sign AREQ A G B G H KS r

T KU

→ +  

The goal is to prove that B got an authenticated 
copy of A's public key and that it computed the peer-
to-peer shared key between itself and A. As we see 
we only have to prove that B got an authenticated 
copy of A's public key; because the second goal 
follows from the first goal since both A and B use 

ECDH protocol in computing the common shared 
key between themselves. Also we can consider the 
group key of two nodes belonging to the same group 
as a shared key between those two nodes e.g. we can 
consider 

1

L
GK as 

1,A hK because 1 1, LA h G∈ . Node 
B follows the same steps to deliver the AREP 
message to node B as we discussed above, so we 
only prove the first part of the protocol i.e. B got an 
authenticated copy of A's public key. From the above 
discussions, the above steps will take the following 
form: 

M1. ,a AB r K+  

M2. ,b BA r K+  
M3. 

, , 11 { , , ( ), ,{ , } }
L A A A hK A A b B K Kh A B E K K r K −+ + +  

M4. 
1 ,
, ,{ }

L Ah A A KL K K K+ + +  

M5. 
, 11 { , } ~ A

L h

K
A Kh T K A++ > ⎯⎯⎯→  

M6. 
,1 22 { , , , ,{ , } } ~ A

A h h

K
A b B K Kh A B T K r K A+

−+ + > ⎯⎯⎯→  

M7. 
,2 33 { , , , ,{ , } } ~ A

A h h

K
A b B K Kh A B T K r K A+

−+ + > ⎯⎯⎯→  

M8. 
,3

{ , , , ,{ , } } ~ A

A h B

K
A b B K KB A B T K r K A+

−+ + > ⎯⎯⎯→
 

Where 
1 1,

L
A h GK K≡ , 1

1 2 2,
h

h h GK K≡ , 

2

2 3 3,
h

h h GK K≡ , 3

3 4,
h

h B GK K≡  and 
1,L hK  and 

,L AK are the one-to-one shared keys between (L, h1) 
and (L, A) respectively. Notice that we replace 
H(KS, rb) by { , }

Ab B Kr K −+ . When node B receive 
H(KS, rb) in step M8, the following statements are 
true: 

• Node B is sure that node A received KUB in step 
M2 

• Node B is also sure that KUA, received in step 
M1, is sent by node A.  

• Node B is sure that H(KS, rb) is fresh because it 
is a function of rb 

• H(KS, rb) can only computed by either A or B 
and can be verified by B. 

The above four statement are true because KS, 
which is an ECDH shared key between A and B, can 
be calculated only by either A as a function of  KRA 
(which is only known by A) and KUB or by B as a 
function of KRB (which is only known by B) and 
KUA. As we know that GNY logic does not have 
notation for key agreement operations i.e. we cannot 
express KS in GNY logic. So to work around this 
problem we try to find notations in GNY logic that 
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achieve the above four statements this notation 
is{ , }

Ab B Kr K −+ . It is clear that the first two 
statement are true because the encryption is done 
using A's private key which is only known by A. 
Also B sure that { , }

Ab B Kr K −+ is fresh because it is 
a function of rb. Finally A is the only node that can 
generate { , }

Ab B Kr K −+  and B can verify it. So it is 

safe to replace H(KS, rb) by { , }
Ab B Kr K −+ in  the 

above symbolic steps just to prove the security of 
our protocol. Note that we cannot replace H(KS, rb) 
by { , }

Ab B Kr K −+ in the original protocol because 
we want to prove that B is sure that A computed the 
peer-to-peer shared key between itself and B. In the 
GNY version this goal follows from the first goal 
discussed above which is to prove that B got an 
authenticated copy of A's public key.   Notice also 
that we replace signature (Sign) with encryption (E) 
which does not affect the analysis. We did this 
because there is no notation for signature operation 
in the GNY logic. We expressed the assumptions 
(initial possessions and beliefs) and goals (target 
possessions and beliefs) as statements in a symbolic 
notation. To prove the target possessions and beliefs, 
we use the SPEER II (Saul and Hutchison, 2001). 
SPEAR II, the Security Protocol Engineering and 
Analysis Resource II, is a protocol engineering tool. 
The SPEAR II tool consists of four components that 
integrated into one consistent and unified graphical 
interface: a protocol specification environment 
(GYPSIE), a GNY statement construction interface 
(Visual GNY), a Prolog-based GNY analysis engine 
(GYNGER) and a message rounds calculator. 
GYNGER is a Prolog-based analyzer that performs 
automated analysis of protocols by using the GNY 
modal logic. Using this tool and the initial 
possessions and beliefs as input to SPEAR II, the 
target possessions and beliefs are proved. 

4.2 Performance Analysis 

In this section we provide a detailed analysis 
evaluating the performance of our proposed 
authentication protocol. Computation and 
communication costs are function of the network 
size. So to compute those costs we first have to 
compute the average number of nodes that each 
node deals with. Many protocols assume that each 
node in the network deals with all the nodes in the 
network, so the computation and communication 
costs depend on the exact network size. In our 
AOAC protocol, node-to-node authentication 

depends on TAP protocol. So, computation and 
communication costs in our scheme depend on the 
length of the authentication chain (AC). Since the 
AC consists of leader nodes, then the length of AC 
equal to at most the number of leader nodes in the 
network. So, we first have to find the average 
number of leader nodes in the network. We use 
simulation to compute this value. 

 
Figure 5: Relationship between N and the average number 
of leader nodes. 

 
Figure 6: Relationship between N and the ratio of the 
number of leader nodes to N. 

4.2.1 Simulation 

We designed a simulator that simulates our proposed 
protocol. We use C++ to create our simulator. The 
simulator is used to compute the average number of 
leader nodes in the network. In our simulation we 
use the random waypoint mobility model. Each node 
moves at a speed uniformly distributed between 0.5 
and 20 m/s towards a location randomly selected in a 
square environment space of 1000m × 1000m. When 
it reaches the destination, it waits for a pause time of 
maximum 60 sec. and then moves towards a new 
location. The number of nodes N grows from 100 to 
1000 nodes and increase by 100 nodes each time 
Each simulation runs for 1000 seconds of simulated 
time and we get the result of the simulation every 
100 seconds. The transmission range is 300. 
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In Figure 5, which is based on our simulation 
results, we plot the total number of nodes N against 
the average number of leader nodes. As we see from 
the figure that the average number of leader nodes 
increases as the total number of nodes increases. To 
find the order of the average number of leader nodes 
with respect to N and to show its growth rate, we 
find the curve that fit the average number of leader 
nodes.  

The curve fitting analyses were performed on 
LAB Fit (Silva and Silva, 1999-2007), see Figure 5. 
Using LAB Fit, we found that the following 
equation (1) yields the best approximation or best fit 
for the measured number of leader nodes for given 
N. We use the Coefficient Correlation ( ρ ) to find 
the goodness of fit and found ρ = 0.991848 which 
is a high value and which indicates that the average 
number of leader nodes increases as the total number 
of nodes increases. 

1 0.6 .ln( )y x x=  (1)

2 (0.6 / ) / ln( )y x x=  (2)

Where x is the total number of nodes and y1 is 
the average number of leader nodes. We might ask 
about the rate of growth of y1 in equation (1). As we 
see from Figure 6 the ratio of the average number of 
leader nodes to the total number of nodes decrease 
as the total number of nodes increase which means 
that the size of the authentication chain, which 
consists of leader nodes, will not approach the total 
number of nodes. Also, if we apply the curve fitting 
analyses discussed above we get equation (2) with a 
correlation coefficient ρ = -0.937958. 

From the above discussion we see that the 
average number of leader nodes has a value of 

( ln( ))O N N , which considered a reasonable 
value with respect to the total number of nodes N, 
with decreasing growth rate which insure that it will 
never approaches N. 

4.2.2 Complexity Analysis 

As we discussed in section 3, AOAC protocol is 
based on the TAP protocol, so here we compute the 
computation complexity of TAP protocol. We 
compute the commutation complexity with respect 
to the sender node, the receiver node, and to any 
node in the authentication chain. As discussed in 
section 3.2, a sender performs two symmetric 
encryptions and one hash operation before sending 
its AREQ message to the first node in the 

authentication chain and performs one symmetric 
decryption operation after he gets the AREP message 
from the first node in the authentication chain. Also 
the receiver node performs one symmetric 
decryption operation after he gets the AREQ 
message from the last node in the authentication 
chain and performs two symmetric encryption 
operations and one hash operation before sending its 
AREP to the last node in the authentication chain. 
Each node in the authentication chain performs two 
symmetric decryption operations to decrypt the 
incoming AREQ and AREP messages received from 
the previous and next nodes respectively and two 
encryption operations to encrypt the outgoing AREQ 
and AREP messages sent to the next and previous 
nodes respectively. So, it is clear that the 
computation cost of our proposed authentication 
protocol is small compared to other authentication 
protocol that use asymmetric encryption techniques; 
this is because the computation cost of symmetric 
encryption is very small compared to that of 
asymmetric encryption. 

Now we consider the communication cost. TAP 
protocol needs two rounds with respect to the sender 
and receiver to authenticate each other; because each 
of them waits for two messages from the other one 
to complete the authentication process. The total 
number of messages of TAP protocol depends on the 
length of the authentication chain which is at most 
equal to the total number of leader nodes; because 
the authentication chain consists only of leader 
nodes. But form Equation (1) the number of leader 
modes is 0.6 .ln( )n n which means that the 
average length of the authentication chain is of order 

( .ln( ))O n n . Now we calculate the number of 
message for the sender, the receiver and for each 
node in the authentication chain. From the 
discussion in section 3 we conclude that the number 
of message for the sender is four and so is the 
receiver. The total number of message for each node 
in the authentication chain is two. So, the total 
number of messages is 
4 4 2*0.6 .ln( ) 8 1.2 .ln( )n n n n+ + = +  i.e. 

TAP protocol requires 8 1.2 .ln( )n n+ global 

unicasts, which is of order ( .ln( ))O n n .be a 
vertical spacing of 12-point between authors. 
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5 CONCLUSIONS 

AOAC which is an authentication protocol that 
provide authentication to the key establishment 
protocol we proposed in (Hamad et al., 2008a) and 
allows any two nodes to establish a peer-to-peer key 
for authentication and one-to-one secure 
communication. In our proposed authentication 
protocol we use symmetric key cryptography to 
provide authentication compared to may other 
authentication protocol that use public key 
cryptograph. It assumes that the network is 
partitioned into a set of groups and each group is 
leaded by one leader with leaders connecting these 
groups. When we say that leaders connecting 
groups, we do not mean a physical connection, we 
mean an authentication connection i.e. if node Ni 
connects two group (belongs to one group and leads 
another one or leads both groups), then the only way 
for these two groups to authenticate each other is 
through Ni; because Ni shares a key with the first 
group and shares another key with the other group. 
So, when a source node wants to authenticate a 
destination node, it has to find a set of group leaders 
that authenticate the source node to the destination 
node. It is divided into two sub-protocols:  

• Authentication Chain Discovery Protocol  
• Transitive Authentication Protocol 

We prove the security of AOAC protocol using the 
GNY logic and use simulation and complexity 
analysis to measure its performance. AOAC has low 
computation overhead since it use symmetric key 
encryption for verifying the identity of nodes, low 
communication of order ( / ln( ))O n n  and low 
memory cost which is constant. 
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