
AD-HOC ON DEMAND AUTHENTICATION CHAIN PROTOCOL
An Authentication Protocol for Ad-hoc Networks

A. M. Hamad
Faculty of Informatics and Computer Sciences, British University in Egypt (BUE), Egypt

W. I. Khedr
Faculty of Computers and Informatics, Zagazig University, Egypt

Keywords: Mobile ad-hoc networks, Authentication, Man-in-the-middle attack, Key establishment, Transitive
authentication.

Abstract: A mobile ad hoc network is an autonomous system that is made up of collaborative mobile nodes. Nodes in
mobile ad hoc networks have limited capabilities and dynamic topology. Authentication of network nodes
and the establishment of secret keys among nodes are both target security objectives in ad hoc networks.
The constrained devices and other special properties of ad hoc networks make achieving those security
properties a challenging task. This paper proposes an authentication protocol, Ad-hoc On Demand
Authentication Chain Protocol (AOAC), which allow individual node to authenticate each other and to
establish a shared key for secure peer-to-peer communication, the authentication does not rely on any
centralize trusted authority or fixed server and is not based on public key cryptography. To provide both
node authentication and pair-wise authenticated key establishment we proposed a transitive authentication
technique by which active attacks, specially the man-in-the-middle attack, can be prevented. The security of
our protocol is analyzed using GNY logic. We also provided simulation and performance analysis of the
proposed authentication protocol.

1 INTRODUCTION

Mobile ad hoc networks are gaining popularity as
these networks are self organizing without requiring
fixed infrastructure such as servers or access points.
The parties involved might not have a common
history. The devices forming an ad-hoc network are
often small and portable. Therefore, they do not
have much memory or computational power and
they are probably not tamper-resistant. Connections
are formed by jumping from point to point via other
peer devices and not through dedicated router
networks. These limitations pose some drastic
demands on authentication protocols (Murthy and
Manoj, 2004).

Authentication service has become a challenging
task in securing ad-hoc networks. Recent research
work has come up with a variety of protocol for
authentication. Most of the existing protocols have
been devised and engineered based on some specific

scenarios. More precisely they are not general
solution rather they are application specific.

Most of authentication techniques are based on
public key cryptography, (Zhou and Haas, 1999),
(Kong et al., 2001), (Narasimha et al., 2003), (Luo et
al., 2002). Although such techniques have become
quite mature and are widely deployed in wired
networks such as the Internet, they usually do not
adapt well to ad hoc networks.

In this paper we proposed an efficient and secure
authentication scheme for ad-hoc networks. The
proposed scheme supports dynamic topology,
limited resources and lack of central management of
ad-hoc networks. The proposed authentication
protocol allow individual node to authenticate each
other and to establish a shared key for secure peer-
to-peer communication, the authentication does not
rely on any centralize trusted authority or fixed
server and is not based on public key cryptography.
To provide both node authentication and pairwise
authenticated key establishment we proposed a

274
M. Hamad A. and I. Khedr W. (2009).
AD-HOC ON DEMAND AUTHENTICATION CHAIN PROTOCOL - An Authentication Protocol for Ad-hoc Networks.
In Proceedings of the International Conference on Security and Cryptography, pages 274-284
DOI: 10.5220/0002235102740284
Copyright c© SciTePress

transitive authentication technique by which active
attacks, especially the man-in-the-middle attack
(MITM), can be prevented.
The rest of the paper is organized as follows. Section
 2 gives a background of our proposed schemes.
Section 3 describes our proposed authentication
scheme. In Section 4 we present the security and
complexity analysis of our proposed schemes.
Finally we draw the conclusion in Section 5.

2 BACKGROUD

AOAC protocol is based on the technique used in
the establishment of the network and groups keys
proposed in (Hamad et al., 2008a). The main idea
that the scheme proposed in (Hamad et al., 2008a) is
based on is that active attacks, like MITM attack,
can not be launched against nodes within the
transmission range of each other. This is true
because if node A sends a message to node B, an
attacker E cannot intercepts the message because the
original message will reach B since it is within A 's
transmission range, see Figure 1. Active attacks like
MITM attack can be launched against mobile ad-hoc
networks nodes only when any two nodes are out of
the transmission range of each other, so an attacker
can easily intercept a message sent from one node,
modify it and send it to the other node, see Figure 2.
By the definition of ad-hoc network, during the
formation phase of ad-hoc networks, nodes meet
each other for the first time. So, the main concern in
this phase is how a node can be sure that a message
received from a certain node is really come from that
node and not from another one, we call this message
authentication. Entity authentication in this phase is
not a concern because by the definition of ad-hoc
network, nodes meet each other for the first time in
this phase, so there is no shared key between them
and public keys are not exchanged. So, nodes within
the transmission range of each other can provide
data origin authentication. The scheme we proposed
in (Hamad et al., 2008a) is based on the above
concept; each group of node within the transmission
range of each other starts a key establishment
process.

In this section we give an overview of the key
establishment scheme proposed in (Hamad et al.,
2008a). It is based on both key agreement and key
transport algorithms proposed in (Hamad et al.,
2008b). The protocol is divided into four sub-
protocols.

BA

E

M
M'

M

Figure 1: Node A and B are within the transmission range
of each other.

BA E
M M'

Figure 2: Node A and B are out of the transmission range
of each other

2.1 The Network Leader Election
Protocol (NLEP)

Each node in the network participates in this
protocol to elect a node that will be the network
leader, R, by locally broadcasting the group of its
direct neighbours that form a complete graph. This
leader should have the maximum number of
immediate neighbours that form a complete graph
i.e. graph with maximum size, , among other nodes.
Nodes apply the algorithm developed by Patric R. J.
Östergård (Östergård, 2002) to calculate the
maximum number of its immediate neighbours that
form a complete graph.

2.2 The Network Leader Confirmation
Protocol (NLCP)

After applying the network leader election protocol,
each node learned the network leader and

maxq nodes. To be sure that the elected node is really
the network leader, other nodes wait for "Root
Confirmation Message" (RCM) from maxq nodes to

confirm that R belongs to maxq . We call maxq
nodes, excluding R, the "Witness Group" (WG).

2.3 The Network Key Establishment
Protocol (NKEP)

The network leader performs the network key
establishment protocol with WG members to create
the Network Key RK . Since WG members meet

AD-HOC ON DEMAND AUTHENTICATION CHAIN PROTOCOL - An Authentication Protocol for Ad-hoc Networks

275

each other for the first time and since they are within
the transmission range of each other, they use ECBD
key exchange algorithm (Hamad et al., 2008b) to
establish the network key. We call the function that
applies the key exchange algorithm, ECBD, "Key
Exchange Function" (KEF). In NKEP KEF applies
ECBD key exchange algorithm. We assume that a
base point P = (x, y) on elliptic curve in Eq(a, b) is
chosen and both Eq(a, b) and P are universally
known and used among the network members. We
also assume that each node iN has generated its
elliptic curve DH (ECDH) public and private keys,

iNKU and
iNKR respectively. The protocol works

as follows:
1. R finds the set of all cliques in its graph Rg ,

1 2{ , ,..., }R R R
R mQ q q q= ,

, 1,...,R
iR q i m∈ = and max Rq WG Q= ∈ ,

using the algorithm proposed by Patric R. J.
Östergård (Östergård, 2002).

2. To generate the network key RK , R performs
key establishment between itself and WG
members using ECBD algorithm (Hamad et al.,
2008b).

To distribute the network key to the whole
network, each node should have a shared key with a
group of its immediate neighbours; we call this key
the group key.

2.4 The Groups Key Establishment
Protocol (GKEP)

To propagate the network key to all node, the
network leader has to authenticate it self to the rest
of the network; WG members including R trust each
other because they are within the transmission range
of each other. So, for the rest of nodes to trust R they
should be within its transmission range, but this is
infeasible, so other nodes should inherit this trust
from WG members. This can be done by performing
a key establishment between each member of WG
and its immediate neighbours such that these
neighbours form a complete graph. Using this key
each WG member can propagate the network key to
its immediate neighbours. The protocol assumes that
all nodes do not change their position during the
group key establishment protocol.

The process of propagated group key
establishment starting form R, continue until each
node in the network either belongs to just one group
leaded by a group leader or be a leader of at least
one group which implies that it belongs to a group.

3 AOAC PROTOCOL

AOAC protocol is based on the technique that we
proposed in the establishment of the network and
groups keys, see (Hamad et al., 2008a). It assumes
that the network is partitioned into a set of groups
and each group is leaded by one leader with leaders
connecting these groups. When we say that leaders
connecting groups, we do not mean a physical
connection, we mean an authentication connection
i.e. if node Ni connects two group (Ni belongs to one
group and leads another one or leads both groups),
then the only way for these two groups to
authenticate each other is through Ni; because Ni
shares a key with the first group and shares another
key with the other group. So, when a source node
wants to authenticate a destination node, it has to
find a set of group leaders that authenticate the
source to destination.

AOAC is a protocol for creating chain of group
leader nodes that authenticate the source node to the
destination node. Also, the created chain will
authenticate the destination node to the source node.
This will be done by constructing a forward path that
authenticate the source node to the destination node
and a reverse path that authenticate the destination
node to source node. We assume that the source and
destination nodes belong to different groups. In case
that the source and destination nodes belong to the
same group (trivial case), they can authenticate each
other through their group leader and their peer-to-
peer session key, , iL NK (A. M. Hamad et al.,
2008b), without using the AOAC as described
below.

Before establishing the Transitive Authentication
Protocol, discussed below, of AOAC protocol, both
the source and the destination nodes should know
the ID and the group ID of each other, we mean by
the group, the group that each of them belongs to,
not they lead. This piece of information (the group
ID) help the AOAC to improve the performance of
the authentication chain discovery protocol as
discussed in the next section. They also should
exchange the ECDH public keys (Hamad et al.,
2008b) of each other, this will prevent the inside
man-in-the-middle attack as discussed later. These
three pieces of information, node ID, group ID and
public key along with a nonce value to prevent
replay attacks, of both the source and destination
nodes should be signed by the network key to
prevent outside MITM attack. AOAC protocol is
divided into two sub-protocols:

SECRYPT 2009 - International Conference on Security and Cryptography

276

• Authentication Chain Discovery Protocol: This
is used to find a chain of leader nodes that
authenticate the source node to the destination
node and vise versa

• Transitive Authentication Protocol: This
protocol allows two nodes to use the
authentication chain to authenticate each other
and to establish a direct pairwise shared key

3.1 Authentication Chain Discovery
Protocol

In this protocol we assume that the group leader ID
is part of the group ID i.e. we can identify the group
leader ID from the group ID, So when the source
node want to find an authentication chain to a
destination node which does not belongs to groups it
leads or belongs to, first it checks if the destination
group leader is one of the leader members of the
groups it leads or belongs to. If it is one of them, it
sends it a "Chain Request (CREQ)", this will save
communication cost; because other nodes are not
able to deliver the request to the destination node,
otherwise the source node sends a (CREQ) to its
group leader and to leader members of the groups it
leads. For example Figure 3 shows the trivial case
when node L4 (leader of group G4) wants to
communicate with node L1 (leader of group G1) and
both nodes belongs to the same group (group G1).
So they can authenticate each other using their
shared session key. Note that gray nodes represent
leader nodes and white nodes represent non-leader
nodes.

In Figure 4, the source node is L4 and the source
group is G1 leaded by L1, the destination node is L8
and the destination group is group G6 leaded by
node L6. As we see L8 neither belongs to group G4,
leaded by L4, nor group G1, but its leader L6
belongs to group G4. So, L4 will forward the CREQ
to leader node L6 and nodes L1, L5, L2, and L3 are
ignored because they are not able to deliver the
CREQ message to L8.

If the source node is the network leader, it sends
the CREQ message to leader members of groups it
leads; this is because the network leader does not
belong to any group (does not have a leader) and set
the source group ID to the witness group ID. When a
node N sends or forwards a CREQ message to a
given node, this node should belongs to groups that
N leads or belongs to. CREQ is also sent to leader
members to save communication cost; because non-
leader members are not able to forward CREQ
message to nodes outside the group it belongs to.
The CREQ message contains the following:

• Source node: this is an ID that uniquely
identifies the source node.

• Source group: the ID of the group that the
source node belongs to.

• Destination node: this is an ID that uniquely
identifies the destination node

• Destination group: the ID of the group that the
destination node belongs to.

• Authenticator count: it is similar to hop count,
it is simply a counter that count the number of
node in the authentication chain

• Sequence Number: Serves as a unique ID of the
CREQ, this sequence number allows nodes to
know which "Chain Reply (CREP)", described
latter, corresponds to a given CREQ.

L1

L2

L4

L3

L9

L10

N3

L11

N5N4

N7N6

L5

L6

N8

N9

L7L8

N11N10

N12

N13

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

SD

N2N1
G11

Figure 3: L4 and L1 are leader nodes and belong to the
same group (group 1).

L1

L2

L4

L3

L9

L10

N3

L11

N5N4

N7N6

L5

L6

N8

N9

L7L8

N11N10

N12

N13

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

S

D

N2N1
G11

Figure 4: The destination node L8 neither belongs to
group 4 nor group 1.

3.2 Transitive Authentication Protocol

If the source node qN
i pN G∈ wants to

communicate with the destination node vN
j uN G∈ :

1. Ni unicasts a communication request message
(MREQ), its ID (Ni), group ID (qN

pG), its

public key
iNKU and a nonce value ir signed

AD-HOC ON DEMAND AUTHENTICATION CHAIN PROTOCOL - An Authentication Protocol for Ad-hoc Networks

277

by RK i.e.
({ , , , })q

R i

N
i p N iK

Sign MREQ N G KU r , to
Nj.

2. When Nj receives a MREQ from Ni it extracts
the data from the message and store it then send
a communication reply message (MREP),

({ , , , })u
R j

N
j v N jK

Sign MREP N G KU r

signed by RK to Ni and wait for
Authentication Request Message (AREQ),
explained later, from one of leader members
that belongs to vN

uG or belongs to one of groups
it leads. AREQ message has the following
fields:
1. The source node ID
2. The source group ID.
3. The destination node ID
4. The destination group ID.
5. The hash value of the Session Key (KS)

generated by the two parties Elliptic Curve
Diffie-Hellman (ECDH) group key
agreement using the source and destination
node's public key

iNKU and
jNKU that

Ni and Nj extract from the MREQ and
MREP respectively along with the nonce
value 1jr + to prevent replay attack. This
key is used for authentication between the
source and destination node and for peer-
to-peer communication between the source
and destination if needed.

3. Node Ni applies the "Ad-hoc On-Demand
Authentication Chain (AOAC)" described
above, to find an "Authentication Chain (AC)"
to Nj. The authentication chain is a set of group
leader nodes that authenticate the source node to
the leader of the destination group or to a leader
member leaded by the destination node which
authenticate the source node to the destination
node. Also, the created chain will authenticate
the destination node to the source node.

4. Node Ni search its authentication chain table for
an authentication chain to the destination group
then sends an Authentication Request (AREQ)
message to the first member of the
authentication chain, 1h , pointed to by "Next
Leader" field in its authentication chain table.
This message is signed by the common group
key between itself and h1. The first member of

the authentication chain should be one of the
following:
i. A member of a group leaded by Ni i.e.

1
iN

xh G∈ , where iN
xG is group number x

leaded by node Ni. In this case Ni sends h1
an AREQ message signed by the common
group key between itself and h1 after
incrementing jN 's nonce by one (1jr +),

({ , , , , (, 1)}).q v
N i

Gx

N N
i p j u jK

Sign AREQ N G N G H KS r +

Note that 1h is already has an authenticated
copy of its group leader's public key

iNKU ; so Ni have not to authenticate
itself to h1.

ii. A member of qN
pG which means that

1, qN
i pN h G∈ with qN as their leader: In

this case iN appends its public key signed

by ,q iN NK to the AREQ message and send

the whole message to h1 signed by the
common group key between itself and h1

after incrementing jN 's nonce by one

(1jr +).

,

({ , , , , (, 1)}

|| || ())

q v
Nq

Gp

i N N iq i

N N
i p j u jK

N K N

Sign AREQ N G N G H KS r

KU Sign KU

+ .

iii. The leader of group qN
pG i.e. 1 qh N= : In

this case iN appends its public key signed

by
1 ,h iN NK to the AREQ message and send

the whole message to h1 signed by the
common group key between itself and h1

after incrementing jN 's nonce by one

(1jr +).
1

1

,1

({ , , , , (, 1)}

|| || ())

h v
N h
Gp

i h N ii

N N
i p j u jK

N K N

Sign AREQ N G N G H KS r

KU Sign KU

+ .

5. When the first member of the authentication
chain, h1, receives the AREQ message, it
verifies the signature of

iNKU i.e. get an
authenticated copy of the public key of Ni. We
have three cases:

SECRYPT 2009 - International Conference on Security and Cryptography

278

i. If 1
iN

xh G∈ , then h1 is already has an

authenticated copy of
iNKU ; because Ni

is h1's leader and each node should have an
authenticated copy of its group leader's
public key as discussed above.

ii. If 1, qN
i pN h G∈ , then h1 sends iN 's

public key signed by ,q iN NK along with its

public key
1hKU to qN . When

qN receives
1
,

ih NKU KU and

,
()

N N iq iK NSign KU from h1, it generates

,q iN NK using the KDF,

, (,)
q i q iN N N NK KDF KM KU= then

verifies the signature

,
()

N N iq iK NSign KU . Node qN generates

1 1, (,)
qN h q hK KDF KM KU= and signs

iNKU with
1,qN hK ,

, 1
()

N h iqK NSign KU ,

then sends both
iNKU and

, 1
()

N h iqK NSign KU to h1. When h1

receives
, 1

()
N h iqK NSign KU , it verifies

the signature using
1,qN hK and get the

authenticated copy of iN 's public key.

iii. If 1 qh N= , then h1 generates
1 , ih NK

using the KDF,

1 1, (,)
i ih N h NK KDF KM KU= then

verifies the signature
,1

()
h N iiK NSign KU

received before from iN and get the

authenticated copy of iN 's public key.

6. After h1 verifies the signature, it append the
authenticated

iNKU to the AREQ message,
1{ , , , , (, 1)} ||h v

i

N N
i p j u j NAREQ N G N G H KS r KU+

,and sign the whole message by the common
group key between itself and the next member
in the authentication chain, h2 pointed to by
"Next Leader" field in its authentication chain
table; because both h1 and h2 belong to the same
group which mean that they trust each other. As

we mentioned before, every two successive
nodes in the authentication chain trust each
other because they are belong to same group.

7. Upon receiving the signed AREQ message from
the last member of the authentication chain nh ,
Nj verifies the signature using the group key it
shares between itself and the nh then compare

the two copies of
iNKU (the one from MREQ

and the one that it received from nh). The

destination node generates KS, increment jr by

one, compute the hash value (, 1)jH KS r +

and compare it to that it received form nh in the
AREQ message. This means that the destination
node got a confirmation from the source node
that it received the destination node's public
key,

jNKU , by the MREP message. Node Nj,

then, sends an Authentication Reply (AREP)
message to the last member of the
authentication chain nh pointed to by "Next
Leader" field in its authentication chain table,
this message is signed by the common group
key between itself and nh . The last member of
the authentication chain should be one of the
following:
i. A member of a group leaded by Nj i.e.

JN
n yh G∈ , where jN

yG is group number y

leaded by node Nj.: In this case Nj sends nh
an AREP message signed by the common
group key between itself and nh after

incrementing iN 's nonce by one (1ir +)
to prevent replay attack,

({ , , , , (, 1)})q v
N j

Gy

N N
i p j u iK

Sign AREP N G N G H KS r +

ii. A member of vN
uG which means that

, vN
j n uN h G∈ with vN as their leader: In

this case jN appends its public key signed

by ,v jN NK to the AREP message and send

the whole message to nh signed by the

common group key between itself and nh

after incrementing iN 's nonce by one

AD-HOC ON DEMAND AUTHENTICATION CHAIN PROTOCOL - An Authentication Protocol for Ad-hoc Networks

279

(1ir +).

,

({ , , , , (, 1)}

|| || ())

q v
Nv

Gu

j N N jv j

N N
i p j u iK

N K N

Sign AREP N G N G H KS r

KU Sign KU

+

iii. The leader of group vN
uG i.e. n vh N= : In

this case jN appends its public key signed

by ,n jh NK to the AREP message and send

the whole message to nh signed by the

common group key between itself and nh

after incrementing iN 's nonce by one

(1ir +).

,

({ , , , , (, 1)}

|| || ())

q n
hn
Gu

j h N jn j

N h
i p j u iK

N K N

Sign AREP N G N G H KS r

KU Sign KU

+

8. When the last member of the authentication
chain, nh , receives the AREP message, it

verifies the signature of
jNKU i.e. get an

authenticated copy of the public key of Nj. We
have three:
i. If jN

n yh G∈ , then nh is already has an

authenticated copy of
jNKU ; because Ni

is nh 's leader and each node should have
an authenticated copy of its group leader's
public key as we discussed above.

ii. If , vN
j n uN h G∈ , then nh sends jN 's

public key signed by ,v jN NK along with its

public key
nhKU to vN . When

vN receives ,
n jh NKU KU and

,
()

N N jv jK NSign KU from nh , it generates

,v jN NK using the KDF,

, (,)
v j v jN N N NK KDF KM KU= then

verifies the signature

,
()

N N jv jK NSign KU . Node vN

generates

, (,)
v n nN h v hK KDF KM KU= and

signs
jNKU with ,v nN hK ,

,
()

N h jv nK NSign KU , then sends both

jNKU and
,

()
N h jv nK NSign KU to nh .

When nh receives
,

()
N h jv nK NSign KU , it

verifies the signature using ,v nN hK and get

the authenticated copy of jN 's public key.

iii. If n vh N= , then nh generates ,n jh NK

using the KDF,

, (,)
n j n jh N h NK KDF KM KU= then

verifies the signature
,

()
h N jn jK NSign KU

received before from jN and get the

authenticated copy of jN 's public key.

9. After hn verifies the signature, it append the
authenticated

jNKU to the signed AREP

message
{ , , , , (, 1)} ||q v

j

N N
i p j u i NAREP N G N G H KS r KU+

and sign the whole message by the common
group key between itself and the previous
member in the authentication chain, 1nh −
pointed to by "Next Leader" field in its
authentication chain table; because both hn and

1nh − belong to the same group which mean that
they trust each other. As we mentioned before,
every two successive nodes in the authentication
chain trust each other because they are belong to
one group.

10. Upon receiving the signed AREP message from
the first member of the authentication chain 1h ,
Ni verifies the signature using the group key it
shares between itself and the 1h then compare

the two copies of
jNKU (the one from MREP

and the one that it received from 1h). The

source node generate KS, increment ir by one,

compute the hash value (, 1)iH KS r + and

compare it to that it received form 1h in the
AREP message. If they are the same, the source
node is sure that the destination node gets the
right session key. AREP message format is
similar to AREQ message format.

SECRYPT 2009 - International Conference on Security and Cryptography

280

4 DISSCUSION AND ANALYSIS

In this section we provide a detailed analysis
evaluating the security and performance of our
proposed authentication protocol. The metrics for
the performance evaluation are the communication
overhead and computation costs (Du et al., 2005).
The security analysis of our proposed scheme is
based on formal verification techniques. We present
a detailed verification of our proposed key AOAC
authentication protocol using the logic of Gong,
Needham and Yahalom (Gong et al., 1990).

4.1 Security Analysis

In our AOAC protocol, node-to-node authentication
depends on TAP protocol. So, in this section we
discuss the security analysis of TAP protocol
discussed in section 3.2 by applying formal analysis
and the GNY logic. Without lose of generality we
suppose that the authentication chain consists of
three nodes (1 2 3, ,h h h) and the sender node is A

and the receiver node is B where 1 1, LA h G∈ , in

this case 1
2 2

hh G∈ , 2
3 3

hh G∈ , 3
4
hB G∈ ; since

each node must belongs to only one group leaded by
only one leader. This case is the most general case.
The protocol works as follows:

M1. : ,a AA B r KU→

M2. : ,b BB A r KU→

M3.
3

1

,

1 1 4: ({ , , , , (, 1)}

|| || ())

L
G

L A

hL
bK

A K A

A h Sign AREQ A G B G H KS r

KU Sign KU

→ +

M4.
1 ,1 : , ()

L Ah K Ah L KU Sign KU→

M5.
, 11 : (,)

L hK AL h Sign T KU→

M6. 3
1
2

1 2 1 4: ({ , , , , (, 1)}

|| ||)

h
G

hL
bK

A

h h Sign AREQ A G B G H KS r

T KU

→ +

M7. 3
2
3

2 3 1 4: ({ , , , , (, 1)}

|| ||)

h
G

hL
bK

A

h h Sign AREQ A G B G H KS r

T KU

→ +

M8. 3
3
4

3 1 4: ({ , , , , (, 1)}

|| ||)

h
G

hL
bK

A

h B Sign AREQ A G B G H KS r

T KU

→ +

The goal is to prove that B got an authenticated
copy of A's public key and that it computed the peer-
to-peer shared key between itself and A. As we see
we only have to prove that B got an authenticated
copy of A's public key; because the second goal
follows from the first goal since both A and B use

ECDH protocol in computing the common shared
key between themselves. Also we can consider the
group key of two nodes belonging to the same group
as a shared key between those two nodes e.g. we can
consider

1

L
GK as

1,A hK because 1 1, LA h G∈ . Node
B follows the same steps to deliver the AREP
message to node B as we discussed above, so we
only prove the first part of the protocol i.e. B got an
authenticated copy of A's public key. From the above
discussions, the above steps will take the following
form:

M1. ,a AB r K+

M2. ,b BA r K+
M3.

, , 11 { , , (), ,{ , } }
L A A A hK A A b B K Kh A B E K K r K −+ + +

M4.
1 ,
, ,{ }

L Ah A A KL K K K+ + +

M5.
, 11 { , } ~ A

L h

K
A Kh T K A++ > ⎯⎯⎯→

M6.
,1 22 { , , , ,{ , } } ~ A

A h h

K
A b B K Kh A B T K r K A+

−+ + > ⎯⎯⎯→

M7.
,2 33 { , , , ,{ , } } ~ A

A h h

K
A b B K Kh A B T K r K A+

−+ + > ⎯⎯⎯→

M8.
,3

{ , , , ,{ , } } ~ A

A h B

K
A b B K KB A B T K r K A+

−+ + > ⎯⎯⎯→

Where
1 1,

L
A h GK K≡ , 1

1 2 2,
h

h h GK K≡ ,

2

2 3 3,
h

h h GK K≡ , 3

3 4,
h

h B GK K≡ and
1,L hK and

,L AK are the one-to-one shared keys between (L, h1)
and (L, A) respectively. Notice that we replace
H(KS, rb) by { , }

Ab B Kr K −+ . When node B receive
H(KS, rb) in step M8, the following statements are
true:

• Node B is sure that node A received KUB in step
M2

• Node B is also sure that KUA, received in step
M1, is sent by node A.

• Node B is sure that H(KS, rb) is fresh because it
is a function of rb

• H(KS, rb) can only computed by either A or B
and can be verified by B.

The above four statement are true because KS,
which is an ECDH shared key between A and B, can
be calculated only by either A as a function of KRA
(which is only known by A) and KUB or by B as a
function of KRB (which is only known by B) and
KUA. As we know that GNY logic does not have
notation for key agreement operations i.e. we cannot
express KS in GNY logic. So to work around this
problem we try to find notations in GNY logic that

AD-HOC ON DEMAND AUTHENTICATION CHAIN PROTOCOL - An Authentication Protocol for Ad-hoc Networks

281

achieve the above four statements this notation
is{ , }

Ab B Kr K −+ . It is clear that the first two
statement are true because the encryption is done
using A's private key which is only known by A.
Also B sure that { , }

Ab B Kr K −+ is fresh because it is
a function of rb. Finally A is the only node that can
generate { , }

Ab B Kr K −+ and B can verify it. So it is

safe to replace H(KS, rb) by { , }
Ab B Kr K −+ in the

above symbolic steps just to prove the security of
our protocol. Note that we cannot replace H(KS, rb)
by { , }

Ab B Kr K −+ in the original protocol because
we want to prove that B is sure that A computed the
peer-to-peer shared key between itself and B. In the
GNY version this goal follows from the first goal
discussed above which is to prove that B got an
authenticated copy of A's public key. Notice also
that we replace signature (Sign) with encryption (E)
which does not affect the analysis. We did this
because there is no notation for signature operation
in the GNY logic. We expressed the assumptions
(initial possessions and beliefs) and goals (target
possessions and beliefs) as statements in a symbolic
notation. To prove the target possessions and beliefs,
we use the SPEER II (Saul and Hutchison, 2001).
SPEAR II, the Security Protocol Engineering and
Analysis Resource II, is a protocol engineering tool.
The SPEAR II tool consists of four components that
integrated into one consistent and unified graphical
interface: a protocol specification environment
(GYPSIE), a GNY statement construction interface
(Visual GNY), a Prolog-based GNY analysis engine
(GYNGER) and a message rounds calculator.
GYNGER is a Prolog-based analyzer that performs
automated analysis of protocols by using the GNY
modal logic. Using this tool and the initial
possessions and beliefs as input to SPEAR II, the
target possessions and beliefs are proved.

4.2 Performance Analysis

In this section we provide a detailed analysis
evaluating the performance of our proposed
authentication protocol. Computation and
communication costs are function of the network
size. So to compute those costs we first have to
compute the average number of nodes that each
node deals with. Many protocols assume that each
node in the network deals with all the nodes in the
network, so the computation and communication
costs depend on the exact network size. In our
AOAC protocol, node-to-node authentication

depends on TAP protocol. So, computation and
communication costs in our scheme depend on the
length of the authentication chain (AC). Since the
AC consists of leader nodes, then the length of AC
equal to at most the number of leader nodes in the
network. So, we first have to find the average
number of leader nodes in the network. We use
simulation to compute this value.

Figure 5: Relationship between N and the average number
of leader nodes.

Figure 6: Relationship between N and the ratio of the
number of leader nodes to N.

4.2.1 Simulation

We designed a simulator that simulates our proposed
protocol. We use C++ to create our simulator. The
simulator is used to compute the average number of
leader nodes in the network. In our simulation we
use the random waypoint mobility model. Each node
moves at a speed uniformly distributed between 0.5
and 20 m/s towards a location randomly selected in a
square environment space of 1000m × 1000m. When
it reaches the destination, it waits for a pause time of
maximum 60 sec. and then moves towards a new
location. The number of nodes N grows from 100 to
1000 nodes and increase by 100 nodes each time
Each simulation runs for 1000 seconds of simulated
time and we get the result of the simulation every
100 seconds. The transmission range is 300.

SECRYPT 2009 - International Conference on Security and Cryptography

282

In Figure 5, which is based on our simulation
results, we plot the total number of nodes N against
the average number of leader nodes. As we see from
the figure that the average number of leader nodes
increases as the total number of nodes increases. To
find the order of the average number of leader nodes
with respect to N and to show its growth rate, we
find the curve that fit the average number of leader
nodes.

The curve fitting analyses were performed on
LAB Fit (Silva and Silva, 1999-2007), see Figure 5.
Using LAB Fit, we found that the following
equation (1) yields the best approximation or best fit
for the measured number of leader nodes for given
N. We use the Coefficient Correlation (ρ) to find
the goodness of fit and found ρ = 0.991848 which
is a high value and which indicates that the average
number of leader nodes increases as the total number
of nodes increases.

1 0.6 .ln()y x x= (1)

2 (0.6 /) / ln()y x x= (2)

Where x is the total number of nodes and y1 is
the average number of leader nodes. We might ask
about the rate of growth of y1 in equation (1). As we
see from Figure 6 the ratio of the average number of
leader nodes to the total number of nodes decrease
as the total number of nodes increase which means
that the size of the authentication chain, which
consists of leader nodes, will not approach the total
number of nodes. Also, if we apply the curve fitting
analyses discussed above we get equation (2) with a
correlation coefficient ρ = -0.937958.

From the above discussion we see that the
average number of leader nodes has a value of

(ln())O N N , which considered a reasonable
value with respect to the total number of nodes N,
with decreasing growth rate which insure that it will
never approaches N.

4.2.2 Complexity Analysis

As we discussed in section 3, AOAC protocol is
based on the TAP protocol, so here we compute the
computation complexity of TAP protocol. We
compute the commutation complexity with respect
to the sender node, the receiver node, and to any
node in the authentication chain. As discussed in
section 3.2, a sender performs two symmetric
encryptions and one hash operation before sending
its AREQ message to the first node in the

authentication chain and performs one symmetric
decryption operation after he gets the AREP message
from the first node in the authentication chain. Also
the receiver node performs one symmetric
decryption operation after he gets the AREQ
message from the last node in the authentication
chain and performs two symmetric encryption
operations and one hash operation before sending its
AREP to the last node in the authentication chain.
Each node in the authentication chain performs two
symmetric decryption operations to decrypt the
incoming AREQ and AREP messages received from
the previous and next nodes respectively and two
encryption operations to encrypt the outgoing AREQ
and AREP messages sent to the next and previous
nodes respectively. So, it is clear that the
computation cost of our proposed authentication
protocol is small compared to other authentication
protocol that use asymmetric encryption techniques;
this is because the computation cost of symmetric
encryption is very small compared to that of
asymmetric encryption.

Now we consider the communication cost. TAP
protocol needs two rounds with respect to the sender
and receiver to authenticate each other; because each
of them waits for two messages from the other one
to complete the authentication process. The total
number of messages of TAP protocol depends on the
length of the authentication chain which is at most
equal to the total number of leader nodes; because
the authentication chain consists only of leader
nodes. But form Equation (1) the number of leader
modes is 0.6 .ln()n n which means that the
average length of the authentication chain is of order

(.ln())O n n . Now we calculate the number of
message for the sender, the receiver and for each
node in the authentication chain. From the
discussion in section 3 we conclude that the number
of message for the sender is four and so is the
receiver. The total number of message for each node
in the authentication chain is two. So, the total
number of messages is
4 4 2*0.6 .ln() 8 1.2 .ln()n n n n+ + = + i.e.

TAP protocol requires 8 1.2 .ln()n n+ global

unicasts, which is of order (.ln())O n n .be a
vertical spacing of 12-point between authors.

AD-HOC ON DEMAND AUTHENTICATION CHAIN PROTOCOL - An Authentication Protocol for Ad-hoc Networks

283

5 CONCLUSIONS

AOAC which is an authentication protocol that
provide authentication to the key establishment
protocol we proposed in (Hamad et al., 2008a) and
allows any two nodes to establish a peer-to-peer key
for authentication and one-to-one secure
communication. In our proposed authentication
protocol we use symmetric key cryptography to
provide authentication compared to may other
authentication protocol that use public key
cryptograph. It assumes that the network is
partitioned into a set of groups and each group is
leaded by one leader with leaders connecting these
groups. When we say that leaders connecting
groups, we do not mean a physical connection, we
mean an authentication connection i.e. if node Ni
connects two group (belongs to one group and leads
another one or leads both groups), then the only way
for these two groups to authenticate each other is
through Ni; because Ni shares a key with the first
group and shares another key with the other group.
So, when a source node wants to authenticate a
destination node, it has to find a set of group leaders
that authenticate the source node to the destination
node. It is divided into two sub-protocols:

• Authentication Chain Discovery Protocol
• Transitive Authentication Protocol

We prove the security of AOAC protocol using the
GNY logic and use simulation and complexity
analysis to measure its performance. AOAC has low
computation overhead since it use symmetric key
encryption for verifying the identity of nodes, low
communication of order (/ ln())O n n and low
memory cost which is constant.

REFERENCES

C. R. Murthy and B. S. Manoj, Ad Hoc Wireless Networks
- Architectures and Protocols: Person Education,
2004.

L. Zhou and Z. J. Haas, "Securing Ad Hoc Networks,"
IEEE Network Magazine, vol. 13, pp. 24-30, 1999.

J. Kong, P. Zerfos, S. L. H. Luo, and L. Zhang, "Providing
robust and ubiquitous security support for mobile ad
hoc networks," presented at IEEE ICNP, 2001.

M. Narasimha, G. Tsudik, and J. H. Yi, "On the Utility of
Distributed Cryptography in P2P and MANETs: the
Case of Membership Control," presented at IEEE
ICNP, 2003.

H. Luo, P. Zerfos, J. Kong, and L. Z. S. Lu, "Self-securing
Ad Hoc Wireless Networks," presented at ISCC, 2002.

A. M. Hamad, T. I. El-Areef, M. A. Shouman, and W. I.
Khedr, "Local Broadcast and Transitive
Authentication Based Key Establishment Scheme for
Wireless Ad-hoc Network," the Egyptian Informatics
Journal,, June 2008a.

A. M. Hamad, T. I. El-Areef, M. A. Shouman, and W. I.
Khedr, "Key Establishment Protocols for Wireless
Sensor Networks," the International Journal of
Intelligent Computing and Information Sciences
,January 2008b.

P. R. J. Östergård, "A fast algorithm for the maximum
clique problem," Discrete Applied Mathematics vol.
120, pp. 197-207, 2002.

W. Du, R. Wang, and P. Ning, "An efficient scheme for
authenticating public keys in sensor networks,"
presented at Proceedings of the 6th ACM international
symposium on Mobile ad hoc networking and
computing Urbana-Champaign, IL, USA 2005.

L. Gong, R. Needham, and R. Yahalom, "Reasoning about
Belief in Cryptographic Protocols," presented at IEEE
Symposium on Security and Privacy, Oakland, CA,
USA, 1990.

E. Saul and A. C. M. Hutchison, "Using GYPSIE,
GYNGER and Visual GNY to Analyze Cryptographic
Protocols in SPEAR II," presented at Eighth Annual
Working Conference on Information Security
Management and Small Systems Security, Las Vegas,
Nevada, September 2001.

Silva, W. P., and C. M. D. P. S. Silva, "LAB Fit Curve
Fitting Software (Nonlinear Regression and Treatment
of Data Program) V 7.2.39 (1999-2007), online,
available from world wide web:
http://www.angelfire.com/rnb/labfit/."

SECRYPT 2009 - International Conference on Security and Cryptography

284

