
SLA-DRIVEN SERVICE MARKETPLACE MONITORING WITH
GRAND SLAM

Josef Spillner and Jan Hoyer
Chair for Computer Networks, TU Dresden, Nöthnitzer Str. 46, Dresden, Germany

Keywords: Web services, SLA compliance, SOA

Abstract: Today, the number of functional equivalent web services increases rapidly. Service search engines and mar-
ketplaces are opening up to guide users to their preferred service providers. The question of what is the
best service for the user’s demand cannot be answered sufficiently. While semantic matchmaking techniques
attempt to solve this question mainly for functional aspects, it is also important to know non-functional proper-
ties of a service like its availability and response time as well as the provider’s level of fulfilment of contractual
obligations regarding these properties. To realise the automated monitoring of services and contracts on ser-
vice marketplaces, we introduce a standalone and easily integratable software component which is able to
monitor non-functional properties and the adherence to negotiated contracts.

1 INTRODUCTION TO SERVICE
MARKETPLACE
MONITORING

Monitoring is an automated process of checking the
condition of a system. For systems offering services
to users, the term service monitoring refers to giving
providers and consumers of these services the ability
to check its behaviour and optionally match it against
a set of requirements and expectations. If the require-
ments relate to participants who interact with the sys-
tem, service-level agreements (SLA) are often used to
manifest them on a contractual basis.

Web service and grid-based hosting environments
with integrated monitoring and SLA management fa-
cilities are already widely available. However, when
aiming at flexible, internet-scale web service hosting
and trading, there are several aspects not yet cov-
ered by existing approaches. These include SLA-
driven monitoring and aggregation as well as auto-
mated adjustments of service offerings based on non-
functional property monitoring and prediction results.
Grand SLAM has been designed to resolve these
problems and be usable as a core component for re-
searchers and builders of service marketplaces.

2 EXISTING MONITORING
CONCEPTS AND PROJECTS

Conventional monitoring systems in production use
perform server and service checks based on adminis-
trated configuration files. Sometimes, they allow ser-
vice users to control the results of the checks. It is
however not common among them to treat SLA as
first-class objects. Nagios (Pervilä, 2007) is a widely
used IT systems monitor which falls into this category
and despite many extensions and a modular sensor de-
sign is not targeting service marketplaces. Keywatch
(Keymind, 2008) is based on OSGi for modular de-
ployment of sensors and filters, and offers a real-time
query interface. SLA are similarly underrepresented
in its design. Behavioural monitoring of BPEL pro-
cesses is supported by Dynamo, which uses the WS-
CoL rule language to define properties (Baresi et al.,
2008). Rule languages are powerful but not sufficient
to declare legally binding agreements.

Academic approaches have already acknowledged
the weaknesses of conventional service monitoring
and proposed SLA-centric designs. Fundamental is-
sues related to SLA monitoring include a precise
SLA specification language, flexible metric calcula-
tion, separation of the computation and communi-
cation infrastructure and violation detection services
(Molina-Jimenez et al., 2004). Several projects exist
to take these issues into account. SALMon is a sys-

71
Spillner J. and Hoyer J. (2009).
SLA-DRIVEN SERVICE MARKETPLACE MONITORING WITH GRAND SLAM.
In Proceedings of the 4th International Conference on Software and Data Technologies, pages 71-74
DOI: 10.5220/0002232300710074
Copyright c© SciTePress



tem for monitoring services, analysing the results and
taking decisions based on the outcome of the anal-
ysis (Ameller and Franch, 2008). It builds on the
ISO/IEC 9126 quality model for non-functional prop-
erties, which is a very complete model but only con-
tains a small subset of deterministically monitorable
properties. Only two properties have been imple-
mented into the monitor. The results are stored in
a database, there is no interface for real-time noti-
fications. Furthermore, SALMon does not seem to
be publically available, making it difficult to assess
the suitability of its internal design and architecture.
Another project, SLAngMon, provides a monitor for
SLA specified in the SLAng and WS-Agreement lan-
guages as part of the PLASTIC platform (Bertolino
et al., 2009). It is based on a framework for online
and offline testing of functional and non-functional
service properties. Its tool PUPPET related to con-
tinuous monitoring on service marketplaces. How-
ever, the implementation only implements sensors for
response time and reliability. The prototype is also
lacking integration points for SLA management and
access to monitoring data.

Particular challenges like SLA monitoring ef-
ficiency, accuracy and scalability have been anal-
ysed by theoretical work and validation tools, e.g.
for network-related measurements (Sommers et al.,
2007). Compared to this, only few integratable mon-
itors exist. Due to our requirements on SLA-centric
monitoring and integration, we have decided on pro-
viding an alternative framework which provides ex-
actly these features and is aimed at being reusable by
other projects by offering web service interfaces for
SLA management and access to measurement data.

3 ARCHITECTURE OF GRAND
SLAM

Grand SLAM is a modular system and web service
monitor based on Java EE. The core of the monitor
and the associated parts run on the OSGi Service Plat-
form and use the OSGi framework for standardised
module management. We decided for OSGi because
it offers some advantages compared to an implemen-
tation in pure Java. On account of the OSGi Hot
Deployment and the modular implementation of the
framework, a higher fault tolerance is granted while
starting, stopping, installing and updating measure-
ment bundles. Defect bundles can be detected and
stopped without terminating the whole monitor sys-
tem. Therefore a higher stability of the monitor is
granted. On the base of the service-oriented program-
ming model of OSGi, it is possible to develop cus-

tom measurement bundles which are adapted to local
server and web service specifications. For this mat-
ter, the framework provides a minimum of interfaces
which have to be implemented. The monitor consists
primarily of five parts as can be seen in Figure 1.

Figure 1: OSGi-based architecture of Grand SLAM.

• A core monitor bundle manages and controls the
other bundles and it is responsible for the supervi-
sion of the contracts which are stored in the local
database. It installs a trigger on the database and is
being notified of additions or removals which are
caused by external SLA management and nego-
tiation components attached to the Grand SLAM
web service interface. The core bundle also stores
raw data of the measurements and current states
of the affected services into the database.

• Measurement bundles take over the measurement
of one or multiple QoS parameters which are
specified in the contracts and return these values
to the core bundle.

• The third part of Grand SLAM are the aggrega-
tors. They are implemented as OSGi bundles and
will be started by the monitor core but work in-
dependently from it. Resulting from this, there is
no concrete default specification for their imple-
mentation, so it is possible that every aggregator
has a different task. In the current implementa-
tion of Grand SLAM there are three aggregators:
One which generates aggregated values like aver-
age, minimum and maximum, a second one which
creates scalar vector graphics which contain pie-

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

72



and line charts and a last one which creates XML
files with a ranking of the monitored services.

• The fourth part is an Axis 2 server provided by
the open source OSGi Service Platform Knopfler-
fish. On this server, a web service is deployed
which allows an invocation from a service discov-
ery. Its task is to register and unregister service
level agreements which have to be observed.

• The last part is optional and contains application-
specific bundles for cooperative monitoring. Ser-
vices which are aware of the presence of the mon-
itor can adapt to its results explicitly. Apart from
this integration, services monitoring is always en-
forced and adaptation must be triggered from ex-
ternal components.

Monitoring results are stored in a SQL database
attached to the monitor via JDBC. Access to this
data is provided by a SOAP query interface dubbed
Monitoring-as-a-Service (MaaS). It offers conve-
nience methods for retrieving historic data on ser-
vices, contracts and providers, thus avoiding the need
for direct access to the database. A cockpit with SVG
charts has been created as a useful sample MaaS con-
sumer. The MaaS interface also manages subscrip-
tions to a message-oriented middleware for delivery
of monitoring events in real-time. This communi-
cation channel is also usable to connect several in-
stances of the monitor with each other. This way,
a scalable hierarchical monitoring with a central ser-
vice marketplace and decentralised service execution
environments becomes possible. This aspect is not
yet fully implemented but obviously needed for large
service hosting sites. Service marketplaces can have
many active contracts between various parties, as can
be seen in Figure 2.

4 MONITORING OF SLA

Grand SLAM is able to observe Service Level Agree-
ments (SLA) which are negotiated between service
provider and service user. Based on our experience
with evolving SLA languages, we have designed an
SLA abstraction library which is able to extract ob-
jectives, expiration dates and other key data from both
WS-Agreement and WSAG derivates.

An aspect central to all of these languages is
the definition of measurement targets and their cor-
responding quality of service (QoS) parameters. A
measurement target includes such information like
service name, endpoint and server address. For each
QoS parameter there also exist two ranges of values.
The first one describes an allowed area for a mea-

Figure 2: SLA between marketplace operator and service
providers, consumers and server hosters.

surement. If a measured value exceeds this area, the
agreement is breached. The second one defines a crit-
ical area. A measured value will be marked as criti-
cal if the upper or lower threshold is exceeded. An-
other existing information is the scheduling parameter
which defines how often a QoS parameter has to be
measured. At the current implementation of Grand
SLAM simple intervals in milliseconds can be de-
fined. For the future we propose a complex schedul-
ing mechanism where it is possible to set intervals in
days or weeks or it would be possible to set concrete
timestamps for when Grand SLAM has to measure
the properties. This allows for defining the quality of
the measurement process itself which could become
part of the agreement pricing model.

Grand SLAM divides measurements into two
groups. The first one, local monitoring, includes
server specific measurements like the usage of a CPU.
In this case only one instance of a measurement pro-
cess exists to reduce the usage of resources allocated
by Grand SLAM. The second group, remote measure-
ments, are web service specific measurements like up-
time or response time. These are individual QoS pa-
rameters of a service and, resulting from this, for ev-
ery referenced parameter one instance of a measure-
ment process exists.

The already existing measurement sensors and ag-
gregation bundles are depicted in Figure 3. A par-
ticular design decision has been to integrate mea-
surements from external system or marketplace com-
ponents wherever they exist already. For example,
the best place to measure service invocation response
time and throughput for local services is a web service

SLA-DRIVEN SERVICE MARKETPLACE MONITORING WITH GRAND SLAM

73



Figure 3: Measurement and aggregation bundles shipped
with Grand SLAM.

proxy. If no proxy is in use, the service SOAP stacks
would have to be instrumented, which is not feasible
for dynamically deployed (tradable) services. Simi-
larly, operating system-level service execution prop-
erties like per-instance CPU usage can be injected by
external tools for locally executed services.

Whenever a new contract becomes active, Grand
SLAM parses the SLA and extracts the guaranteed pa-
rameters. Any measurement bundle not yet running
will be activated at this point. Each bundle then pro-
vides a measurement task to the core bundle. Using
an observer pattern, the core bundle will be notified of
any new measurement as soon as it occurs. The core
bundle is then able to evaluate the data, store it in its
database and use a message-oriented middleware to
forward it to a higher-level instance of Grand SLAM
for further aggregation.

5 CONCLUSIONS AND FUTURE
WORK

Grand SLAM has been introduced to perform SLA
monitoring on service marketplaces. The collection
and aggregation of monitoring information from the
system, installed services and running contracts as
well as the access to both real-time and historic infor-
mation are essential features implemented by the pro-
totype. Compared to existing projects, Grand SLAM
offers good integration with usual service market-
place and SOA components like monitoring dash-
boards, service registries and execution adaptation.
A number of service-related metrics can already be
collected and reported with the included bundles.

The addition of custom measurement and aggregation
bundles is possible at runtime whenever required by
additional negotiated SLA.

In the near future, it is planned to develop a mech-
anism which generates forecasting models from the
collected measured values. Furthermore, the MaaS
query interface will be extended to become more
generic and efficient for a variety of monitoring data
consumers. Finally, the already initiated implementa-
tion for distributed operation will be completed.

ACKNOWLEDGEMENTS

The project was funded by means of the German Fed-
eral Ministry of Economy and Technology under the
promotional reference “01MQ07012”. The authors
take the responsibility for the contents.

REFERENCES

Ameller, D. and Franch, X. (2008). Service Level Agree-
ment Monitor (SALMon). In Proceedings of the Sev-
enth International Conference on Composition-Based
Software Systems (ICCBSS), volume 00, pages 224–
227. Madrid, Spain.

Baresi, L., Guinea, S., Kazhamiakin, R., and Pistore, M.
(2008). An Integrated Approach for the Run-Time
Monitoring of BPEL Orchestrations. In Towards a
Service-Based Internet/ServiceWave. Madrid, Spain.

Bertolino, A., Angelis, G. D., Frantzen, L., and Polini, A.
(2009). The PLASTIC Framework and Tools for Test-
ing Service-Oriented Applications. In Software Engi-
neering: International Summer Schools, ISSSE 2006-
2008, Salerno, Italy, Revised Tutorial Lectures, pages
106–139.

Keymind (2008). Keywatch - an open source, flexible, osgi-
based monitoring system. http://www.keywatch.org.

Molina-Jimenez, C., Shrivastava, S., Crowcroft, J., and
Gevros, P. (2004). On the Monitoring of Contrac-
tual Service Level Agreements. In First IEEE Inter-
national Workshop on Electronic Contracting (WEC),
pages 1–8. San Diego, California, USA.

Pervilä, M. A. (2007). Using Nagios to monitor faults in
a self-healing environment. Seminar on Self-Healing
Systems, University of Helsinki.

Sommers, J., Barford, P., Duffield, N., and Ron, A. (2007).
Accurate and Efficient SLA Compliance Monitoring.
In ACM SIGCOMM Computer Communication Re-
view, volume 37, pages 109–120. Kyoto, Japan.

ICSOFT 2009 - 4th International Conference on Software and Data Technologies

74


