
NETWORK STACK OPTIMIZATION FOR IMPROVED IPSEC
PERFORMANCE ON LINUX

Michael G. Iatrou
Department of Electrical and Computer Engineering, University of Patras, GR26504, Patras Greece

Artemios G. Voyiatzis
Department of Electrical and Computer Engineering, University of Patras, GR26504, Patras Greece

Industrial Systems Institute, Building of the Patras Science Park, Stadiou Str, Platani, 26504 Patras, Greece

Dimitrios N. Serpanos
Industrial Systems Institute, Building of the Patras Science Park, Stadiou Str, Platani, 26504 Patras, Greece

Department of Electrical and Computer Engineering, University of Patras, GR26504, Patras Greece

Keywords: IPsec, Performance, Petworking, Security, Linux.

Abstract: Virtual Private Network (VPN) connectivity is a necessity in the public Internet, for accessing in a secure
fashion private resources from anywhere. Internet Protocol Security (IPsec) is a standardized VPN technol-
ogy for serving multiple connectivity scenarios. Implementation of cryptography is widely considered as a
performance bottleneck and a target for optimization.
We present a set of system configuration optimizations for the Linux 2.6 kernel network stack implementation,
supported by extensive measurements. These optimizations achieve significant throughput gains. Our work
demonstrates that comparable performance between plain IP and IPsec connections is possible without altering
the implementation of the cryptographic algorithms.

1 INTRODUCTION

Internet Protocol (IP) is the standard protocol for
moving packets between a source and a destina-
tion host in the Internet. There are no inherent se-
curity mechanisms defined in IP. Thus, it is easy
to manipulate IP packets e.g., alter their contents,
change source or destination addresses, and inject
fake ones (Bellovin, 2004). Internet Protocol Secu-
rity (IPsec) is a set of open protocols defined by IETF
in RFC 4301–4309. IPsec aims to offer security in the
IP layer, for both IPv4 and IPv6.

IPsec defines three fundamental security proto-
cols: Authentication Header (AH), Encapsulating Se-
curity Payload (ESP), and Internet Key Exchange
(IKE). AH provides sender authentication, data in-
tegrity, and anti-replay protection. ESP additionally
provides data confidentiality. IKE is the key manage-
ment protocol and provides the mechanisms to initiate
and to periodically refresh cryptographic parameters
of the AH and ESP.

IPsec operates in eithertransport or tunnel mode.
In transport mode IPsec protects only the IP payload
i.e., the upper layer information contained in an IP
datagram. In tunnel mode IPsec protects the whole IP
datagram i.e., the IP header and the IP payload.

IPsec in tunnel mode is commonly used to realize
a Virtual Private Network (VPN) over the public In-
ternet. VPN connectivity is attracting significant in-
terest lately due to the increasing need of accessing
private resources in a secure manner from any point
of the public Internet. The IPsec endpoints can be
routers (site-to-site VPN), end-systems (host-to-host
VPN), or mixed (host-to-network VPN).

We focus on a site-to-site VPN, like between
the head and branch offices of a company. In this
case, IPsec operates in tunnel mode and both end-
points hold the same pre-shared keys. Thus, the gate-
ways need not engage in key management operations
through the IKE protocol. As a control scenario,
we also considered transport mode. Our focus is on
attainable throughput for saturating IPsec-protected

83
G. Iatrou M., G. Voyiatzis A. and N. Serpanos D. (2009).
NETWORK STACK OPTIMIZATION FOR IMPROVED IPSEC PERFORMANCE ON LINUX.
In Proceedings of the International Conference on Security and Cryptography, pages 83-91
DOI: 10.5220/0002225600830091
Copyright c© SciTePress

links of 10, 100, and 1000 Mbps .
In this paper we provide insight on the perfor-

mance of IPsec as implemented in Linux kernel ver-
sion 2.6. We present experimental data and propose a
set of system configuration optimizations. These opti-
mizations lead to significant throughput gains without
intrusive modifications of the implementation. Our
work demonstrates that careful system engineering
should be applied first, before trying to optimize (an
already optimized) implementation of cryptography.

The paper is organized as follows. Section 2
presents IPsec with emphasis on implementation on
Linux kernel and performance issues.

Section 3 describes the testbed environment used
for performance analysis and Section 4 the measure-
ments and discusses our findings. Section 5 presents
the set of system optimizations we propose and dis-
cusses their benefits. Finally, Section 6 concludes our
findings and proposes future work in the area.

2 IPSEC BACKGROUND

2.1 Protocols

IPsec is a suite of protocols for securing IP commu-
nications by authenticating and encrypting each IP
packet of a data stream.

A set of extra headers for the IP datagram that ac-
tually provide the VPN services is defined by two new
protocols: ESP and AH. The AH protocol offers data
source authentication, data integrity, anti-replay pro-
tection, but does not offer confidentiality. The ESP
protocol provides all the features offered by AH pro-
tocol and in addition data privacy. The cryptographic
transformations that implement the security services
require a set of keys that are available between the
send peers. These can be either preshared keys or can
be negotiated using IKE protocol.

AH is used to provide connectionless integrity and
data origin authentication for IP datagrams using an
Integrity Check Value (ICV), as well as protection
against replays utilizing a monotonically increasing
number for each packet, which can be optionally ver-
ified by the receiver. AH provides authentication for
as many fields of IP header as possible, as well as for
next level protocol data. However, some IP header
fields may change in transit and values of such fields
cannot be protected by AH. Thus, the protection pro-
vided to the IP header by AH is piecemeal. The size
of the AH header is 12 bytes plus the variable length
ICV. For point-to-point communication, suitable in-
tegrity algorithms for the ICV computation include
keyed Message Authentication Codes (MACs) based

on symmetric encryption algorithms (e.g., AES) or on
one-way hash functions (e.g., MD5, SHA1, etc.) Usu-
ally the output of the algorithm is truncated to 96 bit
for its use in ICV.

ESP can provide the same services as AH and
furthermore data confidentiality using cryptographic
transformations. Whenever ESP only is used, both
confidentiality and integrity services are recom-
mended, in order to avoid some attacks (Bellovin,
1996), (Degabriele and Paterson, 2007). The primary
difference in the integrity provided by ESP and AH
is the extent of the coverage. Specifically, ESP does
not protect any IP header fields unless those fields are
encapsulated by ESP e.g., via use of tunnel mode.

IKE is a component of IPsec used for performing
mutual authentication and establishing and maintain-
ing security associations (SAs). Among other things,
these define the specific services provided to the data-
gram, which cryptographic algorithms will be used to
provide the services, and the keys used as input to the
cryptographic algorithms. Although establishing this
shared state in a manual fashion is possible, it does
not scale well, and thus the use of IKE is required.

2.2 Transport and Tunnel Mode

VPN tunnels are usually implemented through packet
encapsulation. The full packet is wrapped in a new
header at the layer VPN operates, in order to provide
transparent peer-to-peer connectivity. IPsec supports
two modes of operation instead:transport mode and
tunnel mode.

In transport mode, encryption and authentication
services are provided only for the payload of the orig-
inal IP datagram. Transport mode is used for host-
to-host communication and it is not compatible with
gateway services.

In tunnel mode the original IP datagram is fully
encapsulated, providing security services for both the
IP header and the payload. Since a new IP header
is added, tunnel mode is appropriate for gateway-to-
gateway service setups. ESP and AH protocols are
available in both modes.

2.3 Cryptography

Implementation experience with IPsec in both man-
ual keying mode and in IKE protocol mode has shown
that there are so many choices for system administra-
tors to make, that it is difficult to achieve interoper-
ability without careful pre-agreement (Eastlake 3rd,
2005). Thus, the IPsec Working Group agreed that
there should be a small number ofnamed suites that
cover typical security policies (Hoffman, 2005).

SECRYPT 2009 - International Conference on Security and Cryptography

84

These suites are optional and do not prevent im-
plementers from allowing individual selection of each
security algorithms. The proposed cryptographic al-
gorithms are 3DES and AES128 in CBC mode for
encryption operations and SHA1 and AES-XCBC for
integrity operations.

2.4 Linux Implementation

FreeS/WAN project provided the first implementa-
tion of IPsec for Linux. The implementation con-
sisted of a kernel IPsec stack (KLIPS) and user-space
key management daemon namedpluto. The com-
munication between the two parts is realized over
the IPsec-standardizedPF KEY interface (McDonald
et al., 1998).

Starting from Linux kernel 2.6 series, a “na-
tive” IPsec implementation was opted. Being
standards-compliant, the kernel component imple-
ments thePF KEY interface and can be used in
conjunction with any standards-compatible user-
space key management component. Examples of
such components includepluto (now part of the
OpenSwan/StrongSwan project),isakmpd from the
OpenBSD project,racoon from the KAME project,
and manual keying (no IKE component).

The in-kernel IPsec component interacts with
the network processing stack through the standard-
ized XFRM in-kernel framework. The Linux ker-
nel provides as generic, in-kernel modules heavily-
optimized implementations of various cryptographic
algorithms. IPsec reuses through XFRM these mod-
ules for its cryptographic needs.

2.5 Performance Issues

IPsec introduces extra processing overhead to the net-
work stack, in terms of performing mutual authenti-
cation and establishing and maintaining security as-
sociations (SAs), as well as cryptographic data trans-
formations. Cryptographic operations for encryption,
decryption and hashing introduce overhead unrelated
to characteristics of the traffic imposed by protocols
beyond the network layer. Instead, SAs manipulation
has an impact to the performance that is highly cor-
related to session-like properties of the traffic (Shue
et al., 2005).

In the past, various performance compensating
methodologies have been proposed, such as crypto
offloading to specialized hardware (Bellows et al.,
2003), key caching (Shue et al., 2007), and usage
of specific cryptographic algorithms (Elkeelany et al.,
2002).

To the best of our knowledge, the impact of IPsec
on generic bulk data transfers remains unaddressed,
as well as the opportunity to utilize related protocol
characteristics and implementation specifics to further
compensate the performance overhead of IPsec, for
both network throughput and CPU usage. We seek to
address these issues in the following.

3 METHODOLOGY

For the performance analysis of IPsec we built a
testbed that provides both an easy to deploy and re-
produce environment and versatility in a variety of
measurements scenarios. Our primal focus is on the
performance impacts of IPsec for bulk data transfers.

3.1 Testbed

The testbed environment consists of personal com-
puters running Slackware 10.1 Linux distribution,
with custom, vendor independent kernel builds and
optimized-for-throughput TCP/IP stack. In prelimi-
nary tests, various kernel versions were used, namely
2.6.0, 2.6.4, 2.6.7, and 2.6.11. All reported results in
this paper are taken with kernel version 2.6.11.7.

To ensure the reproducibility of the tests and the
accuracy of CPU usage instrumentation, we config-
ure the systems without any unneeded services run-
ning, except OpenSSH, which is used to control them
and doesn’t essentially affect measurements. Fur-
thermore, network interfaces were connected directly
(back-to-back) with shielded twisted-paired cables,
certified for speeds up to 1 Gbps.

To measure network throughput, we use the
netperf tool (Jones, 2009). Netperf is capable of
measuring network throughput, generating multiple
packet sizes, and utilizing different socket sizes, us-
ing a single stream. We measure the amount of data
sent using a packet stream in a predefined time pe-
riod. In our tests, we use packet sizes of 64, 128,
256, 512, 1024, 2048, 4096, 8192, 16384, and 32768
bytes. Each experiment runs for a constant time of
ten seconds. This time is sufficient for TCP through-
put stabilization. Netperf is configured for up to 12
iterations (minimum 4) to a reach confidence level
of 95 with a 3% width of confidence interval. We
use the stock kernel socket sizes. We will show later
that careful socket size changes contribute to achiev-
ing higher throughput.

The built-in features of netperf can be used for
CPU usage estimation. In order to to achieve more
fine-grained estimations, we opted to collect the ap-
propriate statistics directly from the kernel, using the

NETWORK STACK OPTIMIZATION FOR IMPROVED IPSEC PERFORMANCE ON LINUX

85

Table 1: Testbed components.

ID CPU core Clock/FSB (MHz) RAM (MB) NIC (Mbit/s)
P2 Intel Pentium 2 541 / 75 384 RTL8139 10/100
A AMD Athlon XP 1667 / 266 512 RTL8139 10/100

P41, P42 Intel Pentium 4 1800 / 100 256 Intel 82546 10/100/1000
P4M Intel Pentium 4M 2200 / 266 512 BCM 4401 10/100

X1, X2 Intel Xeon 2800 / 533 512 Intel 82546EB 10/100/1000

 0

 2

 4

 6

 8

 10

 64 128 256 512 1024 2048 4096 8192 16384 32768

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

Packet size (bytes)

Network throughput

Plain IP
64bit DES

64bit DES-160bit SHA1
64bit DES-128bit MD5

256bit AES
256bit AES-160bit SHA1
256bit AES-128bit MD5

192bit AES
192bit AES-160bit SHA1
192bit AES-128bit MD5

192bit 3DES
192bit 3DES-160bit SHA1
192bit 3DES-128bit MD5

160bit SHA1
128bit MD5
128bit AES

128bit AES-160bit SHA1
128bit AES-128bit MD5

Figure 1: IP and IPsec comparison - 10 Mbps link.

/proc interface and/proc/stat in particular. A cus-
tom application controls remotely the configuration
for each system and collects the results from netperf
and the samples from/proc/stat.

Finally, for an in-depth analysis of performance
bottlenecks, we useoprofile, a transparent, low-
overhead, system-wide profiler (Levon, 2008). In to-
tal, we use nine personal computers with varying ca-
pabilities, as shown in Table 1.

3.2 Experiments

We set up IPsec in both transport and tunnel mode
with preshared keys, and measure the performance
of plain IP and IPsec with different algorithms for
authentication (namely MD5 and SHA1) and for en-
cryption (namely DES, 3DES, and AES), for a single
unidirectional TCP stream traffic. We collect mea-
surements for link speeds of 10, 100, and 1000 Mbps.

We use two pairs of systems for testing the 10
Mbps link: (P2,P4M) and (X1,X2). Systems P2 and
X1 act as senders and system P4M and X2 as the re-
ceivers of the TCP stream. In all experiments, the
MTU was set to the maximum allowed of 1500 bytes.

We use three pairs of systems, covering the full
range of available hardware capabilities, for testing
the 100 Mbps link: (P2,P4M), (A,P4M), and (X1,X2).
This variety allows us to compare the scalability of the

IPsec implementation on different hardware.
We use the high-end systems for testing the 1

Gbps link: (P41,P42) and (X1,X2). For these sys-
tems, we further experiment with customized TCP/IP
options, interrupt coalescence capabilities, MTU size,
and different network cards. We use the same IPsec
setup for all experiments.

4 RESULTS

We group the results of the experiments according to
the link speed, since it is the definitive constraint in
terms of network throughput. Furthermore, it pro-
vides a metric for the performance characterization of
each hardware platform.

4.1 Link of 10 Mbps

IPsec has negligible impact for both network through-
put and CPU utilization overhead, even for the low-
end systems, as shown in Figure 1. Compared to plain
IP, encryption and authentication modes of IPsec can
saturate the link with small increase in CPU utiliza-
tion. There is only a small difference in maximum
throughput achieved. This difference is the result of
the increased packet sizes due to IPsec encapsulation.

SECRYPT 2009 - International Conference on Security and Cryptography

86

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096 8192 16384 32768

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

Packet size (bytes)

Network throughput

Plain IP
64bit DES

64bit DES-160bit SHA1
64bit DES-128bit MD5

256bit AES
256bit AES-160bit SHA1
256bit AES-128bit MD5

192bit AES
192bit AES-160bit SHA1
192bit AES-128bit MD5

192bit 3DES
192bit 3DES-160bit SHA1
192bit 3DES-128bit MD5

160bit SHA1
128bit MD5
128bit AES

128bit AES-160bit SHA1
128bit AES-128bit MD5

Figure 2: (P2,P4M) IP and IPsec comparison - 100 Mbps link.

 0

 20

 40

 60

 80

 100

 64 128 256 512 1024 2048 4096 8192 16384 32768

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

Packet size (bytes)

Network throughput

Plain IP
64bit DES

64bit DES-160bit SHA1
64bit DES-128bit MD5

256bit AES
256bit AES-160bit SHA1
256bit AES-128bit MD5

192bit AES
192bit AES-160bit SHA1
192bit AES-128bit MD5

192bit 3DES
192bit 3DES-160bit SHA1
192bit 3DES-128bit MD5

160bit SHA1
128bit MD5
128bit AES

128bit AES-160bit SHA1
128bit AES-128bit MD5

Figure 3: (X1,X2) IP and IPsec comparison - 100 Mbps link.

Tunnel mode exhibits a 3% throughput loss com-
pared to transport mode. The primal reason for this
is that tunnel mode encapsulates the full IP datagram
and thus, the packet size in the wire is increased.

4.2 Link of 100 Mbps

We distinguish three system setups here: the low-
end (P2,P4M), the medium (A,P4M), and the high-
end (X1,X2). In the low-end (P2,P4M), the impact
of cryptographic operations is significant and propor-
tional to their computational complexity, as Figure 2
depicts. Also, the number of packets to process per
time unit strongly affects the overall throughput. The
throughput grows in a nearly logarithmic rate with the
packet size in all but four cases: two of low computa-
tional complexity (MD5 and SHA1) and two of high

one (3DES+MD5, 3DES+SHA1).
The pair (A,P4M) has enough processing power

to handle all algorithm and key size combinations,
with virtually no throughput loss for the whole spec-
trum of packet sizes. The only exceptions are the
setup of DES+SHA1 and the ones of 3DES. The setup
of 3DES suffers a 40-50 Mbps penalty on through-
put and exhibits a 5 Mbps average variation with the
packet size.

The high-end setup (X1,X2) doesn’t bridge the
performance gap of 3DES identified in (A,P4M).
However, the gap is now more narrow: 35-40 Mbps,
as Figure 3 depicts.

In all setups, the observed difference between
transport and tunnel mode is bound to 3-5%.

NETWORK STACK OPTIMIZATION FOR IMPROVED IPSEC PERFORMANCE ON LINUX

87

 0

 200

 400

 600

 800

 1000

 64 128 256 512 1024 2048 4096 8192 16384 32768

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

Packet size (bytes)

Network throughput

Plain IP
64bit DES

64bit DES-160bit SHA1
64bit DES-128bit MD5

256bit AES
256bit AES-160bit SHA1
256bit AES-128bit MD5

192bit AES
192bit AES-160bit SHA1
192bit AES-128bit MD5

192bit 3DES
192bit 3DES-160bit SHA1
192bit 3DES-128bit MD5

160bit SHA1
128bit MD5
128bit AES

128bit AES-160bit SHA1
128bit AES-128bit MD5

Figure 4: (X1,X2) IP and IPsec comparison - 1 Gbps link.

4.3 Link of 1 Gbps

The setup (P41,P42) does not provide enough pro-
cessing power to saturate the link, even for plain IP.
Furthermore, IPsec suffers from a throughput penalty
of more than 50%. The total throughput results in re-
spect to packet size and cryptographic algorithm com-
plexity are similar to those of (P2,P4M) for the 100
Mbps link.

The setup (X1,X2) of Xeon processors saturates
the link in the case of plain IP for packet sizes larger
than 256 bytes, as Figure 4 depicts. However, it is
able to provide confidentiality and integrity protec-
tion only for up to 300 Mbps, as show in Figure 4. In
all setups, the difference between transport and tunnel
mode is negligible. It is interesting to note the case of
AES128, combined or not with some integrity algo-
rithm. In all cases, the achieved throughput is almost
doubled moving from packet size of 64 bytes to 8192
bytes.

Further examination of the collected traces reveals
that the CPU usage is 100%, as Figure 5 depict. The
vast majority of the time is spent in thesoftirq state.
The cryptographic processing of each packet takes
place in this state. In the case of (X1,X2) the second
more-time consuming state isIRQ. In this state the
processor handles the interrupt received from the net-
work card. These interrupts occur whenever a packet
event takes place, such as on sending and receiving a
packet.

5 OPTIMIZATIONS

The results of Section 4 indicate that commodity sys-
tems of medium capabilities can be utilized to imple-
ment Linux IPsec gateways for links up to 100 Mbps.
However, there is some area for improvement for 1
Gbps links. The results from the 1 Gbps link on high-
end systems provide an interesting insight: serving
the interrupts caused by the packet events seems to
have a considerable impact on cryptographic algo-
rithm execution of protocol processing.

The implementation of IPsec in a system can be
considered as a latency component: each and every
packet must pass through the IPsec implementation
for one or more of the following operations: encryp-
tion, decryption, hash generation, hash verification.
Since the function calls required to implement these
accumulate and form a longer execution path, it is
preferable to process as many bytes as possible on
each path traversal. In the following, we explore pos-
sible optimizations in all layers of TCP/IP that can
affect packet processing time.

TCP/IP is not a static and monolithic set of proto-
cols. Protocol parameters can be configured for spe-
cific end-to-end link characteristics. We saw that in-
terrupt processing has a critical role on performance;
interrupt coalescence is an excellent candidate for our
purpose. Also, MTU size can have an immediate
impact, since it can affect maximum allowed packet
size. This can reduce the number of packets needed

SECRYPT 2009 - International Conference on Security and Cryptography

88

 0

 20

 40

 60

 80

 100

128bit AES

128bit AES-128bit MD5

128bit AES-160bit SHA1

128bit MD5

160bit SHA1

192bit 3DES

192bit 3DES-128bit MD5

192bit 3DES-160bit SHA1

192bit AES

192bit AES-128bit MD5

192bit AES-160bit SHA1

256bit AES

256bit AES-128bit MD5

256bit AES-160bit SHA1

64bit DES
64bit DES-128bit MD5

64bit DES-160bit SHA1

Plain IP

C
P

U
 ti

m
e

(%
)

IPsec setup

CPU usage

softirq
irq

system
user

Figure 5: (X1,X2) CPU utilization - 1 Gbps link.

to transmit a specific volume of information and thus,
reduce overall packet processing time and total num-
ber of interrupts.

The IEEE 802.3 standard dictates a backwards-
compatible MTU size of 1500 bytes. For a saturated
Gigabit link, the kernel must be able to cope with
more than 80,000 packets per second. The so-called
“Jumbo frames” have been proposed as a means to
reduce packet rate for a given transmission rate. The
size of jumbo frames is not standardized but there are
currently available products that support MTU sizes
of 4096, 8192, 9000, and up to 16110 bytes.

There is no formal agreement on the maximum
MTU size for devices supporting jumbo frames. Fur-
thermore, usage of the “path MTU discovery” pro-
tocol is not widely adopted (Mogul and Deering,
1990), (Mathis and Heffner, 2007). These facts can
lead to connection problems when jumbo frames are
enabled along a network path with network devices
of different vendors. For controlled environments,
where an a priori agreement between interested par-
ties can be achieved, jumbo frames are a desirable
feature, since it leads to higher performance, in the
means of less CPU and bus utilization which can pos-
sibly induce higher throughput.

We explore in the following the throughput im-
provement gained by each of the above parameters.

5.1 TCP/IP Stack Optimizations

Performance improvement of TCP over large
bandwidth-delay products paths is accomplished with
the addition of standardized extensions (Jacobson
et al., 1992), (Mathis et al., 1996). The Linux
kernel supports some of these extensions for high
performance networking in a customizable, online
configurable way. From the available arsenal, we
choose to enable the options for timestamps, window
scaling and SACK. Furthermore, we experiment with
the TCP window size and the default values for TCP
send and receive buffers. Specifically, we got the
optimum results by setting the min, default and max
values for both sending and receiving socket buffers
to 87380, 4194304 and 4194304 bytes accordingly.
The kernel selects the appropriate value depending
on the available memory.

These customizations lead to a gain of 20 Mbps
for plain IP and IPsec in AH mode.The larger the
size of the packets, the bigger the gain. Notably,
the TCP/IP stack optimizations are more beneficial
to IPsec in ESP mode (AES, DES, and 3DES). They
contribute up to 150 Mbps more throughput. In gen-
eral, TCP optimizations not only provided a through-
put boost, but also exhibited more stable behavior.

5.2 Interrupt Coalescence

Whenever a packet is received by the network inter-
face card (NIC), it raises an interrupt. This interrupt

NETWORK STACK OPTIMIZATION FOR IMPROVED IPSEC PERFORMANCE ON LINUX

89

 0

 200

 400

 600

 800

 1000

 2000 4000 6000 8000 10000 12000 14000 16000

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

MTU size (bytes)

Network throughput

Plain IP
128bit MD5

160bit SHA1
128bit AES

256bit AES-160bit SHA1
192bit 3DES

Figure 6: MTU contribution.

must be served by the appropriate interrupt handler of
the kernel. The handler processes the event in IRQ
context, where all interrupts are disabled. Thus, it is
necessary to minimize the processing time, and dele-
gate the rest of the network processing to a “softirq”
task. This task can be scheduled for later execution.
The kernel must process thousands of packets per sec-
ond in a saturated link. While processing the pack-
ets, the kernel must continuously suspend and resume
other processes. This interrupt “storm” has an impor-
tant impact not only on the network but also on the
overall system performance, even for modern, high-
speed processors.

The Linux kernel implements NAPI, a heuristics-
based workaround to cope with this storm (Salim
et al., 2001). NAPI is a hardware agnostic, hybrid in-
terrupts/polling mechanism. If the interrupts for the
NIC reach a certain rate, the kernel disables these
interrupts and processes the packets using a polling
mechanism. When the rate drops below the threshold,
the kernel switches back to interrupt-handling mode.
This approach provides interrupt overload reduction,
removes packet re-ordering issues in SMP architec-
tures, and handles (early drop) system overloading
due to network traffic better.

We run a set of experiments using the NAPI-
enabled Intel e1000 network drivers in system pair
(X1,X2). For packet sizes less than 1024 bytes there is
a small throughput decrease of about 10 Mbps. How-
ever, for larger packets, there is a throughput increase
of 50 Mbps.

The differences between transport and tunnel
mode are negligible for MTU size of 1500 bytes.
We further experimented with the so-called “jumbo”
frames for an MTU of 9000 bytes. Our results lead to
three observations:

• Six times larger MTU has an amplifying effect
upon the previous results: up to 40 Mbps less for
small packets and 40-120 Mbps more for larger
ones.

• The increased MTU yields to more unstable re-
sults, with considerable standard deviation. Until
now, the standard deviation was near zero.

• There is a significant throughput increase of 20-
100 Mbps for small and up to 450 Mbps (AH,
MD5) for large packets in tunnel mode. This is
the only case that we observed a differentiation
between transport and tunnel mode.

5.3 MTU

We extensively tested the effects of MTU size in the
system pair (X1,X2), after enabling the TCP opti-
mizations described above and the NAPI. We tested
effects in plain IP, in IPsec in tunnel mode using AH
(MD5 and SHA1), ESP (AES128, 3DES), and com-
bined ESP and AH (AES256 and SHA1).

The performance gains are rather strong, as Fig-
ure 6 depicts: MD5 peaks at 985 Mbps, the same
as plain IP and the combined ESP and AH operation
mode achieves 100 Mbps more throughput.

SECRYPT 2009 - International Conference on Security and Cryptography

90

6 CONCLUSIONS AND FUTURE
WORK

In this paper we analyzed the performance of the
Linux native IPsec implementation, for both transport
and tunnel mode. The analysis indicates that even
with commodity systems, we can easily saturate links
up to 100 Mbps, without any significant penalty for
throughput. IPsec falls short of expectations in sat-
urating Gigabit links. The implementation of cryp-
tographic algorithms can be an attractive target for
optimization. However, detailed system analysis re-
vealed that the problem is not processing power per
se. Rather, it is the combined effect of the IRQ storm
and the softirq kernel state due to IPsec processing,
even with increased MTU sizes. Once the real cause
is identified, careful system engineering can lead to
significantly increased IPsec throughput.

Future work in this area includes extensive testing
of advances in Linux kernel network stack, and use of
hardware-based cryptographic processors for offload-
ing security operations. Another direction is the com-
parison with the BSD IPsec stack variants and valida-
tion of our findings in higher link speeds; 10 Gbps is
a good candidate for this. Finally, it would be inter-
esting to compare our results in scenarios with user-
space based VPN solutions.

REFERENCES

Bellovin, S. (2004). A look back at “security problems in
the TCP/IP protocol suite”. InACSAC ’04: Proceed-
ings of the 20th Annual Computer Security Applica-
tions Conference, pages 229–249, Washington, DC,
USA. IEEE Computer Society.

Bellovin, S. M. (1996). Problem areas for the IP security
protocols. InProceedings of the Sixth USENIX Secu-
rity Symposium, pages 205–214.

Bellows, P., Flidr, J., Gharai, L., Perkins, C., Chodowiec,
P., and Gaj, K. (2003). IPsec-protected transport of
HDTV over IP.

Degabriele, J. P. and Paterson, K. G. (2007). Attacking
the IPsec standards in encryption-only configurations.
Cryptology ePrint Archive, Report 2007/125.

Eastlake 3rd, D. (2005). Cryptographic Algorithm Imple-
mentation Requirements for Encapsulating Security
Payload (ESP) and Authentication Header (AH). RFC
4305 (Proposed Standard). Obsoleted by RFC 4835.

Elkeelany, O., Matalgah, M., Sheikh, K., Thaker, M.,
Chaudhry, Medhi, G., and Qaddour, J. D. (2002). Per-
formance analysis of IPSec protocol: encryption and
authentication.

Hoffman, P. (2005). Cryptographic Suites for IPsec. RFC
4308 (Proposed Standard).

Jacobson, V., Braden, R., and Borman, D. (1992). TCP Ex-
tensions for High Performance. RFC 1323 (Proposed
Standard).

Jones, R. (2009). Netperf. Retrieved April 27, 2009 from
http://www.netperf.org.

Levon, J. (2008). OProfile - A System Profiler
for Linux. Retrieved April 27, 2009 from
http://oprofile.sourceforge.net/.

Mathis, M. and Heffner, J. (2007). Packetization Layer Path
MTU Discovery. RFC 4821 (Proposed Standard).

Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A.
(1996). TCP Selective Acknowledgment Options.
RFC 2018 (Proposed Standard).

McDonald, D., Metz, C., and Phan, B. (1998). PFKEY
Key Management API, Version 2. RFC 2367 (Infor-
mational).

Mogul, J. and Deering, S. (1990). Path MTU discovery.
RFC 1191 (Draft Standard).

Postel, J. (1981). Transmission Control Protocol. RFC 793
(Standard). Updated by RFC 3168.

Salim, J. H., Olsson, R., and Kuznetsov, A. (2001). Beyond
softnet. InALS ’01: Proceedings of the 5th annual
Linux Showcase & Conference, pages 18–18, Berke-
ley, CA, USA. USENIX Association.

Shue, C., Shin, Y., Gupta, M., and Choi, J. Y. (2005). Anal-
ysis of IPSec overheads for VPN servers. InIEEE
ICNPs NPSec Workshop.

Shue, C. A., Gupta, M., and Myers, S. A. (2007). IPSec:
Performance Analysis and Enhancements. InIEEE
Conference on Communications (ICC).

NETWORK STACK OPTIMIZATION FOR IMPROVED IPSEC PERFORMANCE ON LINUX

91

