
 
or (N=4, γ=0.3655) may be chosen as the best (near-
optimal) PM policy. 
Table 3: The results of the 30 Simulation runs. 
Run#
N  1 2 
3 
4 5 6 
γ  1 0.6667 
0.4781 
0.3655 0.2957 0.2483
1 216.730 189.894 
180.155 
194.132 194.575 210.016
2  229.144 196.101 192.570 
187.925 
210.093 194.498
3 250.869 196.101 
189.466 
197.236 213.197 206.912
4 250.869 186.790 
180.155 
200.340 188.368 213.120
5  204.315 199.205 204.984 
187.925 
219.404 197.602
6 263.284 
189.894 
201.880 194.132 197.679 197.602
7 213.626 
165.065 
183.259 197.236 185.264 203.809
8 232.248 214.723 
192.570 
194.132 206.990 194.498
9 241.558 
177.480 
183.259 200.340 191.472 206.912
10 216.730 189.894 
180.155 
194.132 188.368 206.912
11 219.833 211.619 
204.984 
209.650 213.197 216.223
12  222.937 189.894 189.466 
181.718 
197.679 197.602
13 247.766 
177.480 
180.155 209.650 197.679 216.223
14 247.766 196.101 
180.155 
206.547 197.679 203.809
15  198.108 196.101 189.466 
181.718 
200.782 194.498
16 216.730 192.998 
183.259 
200.340 185.264 203.809
17 226.040 205.412 
189.466 
191.029 194.575 206.912
18  195.004 202.308 211.191 
191.029 
210.093 191.394
19 216.730 
183.687 
186.362 191.029 200.782 213.120
20 226.040 199.205 
183.259 
203.443 200.782 206.912
21  232.248 186.790 189.466 
184.822 
194.575 203.809
22 204.315 
196.101 
198.777 197.236 197.679 200.705
23 207.419 186.790 
180.155 
206.547 188.368 206.912
24  210.522 208.516 195.673 
187.925 
206.990 197.602
25 219.833 205.412 
195.673 
203.443 197.679 213.120
26 257.076 192.998 
173.948 
215.858 191.472 219.327
27  216.730 211.619 195.673 
172.407 
210.093 188.291
28 216.730 
189.894 
201.880 200.340 197.679 216.223
29 210.522 
168.169 
180.155 206.547 191.472 216.223
30 247.766 
186.790 
189.466 187.925 197.679 200.705
Avg. 225.316 193.101 
189.569 
195.891 198.92 204.843
Theo. 221.495 191.076 
189.728 
192.850 197.222 202.051
Table 4: The near-optimal Policies of the Simulation. 
Policy 1 
(N
*
=2, γ
*
=0.6667) 
Policy 2 
(N
*
=3, γ
*
=0.4781) 
Policy 3 
(N
*
=4, γ
*
=0.3655)
Run#  Min. TC  Run#  Min. TC  Run#  Min. TC
6 189.8940 1  180.1552 2 187.9252
7 165.0652 3  189.4660 5 187.9252
9 177.4796 4  180.1552 12 181.7180
13 177.4796  8  192.5696 15 181.7180
19 183.6868 10  180.1552 18 191.0288
22 196.1012 11  204.9840 21 184.8216
28 189.8940 14  180.1552 24 187.9252
29 168.1688 16  183.2588 27 172.4072
30 186.7904 17  189.4660     
  20 183.2588   
  23 180.1552   
  25 195.6732   
  26 173.9480   
Runs 9 Runs 13 Runs 8 
Avg. 181.6177 Avg.  185.6462 Avg. 184.4337
Max. 196.1012 Max.  204.9840 Max. 191.0288
Min. 165.0652 Min.  173.9480 Min. 172.4072
Overall average of min. TC: 184.1143 
5 CONCLUSIONS 
The proposed three simulation methods are not 
significant different in generating the time-between-
failure RVs .for the PM model with age reduction.  
The rejection method seems simple and easy to use 
in practical. 
For the infinite time span, the results from the 
simulation method are very close to those obtained 
by the theoretical model.  However, for a finite time 
span, more than one near-optimal policy can be 
obtained by the simulation method.  Each of the 
near-optimal solution can be the best PM policy for 
any single system having a finite life time period.  
The simulation results have demonstrated that the 
theoretical PM model might not always suitable for 
a single system in a finite time span.   
The simulation method can be applied in solving 
more complicated real world situation, such as the 
consideration of the random shock in a PM model, 
which is difficult to be solved by the theoretical 
model. 
ACKNOWLEDGEMENTS 
This research has been supported by the National 
Science Council of Taiwan under the project number 
NSC96-2221-E-324-010. 
REFERENCES 
Cheng, C.-Y. and Liaw, C.-F., 2005. Statistical estimation 
on imperfectly maintained system, European Safety & 
Reliability Conference 2005 (ESREL 2005), Jun. 27-
30, 2005, Tri-City, Poland, pp 351-356. 
Cheng, C.-Y. Liaw, C.-F., and Wang, M., 2004. Periodic 
preventive maintenance models for deteriorating 
systems with considering failure limit, 4
th
 
International Conference on Mathematical Methods in 
Reliability—Methodology and Practices, Jun. 21-25, 
2004, Santa Fe, New Mexico. 
Murthy, D. N. P. and Nguyen, D. G., 1981. Optimal Age-
Policy with Imperfect Preventive Maintenance, IEEE 
Transactions on Reliability Vol.R-30, No.1, pp.80-81. 
Pongpech, J. and Murthy, D. N. P., 2006. Optimal 
Periodic Preventive Maintenance Policy for Leased 
Equipment,  Reliability Engineering & System Safety, 
Vol.91, pp.772-777. 
Ross, S. M., 1997. Simulation, Academic Press, San 
Diego, pp.62-85. 
Yeh, R. H. and Chen, C. K., 2006. Periodical Preventive-
Maintenance Contract for a Leased Facility with 
Weibull Life-Time, Quality & Quantity, Vol.40, 
pp.303-313. 
ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics
330