A Process-Oriented Tool-Platform for Distributed
Development

Kolja Markwardt, Lawrence Cabac and Christine Reese

University of Hamburg - Department of Informatics, Germany

Abstract. Many software projects today are executed geographically distributed
with teams of developers, designers, testers, etc. in different countries all over
the globe. This requires a development environment that allows easy and flexible
adaptation to different kinds of teams and their processes. This paper presents
an architecture for a distributed software development environment, that allows
users to collaborate on flexible processes. The focus is put on providing dis-
tributed tools and organising the processes needed to successfully produce soft-
ware with these tools.

1 Introduction

Distributed software development is one of the major concerns today. Many different
approaches are made for the creation of flexible environments to solve the different
challenges encountered here. A distributed software development environment needs
to offer users powerful tools to handle their tasks, as well as allow the interaction and
coordination of distributed partners working together on a project.

Some examples for distributed software development environments are Jazz [6] by
the Eclipse [4] project or Microsoft Visual Studio Team System [10]. In these cases ex-
isting IDEs are enhanced with collaboration features to address the needs of distributed
development.

We try to start from an inherently distributed system, namely a multi-agent system.
On that basis we first build a tool platform, which can be used for any kind of distributed
collaborative work. Our goal and case study is then the distributed software develop-
ment environment.

Other tools focus on certain aspects of distributed development, for example D-
Meeting [1] supports distributed meetings and the gathering of meeting results. While
synchronous processes are possible in our approach and a tool for synchronous com-
munication has been implemented [14], the focus here lies on asynchronous processes.

This paper describes the POTATO (Process-Oriented Tool Agents for Team Organi-
zation) system for distributed software development. It is a tool platform, designed to
integrate different kinds of tools into one process-oriented environment. The tools can
either be standalone or collaboration tools. The interaction between the users is con-
trolled by a process infrastructure that allows the definition and execution of process-
based applications. This tool platform can then be used to build a distributed software
development environment. Tool agents are used to build tools that can be used to exe-
cute tasks in the system.

Markwardt K., Cabac L. and Reese C. (2009).

A Process-Oriented Tool-Platform for Distributed Development.

In Proceedings of the 7th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 43-52
DOI: 10.5220/0002219200430052

Copyright © SciTePress

45

The underlying technology used for the development are reference nets, a special class
of colored Petri nets suitable for the modelling and execution of complex concurrent
systems. Within these nets, Java code can be used for inscriptions. Based on the runtime
environment RENEW, CAPA is a complete multi-agent system platform implemented in
Petri nets, which is then used to build a system of tool and material agents as well as a
process infrastructure. These subsystems are then combined into the POTATO-system,
which offers these functionalities to application programs.

Section 2 describes the agent platform that is the basis for the system, highlight-
ing how nested agents/platforms can be used to structure the system on an intuitive yet
powerful way.

Following in section 3 is the process infrastructure used to create process-oriented
applications. Processes are designed as entities in their own right, controlling their own
execution. The architecture for tool agents can be seen in section 4. Section 5 outlines
the integration of the process infrastructure with the tool agent platform. In the end,
section 6 shows some example scenarios to show how the components work together,
followed by a conclusion and a view on future work.

2 Agent Systems

For the design of concurrent, distributed systems agents and multi-agent systems pro-
vide very useful tools and metaphors. They are especially useful where different parties
work together in a heterogenous environment. This is often the case in distributed soft-
ware development, when different companies work together on a project. This section
describes the agent platform CAPA on which the POTATO system is built.

Agent Platforms. The POTATO system is built on the MULAN agent platform [13].
MULAN is implemented using reference nets [7] as a modelling and execution lan-
guage. Reference nets are a special formalism of colored Petri nets, in which references
to nets can be used as tokens within other nets. This allows the building of very com-
plex models. Thanks to the integration of Java commands within the formalism, it is
possible to graphically model a system and use this model as actual, executable code.
The extension CAPA [3] augments this platform to a complete FIPA-compliant [5] agent
platform.

The basic model of MULAN/CAPA defines agents, which reside on agent platforms.
They own a knowledge base in which their knowledge is kept. The behavior is deter-
mined by a number of agent protocols and decision components within the agent.

Protocols. Even though in theory agents possess autonomy, they need to adhere to
agreed-upon communication standards to enable meaningful interaction. In CAPA each
agents’ behavior is specified by a set of agent protocols. The term protocol in CAPA
is used for one agent’s part in an interaction, which works together with other agents’
protocols to form a conversation.

Modelling an agent system then consists of two orthogonal dimensions, designing
the agents that are part of the system (the structure) and designing their protocols (the

46

behavior). If both parts have their own identity, agent and workflow definitions, it is
easier to focus on one at a time and get to a cleaner design. The next section shows how
workflow processes are handled in the POTATO system.

3 Processes

To organise the cooperation of different people working together on a project, workflow
processes can be defined and enacted. An agent-based process infrastructure has been
created to take care of this important aspect of collaborative systems. [11].

The process infrastructure offers the services of definition and execution of work-
flow processes in the development environment. It models a complete workflow man-
agement system (WfMS) using agent technology. This allows to make use of agent-
based features, like distribution and mobility, so that the resulting WfMS is much more
flexible than a normal stand-alone one.

Not only the different parts of the WfMS are modelled as agents, the workflow it-
self is, too. Once a workflow is instantiated, a workflow agent is created, that holds the
process definition as well as any specific case data. This agent then takes care of the
execution of the contained process, interacting with any other agents which play a part
in the process.

Process Infrastructure. The process infrastructure is a subsystem within the POTATO
tool platform which offers workflow execution services. This allows the explicit mod-
elling of structure elements of the application (agents) and behavior elements (pro-
cesses). The elements of a classical workflow management system (WfMS) have been
implemented as cooperating agents, thus allowing easier distribution among different
platforms as well as a consistent execution environment.

At the center of the WMS is the execution of workflow process definitions, which
are specified as Petri nets. Since the CAPA platform itself is implemented with Refer-
ence nets (see section 2), this allows a very smooth integration.

The execution of process definitions is handled by workflow engine agents. They
are instantiated by a workflow enactment agent, which has knowledge of the different
process definitions within the system and creates new workflows on demand. Usually a
workflow engine agent can handle several workflow processes.

The workitem dispatcher agent handles the worklists of all registered workflow par-
ticipants and updates them whenever changes occur. Participants can select tasks for
execution and inform the dispatcher of their completion. Whenever an update of the ac-
tivation state of a task transition happens the dispatcher sends an update of all relevant
worklists to the participants.

Another agent is used for the handling of roles, rules and rights (RRR agent). It de-
cides who can access which functionality in the system, for example executing certain
tasks or define new processes and tasks. The RRR agent also performs security checks
on operations and when a user logs in into the WfMS.

Security issues will be handled by the security subsystem, which is another multi-
agent system due to the complexity of security in distributed systems. The RRR agent
strongly cooperates with the security multi-agent system.

47

Workflow Agents. The workflow agent plays a special role in the process infrastruc-
ture, as it is essentially a process definition which gets elevated to the status of an agent.
Usually the interaction between agents is regulated by protocols, which are implicitly
agreed upon, and whose parts are distributed between the participating agents. With the
workflow agent, this implicit understanding is encapsulated into an own entity, putting
it into the focus and allowing a single point of access.

Whenever a new process instance is created in the process infrastructure, the work-
flow enactment agent creates a new workflow agent and initialises it with a process
definition (a workflow Petri net). Additional information about the process context, like
participants, case data, distribution aspects etc. can be stored as information within the
net.

The workflow agent is then connected to a workflow engine agent and makes sure
the process is executed correctly. If needed, the workflow can be fragmented [12] and
migrated to different platforms and other WfMSs to e.g. ensure the correct execution of
an interorganizational workflow.

In this way designing the interactions between agents is much easier. It is no longer
necessary to check that all interfaces are correct and every agent protocol fits together
with the others, since everything can be designed in one central place and distributed
at runtime. Of course the process infrastructure is more complicated then a traditional
WIMS due to the higher flexibility.

4 Tool Agents

The main goal of the POTATO system is to facilitate the work of different people work-
ing together to produce software. To achieve this, users can use different tools to ma-
nipulate materials, which are over the course of a project transformed into work results.
This follows the notions of the tools and materials approach [15], applied to multi-agent
systems to address distributed workplaces.

Overview. The main idea about the tool agent concept is that each user controls a user
agent (UA), which can be enhanced by different tool agents (TA). [8] The user agent
provides basic functionality like a standard user interface and the possibility to load new
tool agents. Those tool agents can then plug into the user agents UI with their own Ul
parts, offering their functionality to the user. By choosing the specific set of tool agents,
the user can tailor his workspace to his specific needs. A developer for example needs
a completely different workplace then a tester or someone writing documentation.

Material agents (MA) are used to represent and encapsulate the materials or work
objects that are currently worked on. Materials are manipulated by tools and can be cre-
ated, deleted and moved between workplaces. Tools and materials populate the workspace
of the user.

User Agent. The user agent is every user’s starting point into the distributed develop-
ment environment. Its role is therefore a dual one; one part is the Ul component which
allows the user to access the system, the other part is the connection to the multi-agent

48

system.

The user interface needs to be flexible enough to allow easy integration of new tools
and materials. In the prototype currently worked on, the user interface is implemented
as an Eclipse plugin using the Rich Client platform and SWT. [4] Other systems would
of course be possible, as long as user and tool agents agree on one standard.

Tool Agents. To access functionality in the system, tool agents are used. This can be
an encapsulated legacy application, local handling of a material, cooperation with other
users via connected tool agents or access to a remote service provider (see figure 1).

Platform A (User Agent) Platform B

Tool Agent
Tool Agent

Tool Agent

Server

Legacy Agent

Platform C
(Other User Agent)
UAI

User Agent
Platform D Interface
(part of the
platform)

Tool Factory

|

Tool Agent

Mobile Agent

Fig. 1. User and Tool agents.

They are created within the user agent or migrate there in order to offer certain func-
tions to the user. A tool agent is usually explicitly ordered by a user agent. It is also
possible to send a tool agent to the user agent to request certain actions from him. This
is for example the case with tool agents used within the process infrastructure for task
execution. When a user accepts an open task, a tool agent for handling that task can be
sent directly to the user.

Tool Factory. Not every user agent platform needs to know all possible tool agents. A
repository can be used to store tool definitions and generate new tools on demand. User
agents can query this tool factory for available tool types and the tool factory generates
new tool instances on demand. If the tool factory is located on a different platform than
the user agent, the tools can be migrated over the network to the target platform.

Material Agents. Material agents represent work objects in the system, such as a piece
of source code, a documentation item, a system specification etc. Materials are handed
over between user agents, who can then work on them, transforming and modifying
them using tool agents.

A material agent allows access to its internal data over an interface specific to this
material, like an object in object-oriented programming. For creating materials a spe-
cial repository like the tool factory is conceivable, otherwise certain types of tools can
create new materials.

49

The workflow agent (section 3) is a special, complex material. It encapsulates the work-
flow process definition and the current execution status, but can also contain other ma-
terials needed in the course of the process, like work documents generated and manip-
ulated.

5 Integration

This section describes the integration and interaction between our process infrastructure
and the tool agents architecture. These two concepts are essential for the development
environment envisaged and need to work together smoothly.

A user of the system has to achieve anything by the use of tool agents. His workspace
offers him different tools to use, some of which involve using workflows in one way or
another. For most of the interfaces a WfMS has to offer according to the WfMC refer-
ence model (see figure 2), tool agents can be applied.

Administration &
Menitering Tools

Client
Application ©

Fig. 2. Workflow Interfaces [2].

Workflow Definition Tools. The first interface is the workflow process definition.
Users who are allowed to define their own processes can do so by using a process
definition tool. The created process pattern is a material, which is then handed over to
the workflow database agent. The workflow enactment agent can access and instantiate
it then.

At the current time, no such tools exist yet. The process definitions are usually de-
signed directly in the RENEW tool and added to the workflow database manually.

Workflow Client Application Tools. The workflow client application and invoked ap-
plication interfaces are used to trigger the actual work to be executed in the course of the
workflow execution. Once a user selects a task for execution, the process infrastructure
creates a tool agent specifically for this task instance. The tool can be tailored to the
task and contains all necessary context information to allow the successful handling.
Invoked applications do not require user interaction. Service agents are used to ex-
ecute these tasks, but the same interface as for tool agents can be used here as well.

50

Workflow Engine Interface. The fourth interface of the reference model is used to
connect a WEMS with other, remote workflow engines. This interface can be used to
construct distributed workflows or execute parts of a process in a remote WfMS. With
the notion of workflows as tools (see below), subprocesses can be achieved by simply
calling a remote WfMS as a tool.

More complex interaction has to be negotiated directly between the WfMS’, though.
This is still an open topic for further research.

Workflow as Tool. Tool agents cannot only be called by the WfMS, they can initiate
and control a workflow, too. A tool can offer some functionality to the user, which relies
on the execution of a (sub-)workflow. So when the functionality is called from within
the tool agent, a new workflow agent is created. During the course of its execution, other
tool agents might be called.

Yet another tool can offer monitoring functionalities over workflow instances the
user owns. Both the starting and monitoring of processes uses the administration and
monitoring interface of the WfMS.

6 Scenarios

To understand the purpose of the system, this section describes some usage scenarios.
The process for Change Management has been implemented as an example subprocess
of distributed development. It shows how the different parts of the system work together.
The complete process envisaged for distributed development is outlined afterwards.

6.1 Change Management

An important process in software development and maintenance is the handling of
changes in the software. Changes can originate from bugs found during testing, chang-
ing requirements or enhancement of the software with new functionality. To success-
fully execute a change it is important, that all parties involved follow the predefined
processes, because only then transparency can be ensured.

A basic change management application has been built based on the POTATO tool
platform. [9] The exact processes used in change management are very dependent on
the actual context, like involved parties (internal and external), quality of service agree-
ments, additional bug tracking software, company policies etc.

In our scenario, the workflow starts with a change requester (for example a user rep-
resentative) opening a new change request (CR) via his CR tool. This connects to the
Workflow enactment service and requests a new workflow of the type “Change Request
handling” to be started. The workflow enactment agent looks up the process definition,
adds the requester to the list of participants and starts a new workflow agent. The be-
ginning of the workflow is shown in figure 3.

Now the CR could be assessed, categorized and edited, cost estimates be made and
negotiated, before the CR is actually worked upon. In this example all CRs are imme-
diately executed, as might be the case in a small internal CR cycle. So the next task in
line is the implementation of the required change.

51

['RecordChangeRequest",cr] ['HandleChangeRequest",cr]
:start(cr)
or - guard "Finished"

.equals(cr.getLastState())

guard "Back To Initiator”
.equals(cr.getLastState())

Fig. 3. Change Management Workflow (detail).

At some point the process is finished and the CR is closed. The tool which started the
workflow is notified of this and can provide some feedback about this. Of course a real
Change Management workflow would be more complex and require different tools.

6.2 Distributed Development

The eventual goal of the POTATO system is to support the complete process of dis-
tributed software development. The aspect of Change Management has just been shown,
other processes are yet to implement. The overall structure is also more complex than
was necessary in the last example.

Different companies working together at different places will all have their own
agent platforms. These platforms are interconnected and share some resources, but cer-
tain information will be kept private. For example a process spanning two companies
can be defined as public information, but the detailed subprocesses each company uses
internally is private information.

To implement a distributed project, either a standard process is selected or a new
process definition is tailored for the specific project. Since most distributed projects are
very complex, this will usually be necessary in order to address all the specific circum-
stances of the project. This global process is then enacted on either a shared platform
for the project or one of the participants’ platform.

The different activities are then assigned to the relevant parties and handled accord-
ingly. For example a service provider will be assigned the task of writing documenta-
tion. This task could be handled by some kind of tool agent, it is more likely however,
that it spawns a whole new subprocess on the side of the service provider.

In a complex network of collaborating companies, changing teams can be put to-
gether to work on different projects, each time designing new processes and creating
new temporary collaboration platforms.

7 Conclusions and Outlook

In this paper the process-oriented tool platform POTATO has been described. It has been
stated, how such a tool can be used to support distributed collaborative software devel-
opment processes. The different constituent parts have been described as well as their
interaction.

The process infrastructure as well as the tool agent architecture have been described
as the constituent parts of the system. The integration of these two parts was described
and motivated with two scenarios.

52

At the current time, a prototype of this system exists, the test application for change
management processes in the context of distributed development has been built [9]. To
facilitate other processes of distributed software development, the different processes
used in this domain have to be described in detail and implemented as workflow defini-
tions. In parallel tool and material agents have to be implemented to enact the processes.

References

1.

[e IR le WU, IR

10.

11.

13.

14.

Naoufel Boulila, Allen H. Dutoit, and Bernd Bruegge. D-meeting: an object-oriented frame-
work for supporting distributed modelling of software. In International Workshop on Global
Software Development, International Conference on Software Engineering, 5 2003.

. Workflow Management Coalition. Wfmc workflow reference model, 1995.
. Michael Duvigneau, Daniel Moldt, and Heiko Rolke. Concurrent architecture for a multi-

agent platform. In Agent-Oriented Software Engineering Il1: Third International Workshop,
AOSE 2002, Bologna, Italy, July 15, 2002. Revised Papers and Invited Contributions, number
2585 in Lecture Notes in Computer Science, pages 59-72, Berlin Heidelberg New York,
2003.

. eclipse project. www.eclipse.org, 2008.

. Foundation for intelligent physical agents. URL http : www. fipa.org, 2008.

. Jazz project. hitp : www.jazz.net, 2008.

. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.

. Kolja Lehmann and Vanessa Markwardt. Proposal of an agent-based system for distributed

software development. In Daniel Moldt, editor, Third Workshop on Modelling of Objects,
Components and Agents (MOCA 2004), pages 65-70, Aarhus, Denmark, October 2004.

. Kolja Markwardt, Daniel Moldt, Sven Offermann, and Christine Reese. Using multi-agent

systems for change management processes in the context of distributed software develop-
ment processes. In Shazia Sadiq, Manfred Reichert, and Karsten Schulz, editors, The Ist
International Workshop on Technologies for Collaborative Business Process Management
(TCoB 2006), pages 56—66, 2006.

Microsoft visual studio team system. hittp : msdn.microsoft.com/vsts2008/products,
2008.

Christine Reese, Jan Ortmann, Daniel Moldt, Sven Offermann, Kolja Lehmann, and Timo
Carl. Architecture for distributed agent-based workflows. In Brian Henderson-Sellers and
Michael Winikoff, editors, Proceedings of the Seventh International Bi-Conference Work-
shop on Agent-Oriented Information Systems (AOIS-2005), Utrecht, Niederlande, as part of
AAMAS 2005 (Autonomous Agents and Multi Agent Systems), July 2005, pages 42—-49, 2005.

. Christine Reese, Jan Ortmann, Daniel Moldt, Sven Offermann, Kolja Lehmann, and Timo

Carl. Fragmented workflows supported by an agent based architecture. In Manuel Kolp,
Paolo Bresciani, Brian Henderson-Sellers, and Michael Winikoff, editors, Agent-Oriented
Information Systems Il 7th International Bi-Conference Workshop, AOIS 2005, Utrecht,
Netherlands, July 26, 2005, and Klagenfurt, Austria, October 27, 2005, Revised Selected
Papers, volume 3529 of Lecture Notes in Computer Science, pages 200-215. Springer-Ver-
lag, 2006.

Heiko Rolke. Modellierung und implementation eines multi-agenten-systems auf der basis
von referenznetzen. Diplomarbeit, Universitdt Hamburg, 1999.

Steven Willmott et al. Netdemo: opennet networked agents demonstration. In Michael Pe-
choucek, Donald Steiner, and Simon Thompson, editors, AAMAS 2005. Proceedings (Indus-
try Track), pages 129-130, 2005. 2 individual demos: (1) CAPA: The CAPA Mobile Chat
Agent & Web Services Gateway Agent and (2) Settler: AgentBased Settler Game.

. Heinz Ziillighoven. Object-Oriented Construction Handbook. dpunkt Verlag, 2005.

