S. Boudoua, M. Chettouh, M. Hamerlain



We are concerned with the control of a 3-DOF robot arm actuated by pneumatic rubber muscles. The system is highly non-linear and somehow difficult to model therefore resorting to robust control is required.The work in this paper addresses this problem by presenting two types of robust control. One uses neural network control, which has powerful learning capability, adaptation and tackles nonlinearities; in our work the learning performed on-line is based on a binary reinforcement signal without knowing the nonlinearities appearing in the system and no preliminary off-line learning phase is required. The other control law is a Classical variable structure which is robust against parameters variations and external disturbances. Experimental results together with a comparative study are presented and discussed.


  1. D. G. Caldwell, G. A. Medrano-Cerda, M. J. Goodwin,“Braided pneumatic actuator control of a multi-jointed manipulator,” in Proc. IEEE int. conf. Systems, man and cybernetics, Le Touque, France 1993, pp. 423-428.
  2. C. J. Bowler, D. G. Caldwell, G. A. MedranoCerda,“Pneumatic muscle actuators Musculature for an anthropomorphic robot arm,” in Proc. IEE colloquium. Actuator technology current practice and new developments, London, pp. 8/1-8/5.
  3. D. Cai, H. Yamaura. “A VSS control method for a manipulator driven by an McKibben artificial muscle actuator,” Electron, Commun, Japan, vol. 80, no. 3, pp. 55-63, 1997.
  4. P. Carbonell, ZP. Jiang, DW. Repperger. “Nonlinear control of a pneumatic muscle actuator: backstepping vs. sliding-mode,” in Proc. IEEE int. Conf. Control applications, Mexico City, Mexico 2001, pp. 167-172.
  5. B. Tondu, P. Lopex. “Modeling and control of McKibben artificial muscle robot actuators” in Proc.of the IEEE .Int Conf. Control Syst Mag 2000, vol.20, no.1, pp.15- 38.
  6. M. Hamerlain, “An anthropomorphic robot arm driven by artificial muscles using a variable structure control,” in Proc. IEEE/RSJ int Conf. Intelligent Robots and Systems, 1995, vol.1, pp. 550-555.
  7. V. Balasubramanian, KS. Rattan, “Feedforward control of a non-linear pneumatic muscle system using fuzzy logic,” in IEEE int. Conf. Fuzzy Systems, 2003, vol.1, p. 272-277.
  8. M. Folgheraiter, G. Gini, M. Perkowski, M. Pivtoraiko, “Adaptive reflex control for an artificial hand” in Proc SYROCO 2003, symposium on robot control, Holliday Inn, Wroclaw, Poland, 2003.
  9. T. D. C. Thanh, A. K. Kwan, “Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network,” Science Direct. Mechatronics 16, 577-587, 2006.
  10. Y. H. Kim, F. L. Lewis, “Direct-Reinforcement-AdaptiveLearning Neural Network Control for Nonlinear Systems,” Proceedings of the American Control Conference Albuquerque, New Mexico June 1997.
  11. P. Pomiers.“Modular robot arm based on pneumatic artificial rubber muscles (PARM)”, in CLAWAR 2003, Catania, Italy, 17-19 Sept 2003.
  12. N. Sadegh, “A perceptron network for functional identification and control of nonlinear systems,” IEEE Trans. Neural Networks, vol.4, no. 6, pp. 982-988, 1993.
  13. A. R. Barron, “Universal approximation bounds for superposition of a sigmoidal function,” IEEE Trans. Inform. Theory, vol.39, no. 3, pp. 930-945, 1993.
  14. F. L. Lewis, A. Yesildirek, and K. Liu, “Neural net robot controller with guaranteed tracking performance,” IEEE Trans. Neural Networks, vol. 6, no. 3, pp. 703- 715, 1995.
  15. E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, P. A. loannou, “High-order neural network structures for identification of dynamical systems,” IEEE Trans. Neural Networks, vol. 6, no. 2, pp. 422-431, 1990.
  16. F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of Robot Manipulators. MacMillan, New York, 1993.
  17. K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust adaptation without persistent excitation,” IEEE Trans. Automat. Control, vol. 32, no.2, pp. 134-145, 1987.
  18. K. D. Young, V. I. Utkin, and U. Ozguner, “A Control Engineer's Guide to Sliding Mode Control,” IEEE Trans. Control Systems Technology, vol. 7, no. 3, pp. 328-342, May 1999.
  19. J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control:A survey” IEEE Trans. Industrial Electronics, vol. 40, no.1, pp. 2-22, 1993.
  20. F. Harashima, H. Hashimoto, K. Maruyama, “Practical robust control of robot arm using variable structure system”. in Proc.of the IEEE .Int Conf.on Robotics and Automation San Fransisco 1986, 532-538.

Paper Citation

in Harvard Style

Boudoua S., Chettouh M. and Hamerlain M. (2009). ROBUST CONTROL FOR AN ARTIFICIAL MUSCLES ROBOT ARM . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-674-000-9, pages 256-261. DOI: 10.5220/0002210602560261

in Bibtex Style

author={S. Boudoua and M. Chettouh and M. Hamerlain},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},

in EndNote Style

JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
SN - 978-989-674-000-9
AU - Boudoua S.
AU - Chettouh M.
AU - Hamerlain M.
PY - 2009
SP - 256
EP - 261
DO - 10.5220/0002210602560261