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Abstract: A Takagi-Sugeno (T-S) Fuzzy Logic Controller (FLC) is tuned using the algorithm NSGA-II. The proposed 
method eliminates laborious design steps such as tuning of membership functions and conclusion table 
parameters. An object approach representation is used to build an adequate FLC representation. Object is an 
individual abstraction in order to improve crossover a mutation operators. The Genetic Algorithm 
optimization is carry out over signal response performance parameters, in this work: settling time, rise time, 
overshoot and steady state error. Experiments show how the algorithm reached good response of some 
individuals in solution set, typically called Pareto frontier. 

1 INTRODUCTION 

pH control is a difficult benchmark problem due to 
the nonlinearity and sensibility near the neutral 
point. Control engineers would like to keep a 
desirable set-point, rejecting disturbances and 
tracking a reference signal. 

FLC tuned via Genetic Algorithm (GA) to 
control a pH reactor have shown good results in the 
unconstrained case. In (Reyes et al, 2008) an object 
approach was proposed to obtain the FLC 
parameters, optimizing a scalar objective function 
based on the loop error. The authors have also used 
the sum of Rise time (Rt), Settling time (St), 
Overshoot (Os) and Steady state error (Sse) as a 
fitness function. 

The indicators Rt, St, Os and Sse measure the 
performance of a system response and could be in 
possible conflict. If we try to minimize one, another 
or the rest of metrics could increase. Real problems 
involve more than one objective. Multiobjective 
evolutionary techniques try to find the Pareto 
frontier in the objective space (Coello, 2004), and 
the control designer has to choose the best trade-off 
for a given application. 

2 MOEA 

A multiobjective problem seeks to optimize the 
components of a vector-valued objective function. 
Unlike the single objective optimization the solution 
to this problem is not a single point, but a family of 
points know as the Pareto-optimal set (Tamaki et al, 
1996). A multiobjective problem state can be stated 
as: 

Min f(x) = {f1(x),…….,fi(x),…….,fn(x)} 
s.t. a x ∈ D 

D = { x ∈ Rn: gj(x) ≤ 0, j = 1,……., J; 
hk(x) = 0, k = 1,......., K } 

(1) 

Several MOEAs have been proposed to solve 
problem (1). In this work we propose to use the Non 
dominated Search Genetic Algorithm (NSGA-II). It 
initiates with a random population in the search 
space, process follow assigning a particular rank to 
the sequential Pareto surfaces generated plotting fi(x) 
in the objectives space. After ranking assigned to 
every individual other important parameter called 
crowding distance tells how population density is or 
individuals are scattered in objective space in a 
particular Pareto frontier. The tournament process 
chooses the best individuals and after a default 
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number of generations the algorithm stops. NSGAII 
gives a set of solutions or Pareto surface. 
Researchers use it if objectives to be optimized are 
in conflict, thus no best or unique solution exist like 
in a Simple Genetic Algorithm where a unique 
solution is achieved. 

3 CONTROLLER 

Next, a briefing about Fuzzy Logic (FL), GA and 
MOEA applied to this particular problem is 
presented. 

3.1 Fuzzy Logic 

The Fuzzy Logic concept was proposed in a seminal 
paper written in 1965 by Lofti A. Zadeh. One of the 
first Fuzzy Logic Controlles (FLCs) was developed 
by (Mandani & Assilian, 1975), attempting control 
the speed of a steam engine. 

An important issue in FLC design is searching 
for adequate and if possible good parameters for 
both membership functions and conclusion tables. 
Heuristic techniques are useful to perform this task. 
A FLC consists of a rule set that, in a linguistic 
manner, tells how the system must work. The output 
of the FLC will be the control action. Linguistic 
rules are constructed like statements, with cause and 
consequences, as follows: 

IF cause_1 AND cause_2 THEN 
consequence_1 AND consequence_2 

In this work the defuzzification process is carried 
out following the Takagi-Sugeno (T-S) method of 
order cero, with five membership functions for each 
input, and twenty five rules. Because is easy to 
program and is faster than Mamdani method. The 
FLC output is calculated using the weighted 
averaging defuzzification method (see eq. 2).  
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where: 
Ci,j: conclusion i , rule j; αj: activation degree of 

rule j; 
CFi: defuzzificated (crisp) value. 
An extended FLC review, presented in (Gang 

Feng, 2006), gives the reader a clue of their broad 
application. 

Rules are created with all possible combinations 
between Error and Derror fuzzy values. NB: 
Negative Big, NS: Negative Small, Z: Zero, PS: 
Positive Small, PB: Positive Big. 
  

IF Error is NB AND Derror is PB THEN Ci,1  
     :     :     :     :     :     :      :     :     :     :     : 
IF Error is PB AND Derror is NB THEN Ci,25 

Next table show how to construct the rules.  

Table 1: Rule table, i = 1 affects valve of acid, i = 2 
otherwise. 

          Error 
Derror 

NB NS Z PS PB 

PB Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 
PS Ci,6 Ci,7 Ci,8 Ci,9 Ci,10 
Z Ci,11 Ci,12 Ci,13 Ci,14 Ci,15 

NS Ci,16 Ci,17 Ci,18 Ci,19 Ci,20 
NB Ci,21 Ci,22 Ci,23 Ci,24 Ci,25 

Defuzfication is done calculating CF1: 
conclusion at flow 1 and CF2: conclusion at flow 2, 
with the equation 2. Where αj is the max value 
between both membership degree Error and Derror 
at the FLC input. 

3.2 Genetic Algorithm 

A Genetic Algorithm (Holland, 1975), (Golberg, 
1953) is an iterative stochastic optimization process 
based in how the nature selects the best individual to 
survive within a given environment. They are now 
accepted by both the optimization and control 
communities to solve problems for which classical 
methods (i.e mathematical programming) can not be 
used or are not efficient enough. A GA starts with a 
scattered random population in a bounded space. An 
adaptation (or fitness) value is assigned to every 
individual. Fitness will be used to give a selection 
probability for crossover, survivor or mutation 
operations. The choice of the best individuals for 
crossover will give good “chromosomes” to 
children. Mutation prevents premature convergence 
relocating individuals.  The process is iterated with 
the hope to obtain better individuals when algorithm 
stops. 

3.3 NSGAII Procedure 

Multiobjective  problem (see eq. 1) start determining 
searching space and spreading a randomly 
population in it. Every individual is a FLC who’s 
chromosomes are defined with membership 
functions and conclusion tables parameters. In 
simulation, individuals have it fitness vector 
composed of {Rt, St, Os, Sse} (eq. 3), those are 
objective space dimensions in where the individual 
“adaptation” is plotted. 
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Min f(x) = {Rt(x), St(x), Os(x), Sse(x)} 
s.t. a x ∈ D 

D = { x ∈ Rn} 
(3)

 
Where x are membership functions and conclusion 

table parameters. 
Individuals of population in objective space have 

its particular Rank (R) and crowding distance (cd). 
Rank is equal to one if individual belongs to Pareto 

Frontier (PF), later those are removed and the 
sequential individuals continue whit rank two and so 
on, this process discriminate several local PF. Rank 
assignment is done by PF definition (Augusto et al, 
2006), consider two solutions vectors x and y, x is 
contained in the PF if. 
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In the case of (4) x dominates y in the Rk objective 
space and have Rank one. 

Crowding distance is the distance between one 
individual and two near it in the same PF (see eq. 5). 
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Where c is an objective space axis and n are the 
number of the objectives; p is a particular point and 
m are the total points in the same Pareto Frontier; i is 
the individual. 

Binary selection is carry out and tournament is 
done first by Rank. individuals with minor Rank are 
preferred, if both have equal R, cd is taken into 
account, mayor cd wins the tournament to preserve 
population diversity, two individuals are then 
selected by this process for crossover and mutation. 

Simulated binary crossover (Deb & Agrawal, 
1995) makes information interchange, and to avoid 
premature convergence polynomial mutation works 
well (see eq. 6). 
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where k is the vector k-component, c is the child, p 
the parent δ an uniform random number u and l are 
the upper and lower bounds in the search space. 

New and old population are joined and selected via 
tournament to conform the new generation, and then 
survivors could appear. The process is repeated until 
reach the maximum number of iterations. 

In a previous work, population of the Initial 
Individuals where created with restrictions in 

membership functions (Reyes et al, 2008) in hope of 
avoid overlapping or empty space but no restrictions 
where imposed while NSGAII was running, thus 
membership functions at the end shown empty space 
in discourse universe, overlapping or both mixed 
cases (Fig. 2,3). 

4 PH REACTOR 

The equations for the pH dynamic were developed 
in (McAvoy et al, 1975). The main issue is to keep 
the process around the neutral point, where the 
system is very sensitive and highly non linear, then 
pH control is regarded as a benchmark problem, 
especially when the reference signal change from 
pH=7 to a mayor value nearby. The interested reader 
can easily verify this fact by the construction of the 
neutralization or titration curve (TC). An 
experimental method to obtain the TC is based on 
holding the base concentration constant, slowly 
adding the acid and then plotting the pH versus the 
acid concentration. Three operating zones are 
commonly considered: low, medium, high (see Fig 
1).  

pH is usually controlled by the mixture of two 
solutions with different concentrations, one basic 
and other acid. In this work, we validated our 
SIMULINK® model by comparing the resulting TC 
with the one presented in (Zhang, 2001). 
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Figure 1: Titration curve, zones low, medium, high, pH 
approximately 0~6, 6~11.5, 11.5~14, respectively. 

The neutralization process takes place within a 
Continuous Stirred Tank Reactor (CSTR). There are 
two flows to the CSTR. One is acetic acid of 
concentration C1 at flow rate F1, and the other is 
sodium hydroxide of concentration C2 at flow rate 
F2. 

The mathematical equations of the CSTR are 
shown in eq’s 7-12.  

Table 2 shows the parameters and model variables. 
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Table 2: Description and values for parameters and 
variables. 

Name Description Value 
V Volume of tank 1 L 
F1 Flow rate of acid 0.081 L/min 
F2 Flow rate of base 0.512 L/min 
C1 Concentration of acid in 

F1 
0.32 mol/L 

C2 Concentration of acid in 
F2 

0.05005 mol/L 

Ka Acid equilibrium constant 1.8 X 10-5 

Kw Water equilibrium 
constant 

1.0 X 10-14 

[H+] Hydrogen ion - 

[HAC] Acetic acid - 

[AC-] Acetate ion - 

[NA+] Sodium ion - 
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5 EXPERIMENT RESULTS 

The experiment was done using MATLAB® and 
SIMULINK®, starting parameters are shown in 
table 3, they where defined by trial and error of 
several experiments. 
Following results where obtained from PF set for the 
individual with minimum Sse (see Table 4). After 
algorithm run designer choose what is more 
convenient as desire system response, other values 
could be refined if minimum of more than one 
objective if required. 

Table 3: Input parameters to the NSGAII. 

Parameter Value 
Generations 25 
Individuals 30 
Crossover probability 0.8 
Mutation Probability 0.01 
Error Domain [-10 10] 
Rate of error Domain [-10 10] 
Conclusion Domain at inlet 1  [0 7] 
Conclusion Domain at inlet 2 [0 7] 

Values of membership functions parameters for 
error 

-10.00  -5.95
-9.75  -6.39   2.42 
-6.31   7.65   7.80 
-4.79  -3.25   4.20 
 5.84  10.00 

Left trapeze 
Triangle 
“ 
“ 
Right trapeze  
 

Figures 2 show the final distribution of the error 
membership functions, in where overlapping appear 
in absent of restrictions while NSGAII was running. 

Figures 3 show the final rate of error distribution 
membership functions, in where empty space and 
overlapping appear in absent of restrictions while 
NSGAII was running. 

 
Figure 2: Error membership functions. 

Values of membership functions parameters for rate 
of error 
-7.00  -5.10
-6.87  -5.86  -3.21 
 0.67   0.92   2.77 
-0.15   5.14   6.73 
 5.80   7.00 

Left trapeze 
Triangle 
“ 
“ 
Right trapeze  
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Figure 3: Rate of error membership functions. 

Consequence values (according to Table 1) are used 
in the FLC to get and adequate system response.  

Consequence matrix, flow 1 
6.23   6.98   6.17   5.17   4.39 
5.35   4.93   2.46   4.25   2.48 
0.97   1.04   2.95   3.61   0.18 
3.01   6.20   6.22   5.31   2.72 

     0.48   2.73   0.84   1.14   6.48 

Consequence matrix, flow 2 
5.40   0.08   2.01   5.63   5.94 
1.98   0.11   3.63   5.45   5.14 
5.82   5.97   6.89   2.90   6.59 
6.23   0.05   0.70   2.40   0.15 

      6.31   3.81   4.43   0.44   4.80 

Table 4: Objectives to the individual with minimum Sse 
NSGAII. 

Objective Value 
Settling time 2.0511 
Undershoot 2.5918 
Overshoot 0.1158 
Rise Time 3.4483e-004 
Steady State Error 0.0217 

System response with FLC parameters at the final of 
the NSGAII run do its job following reference signal 
and disturbance rejection near neutral point (Fig. 4-
6). 

Os and Sse where the only objectives in conflict as 
show in Fig 7. against other objectives combined 
and that’s why there aren’t shown here. 

 
Figure 4: System response pH vs time. 

 
Figure 5: Disturbance Rejection. 

 
Figure 6: Signal tracking. 

 
Figure 7: Space Os vs Sse. 

6 CONCLUSIONS 

Multiobjective Evolutionary Algorithms in the case 
of NSGAII is an excellent tool to find FLC 
membership functions and conclusion table 
parameters, especially is control designer wants to 
refine one objective on case depending. The method 
gives a population of FLC to choose a desired one, 
additionally shows what objectives are opposed. 

Parameters in table 3 are subject of discussion with 
more intensive run of the whole algorithm. 

The algorithm is very slow, every individual of 
population must be simulated also fitness assigned, 
and is necessary a lot of computer resource but is 
achieved of line.  
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7 FUTURE WORK 

Basic restrictions would be imposed to obtain more 
homogeneous membership functions distribution, 
avoiding overlapping and empty space in discourse 
universe in membership functions. 

Program Mamdani method applying restrictions in 
consequence and compare difference in response. 

Algorithm stop criteria must be implemented to 
compare it with other MOEA in order to establish 
performance metrics. 
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