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Abstract: This paper describes a method for model-based development of software for programmable logic controllers 
(PLC). The method includes modeling of a control algorithm, verifying the algorithm with respect to the 
requirements, and automatically generating the code in one of the IEC 61131 languages. The modeling 
language is UML state machine diagram, and the verification tool is UPPAAL model-checking toolbox. The 
method has good scalability with respect to the number of the modeled objects and the ability to cope with 
integer values by means of variables and function blocks. 

1 INTRODUCTION 

This paper describes a method for model-based 
development of software for programmable logic 
controllers – PLC. The method includes modeling of 
a control algorithm, verifying the algorithm, and 
automatically generating the code for a PLC. 

The development cycle is shown in Figure 1. The 
modeling language is UML state machine diagram 
(OMG, 2005), which has been widely accepted as a 
means for specifying the controller at a suitable high 
level of abstraction. The verification tool is the 
UPPAAL model-checker (Behrmann et al, 2004). 
When the verification has been finished, the 
implementation code can be generated automatically 
in one of the IEC 61131 languages (IEC, 1993). 

 
Figure 1: Modeling, verification and implementation of 
the program code. 

A formal semantics for a UML state machine is 
given by a translatable finite state time machine – 
FSTM (Sacha, 2007, 2008). Modeling a controller in 
UML, modeling the environment in UPPAAL, and 
formulating safety requirements in a formal 

language of CTL formulae are done manually. The 
tasks of converting the model from UML to 
UPPAAL and to FSTM, verifying the model, and 
generating the program code are done automatically. 

The unique features of the method described in 
this paper are the use of UML state machine as a 
problem modeling tool, and the ability to verify time 
dependent behavior of the controller. Widely 
accepted models of timed automata (Alur, Dill, 
1996) and timed I/O automata (Kaynar et al, 2006) 
are used mainly for modeling and verification of 
time-dependent behavior of state systems. Still 
another models of time triggered automata (Krcal et 
al, 2004) and PLC-automata (Dierks, 1997) are used 
for code generation only. 

The paper is organized as follows. Section 2 
gives an overview of PLC controller and finite state 
time machine. Section 3 defines the semantics of 
UML state machine in FSTM. Section 4 presents a 
conversion algorithm from FSTM to UPPAAL and 
explains the verification process. The conversion of 
finite state time machine into a program code is 
described in Section 5. A discussion of the results 
and plans for future work are given in Conclusions. 

2 PLC CONTROLLER 

PLC is a computerized device that cooperates with 
its environment through a set of input and output 
signals. The controller executes in a loop, polling the 
inputs and computing the values of the outputs. 
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The controller counts time using timers. A timer 
can be activated in a given a set of states. An active 
timer counts time and expires when it has continued 
to be active for a predefined period of time. An 
expired timer is perceived by the controller similarly 
as an input signal. The execution of a controller can 
be described in a pseudo-code, which creates a 
reference model for PLC execution: 
state  = initial_state(); 
loop_forever { 

input  = poll_the_input(); 
timers = 
set_timers(active_timers(state)); 
state  = next_state(state,timers,input); 
output = count_output(state); 
set_the_output(output); 

} 

Board software of a PLC sets the initial state 
(initial_state), executes the loop (loop_ 
forever), polls the input signals  (poll_the_ 
input) counts time and sets the expired timers 
(set_timers), and sets the output signals (set_ 
the_output). The programmer must only write a 
code for selecting active timers (active_timers), 
and calculating the next state of the controller 
(next_state) and of the output (count_output). 

The semantics of a PLC program is defined by a 
finite state time machine (Sacha, 2007), which is a 
tuple A = ( S, Σ, Γ, τ , δ, s0 , Ω, ω ) where 

S is a finite set of states, 
Σ is a finite set of input symbols, 
Ω is a finite set of output symbols, 
Γ is a finite set of variables called timer symbols, 
τ : Γ → 2S × N+ is an injective function, called 

timer function (with two projections τS: Γ → 2S 
and τN: Γ → N+, respectively), 

δ : S × Σ × 2Γ → S is a partial function, called 
transition function, such that: 
[( s, a, T )∈Dom(δ )] ⇔ (∀ t∈ T )[ s∈ τS ( t )] 

s0 ∈ S  is the initial state, 
ω : S → Ω  is an output function. 

Notation: N+ is the set of positive integers, Dom(δ ) 
is the domain of a function δ, card(X) is the 
cardinality of a set X, and φ is an empty set. 

Finite state time machine looks much like a 
Moore automaton with three additional elements: Γ, 
τ , ε , which add to the model the dimension of time. 
A timer symbol t∈Γ is a variable, which takes values 
from the set N+. The current value of t is interpreted 
as the duration of a period of time. Timer function τ 
assigns to each timer a group of states and a constant 
value. The meaning is such that timer t is enabled, 

i.e. counts time, as long as the automaton resides in 
one of the states from τS ( t ) and it expires when the 
current value of t exceeds τN ( t ). 

Timer symbols in Γ can be set in an arbitrary 
order and denoted t1... tn. The valuation ŧ of timer 
symbols can be described as a vector of values ŧ. The 
current value of a timer ti is denoted ŧi. 

The execution of a finite state time machine 
starts in state s0 with the values of all timers equal to 
0. For a given state sk and a valuation of timers ŧk 
there exists a set of expired timers, defined as: 

Θ ( sk , ŧk ) = { ti∈Γ: sk∈τS ( ti
 ) and  ŧik ≥ τN (ti

 ) } 

The machine executes in a state ( sk , ŧk ) by taking 
an input symbol ak and moving to the next state sk+1 
defined by the transition function: 

sk+1=δ (sk ,ak ,Θ ( sk , ŧk ) ) where k= 0,1,..... 

When the machine enters a state sk+1 time 
advances and the values of timers change reflecting 
the elapsed time interval: 

  
ŧik+1 =  
 
When the valuation of timers ŧ changes, the set Θ 

of expired timers may change as well. This way a 
finite state time machine can respond to the flow of 
time, even if sk+1 = sk  and ak+1 = ak . Please note that 
the last argument of δ is a set of expired timers, 
hence, no conflict exists if several timers expire at 
the same time instant. 

The state space of a PLC as well as of an FSTM 
can be defined by enumerating all of the elements, 
eg. S = { s1 , s2 ,..., sn }. An alternative way is to allow 
for using variables and to define the state space as a 
Cartesian product of a set of enumerated elements 
and a set of all possible valuations of those 
variables. This is only a shorthand notation, which 
does not add any new semantics to the model, and 
therefore it is not shown in the formal definition.  

In the rest of this paper, we will adopt a naming 
convention of UPPAAL (Behrmann et al, 2004) and 
refer to the enumerated elements of state as 
locations. Locations will be shown in graphical 
models explicitly, as the nodes of a graph, while 
variables will be referred to by guard expressions 
and will be assigned values within actions of 
transitions. 

 
 

⎧
⎨  ŧik+ 1 if  sk+1∈τS ( ti

 )  and  sk ∈τS ( ti
 )

0 otherwise ⎩
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3 UML STATE MACHINE 

UML state machine diagram is a graph composed 
of nodes, which are locations, and edges, which are 
labeled transitions. A transition can be triggered by a 
signal received from the outside. A transition which 
is triggered can fire, if the corresponding guard 
expression over a set of variables evaluates to true. 
Firing of a transition can move the machine to a new 
location, change the values of variables and send a 
signal. This way, the state space of a UML state 
machine is a Cartesian product of the set of locations 
and the set of all possible valuations of variables. 

UML allows for nesting of locations. However, a 
hierarchy of locations can always be flattened. A 
formal model and an algorithm for flattening the 
hierarchy were described in detail in (Sacha, 2007) 
an will not be discussed in the rest of this paper. 

Relating this model to a PLC, one can note that a 
received signal corresponds to a combination of the 
input signals of the PLC, and a sent  signal 
corresponds to a combination of the output signals. 
States of an UML state machine and transitions 
between states correspond to states of a PLC and to 
the next-state function defined by a program code. 

A conversion algorithm of a UML state machine 
into a FSTM can be described as follows.  

S equals to the Cartesian product of the set of all 
locations of the UML state machine and the 
valuations of variables used in guard expressions. 

Σ equals to the set of external signals, which trigger 
transitions in the UML state machine; a signal is a 
combination of all the input signals of the PLC. 

Γ is a set of timer symbols t1,...,tn; there is one timer 
symbol ti for each timed transition (i.e. transition 
with an after clause) in the UML state machine, 

τ is the timer function, which assigns to each timer 
symbol ti created for a timed transition T a pair 
composed of a source state of this transition and 
the value of the after clause of this transition. 

δ is the transition function δ : S × Σ × 2Γ → S , such 
that: δ ( s1 , a, T ) = s2 if and only if there exists a 
transition in the UML state machine diagram such 
that s1 is the source and s2 the destination state of 
this transition, and either a is the event that 
triggers this transition (in this case T = φ ), or 
T = {ti} and ti is the timer symbol of this timed 
transition (ie. δ ( s1 , a, T ) = s2 for all a∈Σ ). 

so is the initial state of the UML state machine. 
Ω equals to the set of combinations of all the output 

signals of the PLC that are set by the actions of 
the UML state machine. 

ω is the output function, which assigns to each state 
s∈S the output symbol q∈Ω, which is set by all 
transitions to s. 

Example. Consider a railroad crossing controlled by 
a PLC. There are a number of railway tracks within 
the crossing, and a number of trains can approach 
the crossing simultaneously (one train on a track is 
allowed). The movement of trains is controlled by a 
set of semaphores that can prevent trains from 
entering the crossing. The road traffic is controlled 
by a gate that can be open or closed. A semaphore 
can be operated by a controller to display green 
light, when a train approaches, but not earlier than 
after the gate has been closed. Opening and closing 
states of the gate are confirmed to the controller by 
the input signals: up and down, respectively. Closing 
the gate must last less than 30 seconds, or else an 
alarm must sound. The semaphores are red and the 
gate is up in the initial state of the crossing. 

An algorithm for the railroad crossing controller 
is shown in Figure 2. The locations within the graph 
correspond to states of the crossing with respect to 
train positions. The transitions bear labels of the type 
event / action, where event corresponds to a 
condition on the input signals or timers, and action 
corresponds to setting the values of variables.  

Outside

Entering

Inside

approach(i) / a(i):=1,close

approach(i) / a(i):=1

down / MOV(a,green)

Leaving

when: a==0 / MOV(0,green),open

Alarm

after: 30 / sound

down / MOV(a,green)

leave(i) / a(i):=0approach(i) / 
a(i):=1, green(i)

up 

/ MOV(0,green),open

 
Figure 2: UML model of the railroad crossing controller. 

The positions of particular trains are signaled to 
the controller by short input pulses approach(i) and 
leave(i), i=0,...n-1. The appearance of an approach-
pulse is stored in a vector variable a(i), i=0,...n-1 
and makes the controller to close the gate. When the 
gate is down, the controller uses the stored data to 
send green signals to the appropriate semaphores – 
the function MOV(a,green) sends a green-signal for 
each train, which approaches the crossing.  
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The controller keeps track of all the trains inside 
the crossing, and waits until the last train has left. If 
this is the case, the controller turns the green signals 
off, opens the gate and waits until the gate is up. 

Vector a is part of the controller state. This way, 
there are in fact as many Entering and Inside states 
as are the combinations of values in vector a. Output 
signals of the state machine are open and close to 
operate the gate, and the signals green(i) to operate 
the semaphores to display green or red.  

FSTM model of the controller has the same set 
of locations and the same set of variables. It has a 
single timer symbol t, and the timer function 
τS ( t ) = {Entering} and τN ( t ) = 30. The transition 
function is defined by the set of all the transitions of 
the UML state machine. The sets of input and output 
symbols are the combinations of input and output 
signals. 

4 VERIFICATION 

UPPAAL is a toolbox for modeling and verification 
of real time systems, based on the theory of timed 
automata. The core part of the toolbox is a model-
checking engine, which enables for verification of 
properties defined as CTL path formulae. 

A timed automaton (Alur, Dill, 1996), as used in 
UPPAAL, is a finite state machine extended with 
clock variables that evaluate to positive real numbers 
and state variables that evaluate to discrete values. 
State variables are part of the state. All the clock 
variables progress simultaneously. An automaton 
may fire a transition in response to an action, which 
can be thought of as an input symbol, or to a time 
action related to the expiration of a clock condition. 
A clock variable can be reset to zero at a transition. 

A set of timed automata can be composed into a 
network over a common sets of clocks, variables and 
actions. This way a cooperation between a controller 
and a controlled plant can be modeled.  

The use of a dense-time model-checker to verify 
a discrete-time model may look as an overkill. But 
in fact it is not, because the environment of the 
controller works in real-time and must be modeled 
using a dense-time method. 

A conversion algorithm of FSTM into UPPAAL 
is described in (Sacha, 2008). 

Verification. UPPAAL can verify the model with 
respect to the requirements, expressed formally as 
CTL formulae. To do this, UPPAAL model-checker 
evaluates path formulae over the reachability graph 
of a network of timed automata. 

The query language consists of state formulae 
and path formulae. A state formula is an expression 
that can be evaluated for a particular state in order to 
check a property (e.g. a deadlock). Path formulae 
quantify over paths of execution and ask whether a 
given state formula ϕ can be satisfied in any or all 
the states along any or all the paths. 

Path formulae can be classified into three types: 

• Reachability properties: E<>ϕ. (will ϕ be 
satisfied in a state of a path?) 

• Safety properties: E[]ϕ and A[]ϕ. (will ϕ be 
satisfied in all the states along a single or along 
all paths?) 

• Liveness properties: A<>ϕ and ψ -->ϕ. (will ϕ 
eventually be satisfied? will ϕ  respond to ψ?) 

Example. Consider again the railroad crossing 
described in Section 3. A train cannot be stopped 
instantly. When a train is detected by a train position 
sensor, a controller has 30 seconds to close the gate 
and display a green signal, which allows the train to 
continue its course. After these 30 seconds, it takes 
further 20 seconds to reach the crossing. Otherwise, 
if the green signal is not displayed within these 30 
seconds, the train must break in order to stop safely 
before the crossing. Closing the gate must last less 
than 20 seconds, or else an alarm must sound. The 
gate can be opened when the position sensor has sent 
a leave signal after the last train has left the crossing. 

The environment of the controller consists of a 
number of trains and a gate. Each of these elements 
can be modeled in UPPAAL and synchronized with 
the controller within a network of timed automata.  

The template of a train is shown in Figure 3. 
Actions, which names bear the suffix ‘?’, act like 
input symbols that enable the associated transitions. 
Actions, which names bear the suffix ‘!’, act like 
output symbols that are passed to other automata in 
order to trigger the respective input symbols. This 
way the execution of one automaton can control the 
execution of a other automata. 

Faraway

Approaches

i:=id
approach!

t:=0

On crossing

i==id && t<=30
green?

t:=0

i:=id
leave!
t >20

Starting

Stop
t>=30 i==id

green?
t:=0

t >10
t:=0

t<=30 t<=25

t<=40

 
Figure 3: UPPAAL model of a train. 
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Time invariant t≤30 of state Approaches forces a 
transition after 30 seconds have passed since the 
train has entered the state. This models the necessity 
of breaking the train if green has not been displayed 
in time. Time condition t>20 at the transition from 
On crossing to Faraway reflects the minimum time 
of passing the crossing by a fast train. Time 
invariant t≤40 of the state On crossing reflects the 
maximum time of passing by a slow train. 

The template is parameterized with the train 
identifier id. A set of n trains, e.g. four, can be 
generated using the values of id = 0 through 3. 

A model of the gate is shown in Figure 4. Time 
invariants t ≤ 20 at states Closing and Opening reflect 
time that it takes to close or to open the gate. 

Open

Closed

OpeningClosing

down!

open?

close?

up!
t<=20 t<=20

 
Figure 4: UPPAAL model of the gate. 

The simple reachability properties can check if a 
given state is reachable: 

• E<> train1.On crossing: This checks if train 1 
can pass the crossing (a similar property can be 
checked for other trains). 

• E<> ( train1.On crossing && train2.On crossing 
&& train3.On crossing && train4.On crossing ): 
This checks if all the trains can move through the 
crossing simultaneously. 

The safety properties can check that unsafe states 
will never happen: 

• A [] ( train1.On crossing or train2.On crossing or 
train3.On crossing or train4.On crossing ) imply 
gate.Closed: This ensures that each time a train is 
passing the crossing, the gate is closed. 

• A [] ( gate.open imply (¬ train1.On crossing && 
¬ train2.On crossing  && ¬ train3.On crossing 
&& ¬ train4.On crossing ) ): This ensures that 
each time the gate is open, a train is not on the 
crossing. 

The liveness properties can check consequences 
of an event, e.g.: 

• train1.Approaches --> train1.On crossing: This 
ensures that whenever train 1 approaches the 
crossing, it will eventually pass it. 

In our example the liveness condition is not 
satisfied: Assume that the train 2 approaches when 

train 1 is just leaving. The controller does not react 
to approach in state Leaving, hence, the transition to 
Outside appears without displaying green signal for 
train 2. The train will stop and can never reach the 
crossing. 

The corrected finite state time machine model of 
the controller is shown in Figure 5. 

approach(i) / 
a(i)=1,close

Outside

Entering

Inside

approach(i) / a(i):=1,close

approach(i) / a(i):=1

down / MOV(a,green)

Leaving

when: a==0 / MOV(0,green),open

Alarm

after: 30 / sound

down / MOV(a,green)

leave(i) / a(i):=0approach(i) / 
a(i):=1, green(i)

up 

/ MOV(0,green),open

 
Figure 5: The corrected model of the controller. 

5 CODE GENERATION 

The semantics of a PLC program is defined within 
the reference model by the semantics of its 
programming language (IEC, 1993), e.g. ladder 
diagram or structured text. The behavior of a finite 
state time machine has been defined in Section 2. By 
that means a method for translating a high level 
abstract model of finite state time machine ( S, Σ, Γ, 
τ, δ, s0, Ω, ω ) into a PLC program can formally be 
defined in the following steps: 

1. Mapping of sets Σ, Ω into the input and output 
signals of PLC. This can be an arbitrary one-to-
one mapping (coding of symbols). 

2. Mapping of the set of locations which define part 
of state S into the values of flip-flops. This can be 
an arbitrary one-to-one mapping (coding of 
states). Mapping of the variables which define the 
other part of the state into the variables within the 
memory of the PLC. 

3. Mapping of set Γ into the set of timers. A 
separate timer with the expiration time equal to τN 

( t ) is allocated for each timer symbol t ∈Γ. 
4. Defining the function active_timers 

consistently with function τ. This function defines 
the input signals of all timer blocks. The input 
signal of a timer block allocated for a timer t ∈Γ , 
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is a Boolean function over the set of flip-flops 
used for coding of states, such that it is true in 
state s if and only if s ∈ τS(t). 

5. Defining function next_state consistently with 
function δ. This function defines the set and reset 
signals of flip-flops, which have been used for 
coding of states. The signal to set (reset) a flip-
flop is a Boolean function over the set of flip-
flops, input signals of PLC and output signal of 
timer blocks, such that it is true if and only if this 
flip-flop is set (reset) in the next state of FSTM.  

6. Defining function count_output consistently 
with function ω. This function defines the values 
of output signals of PLC. The value of an output 
signal is a Boolean function over the set of flip-
flops, such that it is true if and only if this output 
signal is set in the current state of FSTM. 

Example. To capture four trains within the crossing, 
we need four approach and four leave input signals 
from trains, plus two up and down input signals from 
the gate (Figure 5). There are four green signals 
output to semaphores, two signals open and close to 
the gate and a sound output signal. Any combination 
of the input (output) signals corresponds to an input 
(output) symbol. PLC controller stores the locations 
as states of its internal flip-flops. At least three flip-
flops are needed. A selected coding for states and 
output signals of the controller is shown in Table 1. 

Table 1: The coding of states and output signals. 

M1 M2 M3 a[i] State close open green(i) sound
0 0 0 0 Outside 0 0 0 0 
0 1 0 a(i) Entering 1 0 0 0 
1 1 0 a(i) Inside 0 0 a(i) 0 
1 0 0 0 Leaving 0 1 0 0 
0 1 1 a(i) Alarm 1 0 0 1 

The program for PLC is a ladder diagram (IEC, 
1993) consisting of a sequence of lines, each of 
which describes a Boolean expression to set or reset 
a flip-flop or an output signal, to activate a timer, or 
to call a function block to operate a variable, 
according to the values of input signals, states of 
flip-flops, variables and timers. The expressions 
reflect the coding of locations and implement the 
functions active_timers, next_state and 
count_output described in Section 2. An example 
is shown in Figure 6, which presents the transitions 
from Entering to Alarm and from Entering to Inside 
(Figure 5). M11 and M13 are auxiliary flip-flops, 
which mirror the main flip-flops M1 and M3, in 
order to assure atomicity of the transitions. 

 
Figure 6: A fragment of the ladder diagram program for 
the railroad crossing controller. 

6 CONCLUSIONS 

A method is described for the specification, 
verification and automatic generation of code for 
PLC controllers. The advantages of the method are 
intuitive modeling by means of a widely accepted 
UML state machine, and a potential for automatic 
verification and implementation of the model. 

A tool which implements the steps of the method 
has been implemented and verified on small scale 
examples. The verification included experiments in a 
lab equipped with a few process models and a set of 
S7 PLC controllers from Siemens. 
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