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Abstract: We study a new technique for optimal data compression subject to conditions of causality and different types
of memory. The technique is based on the assumption that certain covariance matrices formed from observed
data, reference signal and compressed signal are known or can be estimated. In particular, such an information
can be obtained from the known solution of the associated problem with no constraints related to causality and
memory. This allows us to consider two separate problems related to compression and de-compression subject
to those constraints. Their solutions are given and the analysis of the associated errors is provided.

1 INTRODUCTION Q = {w} is the set of outcomeg, a o-field of mea-
surable subsets i andy: X — [0,1] an associated
A study of data compression methods is motivated probability measure ol with pu(Q) = 1.
by the necessity to reduce expenditures incurred with  In an informal way, the data compression prob-
the transmission, processing and storage of large datdem we consider can be expressed as follows ylet
arrays. While the topics have been intensively stud- L?(Q,R") be observable data and= L>(Q,R™) be a
ied (see e.g. (S. Friedland, 2006), (Jolliffe, 1986), reference signal that is to be estimated frpin such
(Hua and Nikpour, 1999), (Hua and Liu, 1998), a way that, (a) the data should be compressed to
(A. Torokhti, 2001), (Torokhti and Howlett, 2007), a ‘shorter’ vectorz € L?(Q,R")* with r < min{m,n}
(T. Zhang, 2001)), a number of related fundamen- and (b)z should be de-compressed (reconstructed) to
tal questions are still open. One of them concerns a signalX € L(Q,R™) that is ‘close’ tox in some
specific restrictions associated with different types of appropriate sense. Both operations shoulddesal
causality and memory. and havevariable finite memory In this paper, the

First Motivation: Causality and Memory. Data term ‘close’ is used with respect to the minimum of
compression techniques mainly consist of three op- the norm (2) of the difference betwegmndX.
erations, compression itself, de-noising and de-  The problem can be formulated in several alter-
compression (or reconstruction) of the compressednate ways.
data. Each operation is implemented by a special fil-  The first way is as follows. Lets : L?(Q,R") —
ter. In reality, a value of the output of such a filter at | .2(Q,R") signify compression so that= 3(y) and
time tx is determined from a ‘fragment’ of its input let 4 : L?(Q,R") — L?(Q,R™) designate data de-
defined at timesy,tc_1,...,t—q. In other words, i compressioni.e., X = 4(z). We suppose that and
practice both operations are subject to the conditions 4 are linear operators defined by the relationships
of causality and memory.

Our first motivation comes from a real-time signal (2 (¥)](®@) =Bly(w)] and [4(2)](w) = Alz(w)]
processing. This implies that the filters we propose ] (1)
should be causal with variable finite memory. whereB € R™" andA € R™™. In the remainder of

Second Motivation: Reformulation of the LComponents of are often calleghrincipal components
Problem. Let (Q,Z, ) be a probability space, where (Jolliffe, 1986).
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this paper we shall use the same symbol to represen2007) of problem (6)-(7ith no constraints associ-
both the linear operator acting on a random vector and ated with causality and memory.

its associated matrix.
We define the norm to be

IxI= [ Ix(@)l3dntoo

where||x(w)||2 is the Euclidean norm of(w). Let us
denote byl(A, B), the norm of the difference between
x andX, constructed byA andB:

Ix— (Ao B)(Y)[|3- ®)

The problem is to find8° : L?(Q,R") — L?(Q,R")
andA%: L2(Q,R") — L?(Q,R™) such that

2

J(AB) =

J(A®,B%) = minJ(A,B) (4)
AB

subject to conditions of causality and variable finite

memory forA andB. The problem consists of two

unknownsA andB.

A second way to formulate the problem, that
avoids a difficulty associated with the two unknowns,
is as follows. Letr :L?(Q,R") — L%(Q,R™) be a
linear operator defined by

[F (Y)(w) = Fly(w)] (5)
whereF € R™™. Let rankF =r and
IF) = x—7 Y-
Find 7 %: L?(Q,R") — L?(Q,R™) such that
J(F% = minJ(F) (6)
subject to
rankF < min{m, n} (7)

and conditions of causality and variable finite mem-
ory for F. Unlike (4), the problem (6)—(7) has only
one unknown.

2 STATEMENT OF THE
PROBLEM

The basic idea of our approach is as follows.

Let x € L2(Q,R™), y € L2(Q,R") and z ¢
L?(Q,R"), and letA and B be defined as (1) below.
Here, z is a compressed version &f We assume
that information about vectar in the form of asso-

ciated covariance matrices can be obtained, in partic-Let 11 < To < -+

ular, from the known solution (Torokhti and Howlett,

In this paper, the data compression probleu-
ject to conditions of causality and memasystated in
the form of two separate problems, (8) and (10) for-
mulated below.

We use the following notatiom (r,n,n;) is a set
of causalr x n matricesB with a so-calleccomplete
variable finite memory),. The notation (m,r,n,)
is similar.

Consider

J(B) =|lz—B(y)ll&-
Let BY be such that

Ji(B%) = minJy(B)  subject toB € a1 (r,n, ).
(8)
We write 2° = B%(y). Next, let
(A = x=A)[3 9)
and letA® be such that
Jo(A%) = minJa(A)  subjecttoA € af (mr.n,).
(10)
We denote® = A%(20).

The problem considered in this paper is to find op-
eratorsB® andA° that satisfy minimization criteria (8)
and (10), respectively.

The major differences between the above state-
ment of the problem and the statements considered
below are as follows.

First, A andB should be causal with variable finite
memory.

Second, it is assumed that certain covariance ma-
trices formed fromx, y and z are known or can
be estimated. In particular, such information can
be obtained from the known solution (Torokhti and
Howlett, 2007) of problem (6)-(7) with no constraints
associated with causality and memory. We note that
such an assumption does not look too restrictive in
comparison with the assumptions used in the associ-
ated methods (Hua and Nikpour, 1999)—(Torokhtiand
Howlett, 2007).

Consequently and thirdly, we represent the initial
problem in the form of a concatenation of two new
separate problems (8) and (10).

3 MAIN RESULTS

< Ty be time instants and, 3,9 :
R — L%(Q,R) be continuous functions.  Sup-
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poseayx = O(Tk), By = B(tk) and &y = d(1x) are and, for 1< p<r—1, itis required that

real-valued random variables having finite second

moments. We writex = [a1,0z,...,0y]" Yy = bij =0

B1,Bs...,B,)T and z=[84,...,9] . if{ i=1...r=p 4 { i=r—p+1,...,r
Let Z be a compressed form of dayadefined j=1,....n j=i-r+p+1...,n

by z = B(y) with Z = [J1,...,9,]T, and% be a de-

compression ofz defined byX = A(Z) with X =

[01,...,0mT. ) aj=0 (11)
In many applicatiors to obtain 9 for. k.: ifj—q+i,....rfforq=1,....r—1i—1,...,r—q,

1,...,r, it is necessary foB to use only a limited

For matrixA with r < p < n, we require

number of input componenmsk =1,...,r. Anum- and, for 2< s< m, it is required that
ber of such input componentg, is here called &th
local memonyfor B. aj=0
To define a notation of memory for the compres- if j=s+i,...,rfors=1,... m i=1,...;s+r—-1,

sor B, we use parametegpsandg which are positive
integerssuchthatd p<n and n—-r+2<g<n.

r Definition 3. A matrix B satisfying the constraint
(11)—(11) is said to be a causal operator with the
complete variable memoryn, = [g,g+ 1,....nT.
Here,ng, =nwhenk=n—g+1,...,n. The set of

The above conditions imply the following definitions.

Definition 1. The vectomg = [N, ,--,Ng |
is calleda variable memoryf the compressor B. In
particular, ng is called acompletevariable memory if
Ng, _gandr]B =nwhenk=n—g+1,...,n. Here, p
relates to the last possible nonzero entry in the bottom Such matrices is denoted by (r,n,ng).
row of B and g relates to the last possible nonzero pefinition 4. A matrix A satisfying the constraint
entry in the first row. (11)—(11) is said to be a causal operator with the
The notatiom,, = [r]Al e r]Am]T c RMhas a sim- complete variable memoryn, = [r—q+1,..., r]T.
ilar meaning for the de-compressar i.e, n, is a Here,n,, =rwhen j=gq,...,m. The set of such ma-
variable memonpof the de-compressak. Here,r]Aj trices is denoted by/.(m,r,n,).
is the jth local memoryof A.
The parameterg ands, which are positive inte- 3.1  Solution of Problems (8) and (10)
gerssuchthat ¥ g<r and 2<s<m, are used
below to define two types of memory fér To proceed any further we shall require some more
Definition 2. Vectorn, is called acompletevariable notation. Let
memory of the de-compressor Ajf =qandn, =r _ B _
when j=s+r—1,....m. Here, qlrelates to trj1e first (0. Bj) = /Qa.(co)Bj (@)duw) <=, (12)
possible nonzero entry in the last column of A and s

— mxn
relates to the first possible nonzero entry in the first Exy = {<alvﬁl>}l j=1 €RT,
column. Yi=[Br- By ]’ V2= [Bg - BolT,  (13)
The memory constraints described above imply
z1=109 9q-1]" and z=[9 )"
that certain elements of the matricBs= {bu}.J 1 1 Le--sYg-l 2 g:--»Vn) -

(14)
The pseudo-inverse matrix (Golub and Loan,
1996) for any matriM is denoted b ™. The symbol

andA= {a.,}, _1 must be set equal to zero. In this
regard, for matn)B with r < p < n, we require that

bij=0 O designates the zero matrix.
if j=p-r+i+l...n, Lemma 1. (Torokhti and Howlett, 2007) If we de-
for b= r....,n=1, and p=n, finew; =y; and wy=y>—PRy; where
i=1...r i=1...,r=1,

T t
- Ry =Eyy,Eyyy, T Dy(I —Eyy Byy,)  (15)
2Examples include computer medical diagnostics (Gi- _ )
meno, 1987) and problems of bio-informatics (H. Kim, With Dy an arbitrary matrix, thenw; andw, are mu-
2005). tually orthogonal random vectors.
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Let us first consider problem (8) whéhhas the
complete variable memory, = [g,g+1,...,n" (see
Definition 3).

Let us partitionB into four blocksKg, Lg, Sg1 and

Ke Ls
so thatB =
B2 [Sal S0

Ks = {kj} € R™*(¢"V is a rectangular matrix,
Lg = {fij} € RM>M
Ss1 = {ﬁ(jl)} € RI—M)x(g-1),

Spo = {82} e RO-M)xm
are rectangular matrices, andn, =n—g+1.

] , Where
is a lower triangular matrix,
Ta(w1) + Lg(wg)

We haveB(y) = So(W1) + Saa(W5)
Kg + LBPy and S =S+ S32Py. Then

, WhereTg =

Ji(B) = IV (Ts,Le) + I (S8, Se2), (16)
where JY(Tg,Lg) = |22 — [Te(w1) + Le(w2)]|3,
(2 (S5, Sp2) = ||22 — [Ss(W1) + Ss2(W2)]||3. By anal-

ogy with Lemma 37 in (Torokhti and Howlett, 2007),

min

Ji(B) =
Beas (r,n,ng)

in I (Tg, L J@
mmin (Ts B)+Sf;“n ) (S8, S82)-

Therefore, problem (8) is reduced to finding matrices
T3, LS, S ands}, such that

IV L) = mind(Te L) (17)
B,-B
and
@B, L,) = m|822,] ) (S8, Se2).- (18)

Taking into account the orthogonality of vectors
wj andws; and working in analogy with the argument
on pp. 348-352 in (Torokhti and Howlett, 2007), it
follows that matriceS3 and<3, are given by

g =3 EZZ E\I’lWl + HB(I N EW1W1 E\j\—llwl) (19)
and
%2 — EZZ E\IIsz + HBZ(I - EW2W2 EJVsz)) (20)

whereHg andHg; are arbitrary matrices.

Next, to find TS andL$ we use the following no-
tation.

Forr=1,2,...,¢, let p be the rank of the matrix
€ R™*"2 with np=n—g+1, and let

QupRup

be the QR-decomposition fd,w, /2 whereQy, €
R"2*P andQup Qup = | andRyp € RP*M is upper
trapezoidal with ranlp. We write Gyp = Ryp' and

EW2W2

(21)

1/2
Ewow, /2=

MEMORY

use the notatiorGyp = [01,...,9p) € R"2*P where
gj € R" denotes thg-th column ofGy,,. We also
write Gys = [d1,...,0s] € R™*S for s< p to denote
the matrix consisting of the first columns ofGyp.
For simplicity, let us denote thiSs := Gys. Next, let
e’ =[1,0,0,0,..], =10,1,0,0,...], &' =
[0,0,1,0,...], etc. denote the unit row vectors irre-
spective of the dimension of the space.

Finally, any square matri# can be written as
M = Ma + Mp whereM, is lower triangular and
is strictly upper triangular. We writé - || for the
Frobenius norm.

Theorem 1. Let Be a1.(r,n,n,), i.e., the compres-
sor B is causal and has the complete variable mem-
oryng = [9,9+1,...,n]". Then the solution to prob-
lem (8) is prowded by the matrix 8 which has the

KS L3
form B = { E ], where the blocks K¢

RMWx(@-1), SIS R(f%i)x(gl) and §, € R(F—np)xnp

are rectangular, and the block3Le R™*™ s lower
triangular. These blocks are given as follows. The
block K{ is given by

Kg =Tg —LgR, (22)
with
T = Ezpw, EL i + Ne1(l — Ewgw, E )
B W1 Bwywy B1 W1W1 wywy

where Nz is an arbitrary matrix. The block g:
AL

(23)

, for each s=1,2,...,ny, is defined by its
)\0
rows”
A2 = " Bz Buw,  GsGs' + T (1 — GsGsT)  (24)

with fs" € R " arbitrary. The blocks & and §,

are given by
$1=S P (25)

and (20), respectively. In(25), S is presented by
(19). The error associated with the compress@ri$
given by

|Z BOYl Z Z |eS E21W2EW2W2 ng
j=s+1

+ Z 1Bz, 2|2 _ le || Ezwi Ew,w, /22 (26)
=1 i=1j=1
Let us now consider problem (10) when the de-

compressof has the complete variable memaoyy=
[F—q+1,...,r]7 (see Definition 4).
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In analogy with our partitioning of matriB, we with fsT € R™9 arbitrary. The blocks g and 59\2 are
partition matrixA in four blocksKa,La, Sa1 andSa, given by

so thatA = [ K La ] , where Ru=R-SP. o= ExEly, +Haa(l —Evn,EL,),

Su S (30)

where
Ka = {kj} € R%(~9 s a rectangular matrix,
1 1
La={¢j} € R™*9 s alower triangular matrix, and K= ExEvyy, +Ha(l =By, Eyyyy) (31)
Sap = {S(jD} e RM-a)x(r=a) and Hap and Ha are arbitrary matrices.
@ (M—a)xq The error associated with the de-compressdisA

S={si} R given by

are rectangular matrices.
q

0 x —A%Z0||2 = &s' Ex.v, Evov, 10i]432
Let us partitionz® so thatz® = [ ;‘1’ } with 20 € | I S;,-:;ll B 91[132)

2
L2(Q,R"9) andz € L?(Q,RY). We also write 2 2 2
(@R andz € (@, K 3 1B IR =3 3 [BEuy ™2 39
j= i=1j=1

X1= [alm,ar—q]T and xp= [ar—q+1;~~~;am]Ta

and denote by; € L2(Q,R"%) andv; € L?(Q,RY),
orthogonal vectors according to Lemma 1 as 4 SIMULATIONS

_0 _ 0 0 w 4 . : .
vi=2z; and vz2=127— Pz, The following simulations and numerical results illus-

trate the performance of the proposed approach.

Our filter F9 = A°BP has been applied to compres-
sion, filtering and subsequent restoration of the refer-
ence signals given by the matrik e R?56256 The
matrix X represents the data obtained from an aerial
digital photograph of a pladpresented in Fig. 1.

We divide X into 128 sub-matrice¥;; ¢ R™
withi=1...,16,j=1,...,8 m= 16 andq= 32
so thatX = {X;}. By assumption, the sub-matrix
Xij is interpreted ag) realizations of a random vec-
problem(10) is provided by the matrix 3 which has 107 X € Fz(Qva> with each column representing a

KO |0 realization. For each=1,...,16 andj =1,...,8,
the form R = [ g/iAl SOAA2 ] , Where the blocks Ke observed dat¥; were modelled fronX;; in the form

whereP, = E;,z,E] , + Dy(1 — Ezz EJ,,) with Dz an
arbitrary matrix.

We write Gys = [01, . ..,0s] € RY*S whereGys is
constructed from a QR-decomposition®f,, 2, in
a manner similar to the construction of mat@y;s.

Furthermore, we shall defir@s := Gys.

Theorem 2. Let Ac a.(mr,n,), i.e. the de-
compressor A is causal and has the complete variable
memonn, =[r—g+1,. ..,r]T. Then the solution to

qu(rfq)' 5,21 c R(qu)x(rfq) and 32 c R(qu)xq are YI] — le ol and(16, 32)(”>
rectangular, and the blockQ.€ R is lower trian-
gular. These blocks are given as follows. The bloc
K{ is given by

i Here, e means the Hadamard product and
rand(16,32) ;) is a 16x 32 matrix whose randomly-
chosen elements are uniformly distributed in the

KS=T2-L%P (27)  interval(0,1).

The proposed filteF° has been applied to each

with pair {Xj, Yi; }. Each pai{X;j, Y;; } was processed by
T,S A Exllelel + Naz (I — EVllelel) (28) COMPressors and de-compressors with the complete
\ _ _ variable memory. We deno@? = B° andA? = A°
where N is an arbitrary matrix. The block § = for such a compressor and de-compressor determined
)‘2 by Theorems 1 and 2, respectively, so that
,foreachs=1,2,...,q, is defined by its rows
0 q y B € a7, (rnn,) and Alear (mrn,)
q

3The database is available in
)\2 =e Ex,vs E\,z\,zJr GsGs' + fs" (- GsGST) (29) http://sipi.usc.edu/services/database/Database.html
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50 Y 150 . 200 250
(a) Given reference signals.

200 250

100 150
(b) Observed data.

.50 100 150 .20 250
(c) Estimates of the reference signals by the filter
FC0 with the complete variable memory.

Figure 1: lllustration of simulation results.

MEMORY

wheren=m=16,r =8, 1, = {ng }£8, with ng, =
{12+k—1, it k=1,... 4,

16, if k=5,...,16 "’
and Na = {nAj :]Lgl with Ny =
6+j—1, if j=12 .
{ 8, it k=3. .16 In this case,

the optimal filter FO is denoted byF? so that
FO = A2B?. We write

= max|Xij - Fovi; |12

for a maximal error associated with the fillé(? over

alli=1,...,16 andj = 1,...,8. The compression

ratio wasc = 1/2. We obtained? = 3.3123+ 005.
The results of simulations a are presented in Fig.

1(a)- (c).
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