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Abstract: We study a new technique for optimal data compression subject to conditions of causality and different types
of memory. The technique is based on the assumption that certain covariance matrices formed from observed
data, reference signal and compressed signal are known or can be estimated. In particular, such an information
can be obtained from the known solution of the associated problem with no constraints related to causality and
memory. This allows us to consider two separate problems related to compression and de-compression subject
to those constraints. Their solutions are given and the analysis of the associated errors is provided.

1 INTRODUCTION

A study of data compression methods is motivated
by the necessity to reduce expenditures incurred with
the transmission, processing and storage of large data
arrays. While the topics have been intensively stud-
ied (see e.g. (S. Friedland, 2006), (Jolliffe, 1986),
(Hua and Nikpour, 1999), (Hua and Liu, 1998),
(A. Torokhti, 2001), (Torokhti and Howlett, 2007),
(T. Zhang, 2001)), a number of related fundamen-
tal questions are still open. One of them concerns
specific restrictions associated with different types of
causality and memory.

First Motivation: Causality and Memory. Data
compression techniques mainly consist of three op-
erations, compression itself, de-noising and de-
compression (or reconstruction) of the compressed
data. Each operation is implemented by a special fil-
ter. In reality, a value of the output of such a filter at
time tk is determined from a ‘fragment’ of its input
defined at timestk,tk−1, . . . ,tk−q. In other words, in
practice both operations are subject to the conditions
of causality and memory.

Our first motivation comes from a real-time signal
processing. This implies that the filters we propose
should be causal with variable finite memory.

Second Motivation: Reformulation of the
Problem. Let (Ω,Σ,µ) be a probability space, where

Ω = {ω} is the set of outcomes,Σ a σ–field of mea-
surable subsets inΩ andµ : Σ → [0,1] an associated
probability measure onΣ with µ(Ω) = 1.

In an informal way, the data compression prob-
lem we consider can be expressed as follows. Lety ∈

L2(Ω,Rn) be observable data andx ∈ L2(Ω,Rm) be a
reference signal that is to be estimated fromy in such
a way that, (a) the datay should be compressed to
a ‘shorter’ vectorz∈ L2(Ω,Rr)1 with r < min{m,n}
and (b)z should be de-compressed (reconstructed) to
a signalx̃ ∈ L2(Ω,Rm) that is ‘close’ tox in some
appropriate sense. Both operations should becausal
and havevariable finite memory. In this paper, the
term ‘close’ is used with respect to the minimum of
the norm (2) of the difference betweenx andx̃.

The problem can be formulated in several alter-
nate ways.

The first way is as follows. LetB : L2(Ω,Rn) →

L2(Ω,Rr) signify compression so thatz = B (y) and
let A : L2(Ω,Rr) → L2(Ω,Rm) designate data de-
compression,i.e., x̃ = A (z). We suppose thatB and
A are linear operators defined by the relationships

[B (y)](ω) = B[y(ω)] and [A (z)](ω) = A[z(ω)]

(1)
whereB ∈ R

n×r andA ∈ R
r×m. In the remainder of

1Components ofz are often calledprincipal components
(Jolliffe, 1986).
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this paper we shall use the same symbol to represent
both the linear operator acting on a random vector and
its associated matrix.

We define the norm to be

‖x‖2
Ω =

∫

Ω
‖x(ω)‖2

2dµ(ω) (2)

where‖x(ω)‖2 is the Euclidean norm ofx(ω). Let us
denote byJ(A,B), the norm of the difference between
x andx̃, constructed byA andB:

J(A,B) = ‖x− (A◦B)(y)‖2
Ω. (3)

The problem is to findB0 : L2(Ω,Rn) → L2(Ω,Rr)

andA0 : L2(Ω,Rr) → L2(Ω,Rm) such that

J(A0,B0) = min
A,B

J(A,B) (4)

subject to conditions of causality and variable finite
memory forA andB. The problem consists of two
unknowns,A andB.

A second way to formulate the problem, that
avoids a difficulty associated with the two unknowns,
is as follows. LetF : L2(Ω,Rn) → L2(Ω,Rm) be a
linear operator defined by

[F (y)](ω) = F [y(ω)] (5)

whereF ∈ R
n×m. Let rankF = r and

J(F) = ‖x−F (y)‖2
Ω.

FindF 0 : L2(Ω,Rn) → L2(Ω,Rm) such that

J(F0) = min
F

J(F) (6)

subject to
rankF ≤ min{m,n} (7)

and conditions of causality and variable finite mem-
ory for F . Unlike (4), the problem (6)–(7) has only
one unknown.

2 STATEMENT OF THE
PROBLEM

The basic idea of our approach is as follows.
Let x ∈ L2(Ω,Rm), y ∈ L2(Ω,Rn) and z ∈

L2(Ω,Rr), and letA andB be defined as (1) below.
Here, z is a compressed version ofx. We assume
that information about vectorz in the form of asso-
ciated covariance matrices can be obtained, in partic-
ular, from the known solution (Torokhti and Howlett,

2007) of problem (6)-(7)with no constraints associ-
ated with causality and memory.

In this paper, the data compression problemsub-
ject to conditions of causality and memoryis stated in
the form of two separate problems, (8) and (10) for-
mulated below.

We use the following notation:M (r,n,ηB) is a set
of causalr × n matricesB with a so-calledcomplete
variable finite memoryηB. The notationM (m, r,ηA)

is similar.
Consider

J1(B) = ‖z−B(y)‖2
Ω.

Let B0 be such that

J1(B
0) = min

B
J1(B) subject toB∈M (r,n,ηB).

(8)
We writez0 = B0(y). Next, let

J2(A) = ‖x−A(z0)‖2
Ω (9)

and letA0 be such that

J2(A
0) = min

A
J2(A) subject toA∈M (m, r,ηA).

(10)
We denotex0 = A0(z0).

The problem considered in this paper is to find op-
eratorsB0 andA0 that satisfy minimization criteria (8)
and (10), respectively.

The major differences between the above state-
ment of the problem and the statements considered
below are as follows.

First,A andB should be causal with variable finite
memory.

Second, it is assumed that certain covariance ma-
trices formed fromx, y and z are known or can
be estimated. In particular, such information can
be obtained from the known solution (Torokhti and
Howlett, 2007) of problem (6)-(7) with no constraints
associated with causality and memory. We note that
such an assumption does not look too restrictive in
comparison with the assumptions used in the associ-
ated methods (Hua and Nikpour, 1999)–(Torokhti and
Howlett, 2007).

Consequently and thirdly, we represent the initial
problem in the form of a concatenation of two new
separate problems (8) and (10).

3 MAIN RESULTS

Let τ1 < τ2 < · · · < τn be time instants andα,β,ϑ :
R → L2(Ω,R) be continuous functions. Sup-
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pose αk = α(τk), βk = β(τk) and ϑk = ϑ(τk) are
real-valued random variables having finite second
moments. We writex = [α1,α2, . . . ,αm]T y =

[β1,β2, . . . ,βn]
T and z = [ϑ1, . . . ,ϑr ]

T .

Let z̃ be a compressed form of datay defined
by z̃ = B(y) with z̃ = [ϑ̃1, . . . , ϑ̃r ]

T , and x̃ be a de-
compression ofz̃ defined by x̃ = A(z̃) with x̃ =

[α̃1, . . . , α̃m]T .
In many applications2, to obtain ϑ̃k for k =

1, . . . , r, it is necessary forB to use only a limited
number of input components,ηBk

= 1, . . . , r. A num-
ber of such input componentsηBk

is here called akth
local memoryfor B.

To define a notation of memory for the compres-
sorB, we use parametersp andg which are positive
integers such that 1≤ p≤ n and n− r +2≤ g≤ n.

Definition 1. The vectorηB = [ηB1
, . . . ,ηBr

]T ∈ R
r

is calleda variable memoryof the compressor B. In
particular,ηB is called acompletevariable memory if
ηB1

= g andηBk
= n when k= n−g+1, . . . ,n. Here, p

relates to the last possible nonzero entry in the bottom
row of B and g relates to the last possible nonzero
entry in the first row.

The notationηA = [ηA1
, . . . ,ηAm

]T ∈R
m has a sim-

ilar meaning for the de-compressorA, i.e., ηA is a
variable memoryof the de-compressorA. Here,ηAj

is the jth local memoryof A.
The parametersq ands, which are positive inte-

gers such that 1≤ q≤ r and 2≤ s≤ m, are used
below to define two types of memory forA.

Definition 2. VectorηA is called acompletevariable
memory of the de-compressor A ifηA1

= q andηAj
= r

when j= s+ r −1, . . . ,m. Here, q relates to the first
possible nonzero entry in the last column of A and s
relates to the first possible nonzero entry in the first
column.

The memory constraints described above imply
that certain elements of the matricesB = {bi j}

r,n
i, j=1

andA = {ai j}
m,r
i, j=1 must be set equal to zero. In this

regard, for matrixB with r ≤ p≤ n, we require that

bi, j = 0

if j = p− r + i +1, . . .,n,

for

{

p = r, . . . ,n−1,

i = 1, . . . , r
and

{

p = n,

i = 1, . . . , r −1,

2Examples include computer medical diagnostics (Gi-
meno, 1987) and problems of bio-informatics (H. Kim,
2005).

and, for 1≤ p≤ r −1, it is required that

bi, j = 0

if

{

i = 1, . . . , r − p,

j = 1, . . . ,n,
and

{

i = r − p+1, . . . , r,
j = i − r + p+1, . . .,n.

For matrixA with r ≤ p≤ n, we require

ai, j = 0 (11)

if j = q+ i, . . . , rforq = 1, . . . , r −1, i = 1, . . . , r −q,

and, for 2≤ s≤ m, it is required that

ai, j = 0

if j = s+ i, . . . , r for s= 1, . . . ,m, i = 1, . . . ,s+ r −1,

The above conditions imply the following definitions.

Definition 3. A matrix B satisfying the constraint
(11)–(11) is said to be a causal operator with the
complete variable memoryηB = [g,g + 1, . . . ,n]T .
Here, ηBk

= n when k= n−g+ 1, . . . ,n. The set of

such matrices is denoted byMC(r,n,ηB).

Definition 4. A matrix A satisfying the constraint
(11)–(11) is said to be a causal operator with the
complete variable memoryηA = [r − q+ 1, . . . , r]T .
Here,ηAj

= r when j= q, . . . ,m. The set of such ma-

trices is denoted byMC(m, r,ηA).

3.1 Solution of Problems (8) and (10)

To proceed any further we shall require some more
notation. Let

〈αi ,β j〉 =

∫

Ω
αi(ω)β j(ω)dµ(ω) < ∞, (12)

Exy = {〈αi ,β j〉}
m,n
i, j=1 ∈ R

m×n,

y1 = [β1, . . . ,βg−1]
T , y2 = [βg, . . . ,βn]

T , (13)

z1 = [ϑ1, . . . ,ϑg−1]
T and z2 = [ϑg, . . . ,ϑn]

T .

(14)
The pseudo-inverse matrix (Golub and Loan,

1996) for any matrixM is denoted byM†. The symbol
O designates the zero matrix.

Lemma 1. (Torokhti and Howlett, 2007) If we de-
finew1 = y1 and w2 = y2−Pyy1 where

Py = Ey1y2E†
y1y1

+Dy(I −Ey1y1E†
y1y1

) (15)

with Dy an arbitrary matrix, thenw1 andw2 are mu-
tually orthogonal random vectors.
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Let us first consider problem (8) whenB has the
complete variable memoryηB = [g,g+1, . . . ,n]T (see
Definition 3).

Let us partitionB into four blocksKB,LB, SB1 and

SB2 so thatB =

[

KB LB

SB1 SB2

]

, where

KB = {ki j} ∈ R
nb×(g−1) is a rectangular matrix,

LB = {ℓi j} ∈ R
nb×nb is a lower triangular matrix,

SB1 = {s(1)
i j } ∈ R

(r−nb)×(g−1),

SB2 = {s(2)
kl } ∈ R

(r−nb)×nb

are rectangular matrices, andnb = n−g+1.

We haveB(y) =

[

TB(w1)+LB(w2)

SB(w1)+SB2(w2)

]

, whereTB =

KB +LBPy and SB = SB1+SB2Py. Then

J1(B) = J(1)(TB,LB)+J(2)(SB,SB2), (16)

where J(1)(TB,LB) = ‖z1 − [TB(w1) + LB(w2)]‖
2
Ω,

J(2)(SB,SB2) = ‖z2− [SB(w1)+SB2(w2)]‖
2
Ω. By anal-

ogy with Lemma 37 in (Torokhti and Howlett, 2007),

min
B∈M (r,n,ηB)

J1(B) = min
TB,LB

J(1)(TB,LB)+ min
SB,SB2

J(2)(SB,SB2).

Therefore, problem (8) is reduced to finding matrices
T0

B , L0
B, S0

B andS0
B2 such that

J(1)(T0
B ,L0

B) = min
TB,LB

J(1)(TB,LB) (17)

and
J(2)(S0

B,S0
B2) = min

SB,SB2
J(2)(SB,SB2). (18)

Taking into account the orthogonality of vectors
w1 andw2 and working in analogy with the argument
on pp. 348–352 in (Torokhti and Howlett, 2007), it
follows that matricesS0

B andS0
B2 are given by

S0
B = Ez2E†

w1w1
+HB(I −Ew1w1E†

w1w1
) (19)

and

S0
B2 = Ez2E†

w2w2
+HB2(I −Ew2w2E†

w2w2
), (20)

whereHB andHB2 are arbitrary matrices.
Next, to findT0

B andL0
B we use the following no-

tation.
For r = 1,2, . . . , ℓ, let ρ be the rank of the matrix

Ew2w2 ∈ Rn2×n2 with nb = n−g+1, and let

Ew2w2
1/2 = Qw,ρRw,ρ (21)

be the QR-decomposition forEw2w2
1/2 whereQw,ρ ∈

Rn2×ρ andQw,ρ
TQw,ρ = I andRw,ρ ∈ Rρ×n2 is upper

trapezoidal with rankρ. We writeGw,ρ = Rw,ρ
T and

use the notationGw,ρ = [g1, . . . ,gρ] ∈ Rn2×ρ where
g j ∈ Rn2 denotes thej-th column ofGw,ρ. We also
write Gw,s = [g1, . . . ,gs] ∈ Rn2×s for s≤ ρ to denote
the matrix consisting of the firsts columns ofGw,ρ.
For simplicity, let us denote thisGs := Gw,s. Next, let
e1

T = [1,0,0,0, . . .], e2
T = [0,1,0,0, . . .], e3

T =

[0,0,1,0, . . .], etc. denote the unit row vectors irre-
spective of the dimension of the space.

Finally, any square matrixM can be written as
M = M∆ +M∇ whereM∆ is lower triangular andM∇
is strictly upper triangular. We write‖ · ‖F for the
Frobenius norm.

Theorem 1. Let B∈ MC(r,n,ηB), i.e., the compres-
sor B is causal and has the complete variable mem-
ory ηB = [g,g+1, . . . ,n]T . Then the solution to prob-
lem (8) is provided by the matrix B0, which has the

form B0 =

[

K0
B L0

B
S0

B1 S0
B2

]

, where the blocks K0B ∈

R
nb×(g−1), S0

B1 ∈ R
(r−nb)×(g−1) and S0

B2 ∈ R
(r−nb)×nb

are rectangular, and the block L0
B ∈ R

nb×nb is lower
triangular. These blocks are given as follows. The
block K0

B is given by

K0
B = T0

B −L0
BPy (22)

with

T0
B = Ez1w1E†

w1w1
+NB1(I −Ew1w1E†

w1w1
) (23)

where NB1 is an arbitrary matrix. The block L0B =






λ0
1
...

λ0
nb






, for each s= 1,2, . . . ,n2, is defined by its

rows

λ0
s = es

TEz1w2Ew2w2
†GsGs

† + fs
T(I −GsGs

†) (24)

with fsT ∈ R1×n2 arbitrary. The blocks S0B1 and S0
B2

are given by
S0

B1 = S0
B−S0

B2Py (25)

and (20), respectively. In(25), S0
B is presented by

(19). The error associated with the compressor B0 is
given by

‖z−B0y‖2
Ω =

ρ

∑
s=1

n2

∑
j=s+1

|es
TEz1w2Ew2w2

†g j |
2

+
2

∑
j=1

‖Ezj zj
1/2‖2

F −
2

∑
i=1

2

∑
j=1

‖Eziwi Ew j w j
†1/2‖2

F . (26)

Let us now consider problem (10) when the de-
compressorA has the complete variable memoryηA =

[r −q+1, . . . , r]T (see Definition 4).
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In analogy with our partitioning of matrixB, we
partition matrixA in four blocksKA,LA, SA1 andSA2

so thatA =

[

KA LA

SA1 SA2

]

, where

KA = {ki j} ∈ R
q×(r−q) is a rectangular matrix,

LA = {ℓi j} ∈ R
q×q is a lower triangular matrix, and

SA1 = {s(1)
i j } ∈ R

(m−q)×(r−q),

SA2 = {s(2)
kl } ∈ R

(m−q)×q

are rectangular matrices.

Let us partitionz0 so thatz0 =

[

z0
1

z0
2

]

with z0
1 ∈

L2(Ω,Rr−q) andz0
2 ∈ L2(Ω,Rq). We also write

x1 = [α1 . . . ,αr−q]
T and x2 = [αr−q+1, . . . ,αm]T ,

and denote byv1 ∈ L2(Ω,Rr−q) andv2 ∈ L2(Ω,Rq),
orthogonal vectors according to Lemma 1 as

v1 = z0
1 and v2 = z0

2−Pzz0
1,

wherePz = Ez1z2E†
z1z1

+Dz(I −Ez1z1E†
z1z1

) with Dz an
arbitrary matrix.

We write Gv,s = [g1, . . . ,gs] ∈ Rq×s whereGv,s is
constructed from a QR-decomposition ofEv2v2

1/2, in
a manner similar to the construction of matrixGw,s.

Furthermore, we shall defineGs := Gv,s.

Theorem 2. Let A ∈ MC(m, r,ηA), i.e. the de-
compressor A is causal and has the complete variable
memoryηA = [r −q+1, . . . , r]T . Then the solution to
problem(10) is provided by the matrix A0, which has

the form A0 =

[

K0
A L0

A
S0

A1 S0
A2

]

, where the blocks K0A ∈

R
q×(r−q), S0

A1 ∈ R
(m−q)×(r−q) and S0

A2 ∈ R
(m−q)×q are

rectangular, and the block L0A ∈ R
q×q is lower trian-

gular. These blocks are given as follows. The block
K0

A is given by

K0
A = T0

A −L0
AP (27)

with

T0
A = Ex1v1E†

v1v1
+NA1(I −Ev1v1E†

v1v1
) (28)

where N1 is an arbitrary matrix. The block L0A =






λ0
1
...

λ0
q






, for each s= 1,2, . . . ,q, is defined by its rows

λ0
s = es

TEx1v2Ev2v2
†GsGs

† + fs
T(I −GsGs

†) (29)

with fsT ∈R1×q arbitrary. The blocks S0A1 and S0
A2 are

given by

S0
A1 = S0

A−S0
A2P, S0

A2 = Ex2E†
v2v2

+HA2(I −Ev2v2E†
v2v2

),
(30)

where

S0
A = Ex2E†

v1v1
+HA(I −Ev1v1E†

v1v1
) (31)

and HA2 and HA are arbitrary matrices.
The error associated with the de-compressor A0 is

given by

‖x−A0z0‖2
Ω =

ρ

∑
s=1

q

∑
j=s+1

|es
TEx1v2Ev2v2

†g j |
2(32)

+
2

∑
j=1

‖Exj xj
1/2‖2

F −
2

∑
i=1

2

∑
j=1

‖Exivi Evj vj
†1/2‖2

F . (33)

4 SIMULATIONS

The following simulations and numerical results illus-
trate the performance of the proposed approach.

Our filterF0 = A0B0 has been applied to compres-
sion, filtering and subsequent restoration of the refer-
ence signals given by the matrixX ∈ R

256×256. The
matrix X represents the data obtained from an aerial
digital photograph of a plant3 presented in Fig. 1.

We divide X into 128 sub-matricesXi j ∈ R
m×q

with i = 1, . . . ,16, j = 1, . . . ,8, m = 16 andq = 32
so thatX = {Xi j }. By assumption, the sub-matrix
Xi j is interpreted asq realizations of a random vec-
tor x ∈ L2(Ω,Rm) with each column representing a
realization. For eachi = 1, . . . ,16 and j = 1, . . . ,8,
observed dataYi j were modelled fromXi j in the form

Yi j = Xi j •rand(16,32)(i j ).

Here, • means the Hadamard product and
rand(16,32)(i j ) is a 16×32 matrix whose randomly-
chosen elements are uniformly distributed in the
interval(0,1).

The proposed filterF0 has been applied to each
pair {Xi j , Yi j }. Each pair{Xi j , Yi j } was processed by
compressors and de-compressors with the complete
variable memory. We denoteB0

C
= B0 andA0

C
= A0

for such a compressor and de-compressor determined
by Theorems 1 and 2, respectively, so that

B0
C
∈M T (r,n,ηB) and A0

C
∈MC(m, r,ηA)

3The database is available in
http://sipi.usc.edu/services/database/Database.html.
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(c) Estimates of the reference signals by the filter
F0

C
with the complete variable memory.

Figure 1: Illustration of simulation results.

wheren= m= 16, r = 8, ηB = {ηBk}
16
k=1 with ηBk =

{

12+k−1, if k = 1, . . . ,4,

16, if k = 5, . . . ,16
,

and ηA = {ηA j }
16
j=1 with ηA j =

{

6+ j −1, if j = 1,2,

8, if k = 3, . . . ,16
. In this case,

the optimal filter F0 is denoted byF0
C

so that
F0

C
= A0

C
B0

C
. We write

J0
C

= max
i j

‖Xi j −F0
C

Yi j‖
2

for a maximal error associated with the filterF0
C

over
all i = 1, . . . ,16 and j = 1, . . . ,8. The compression
ratio wasc = 1/2. We obtainedJ0

C
= 3.3123e+005.

The results of simulations a are presented in Fig.
1 (a) - (c).
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