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Abstract: New Takagi-Sugeno PI-fuzzy controllers (PI-FCs) are suggested in this paper. The PI-FC design is based on 
the optimization of PI controllers in terms of the Iterative Feedback Tuning (IFT) approach. Next the 
parameters of the PI controllers are mapped onto the parameters of the Takagi-Sugeno PI-FCs in terms of 
the modal equivalence principle. An attractive design method is derived to support the implementation of 
low-cost PI-FCs. The design is enabled by a stability analysis theorem based on Lyapunov’s theorem for 
time-varying systems. The theoretical approaches are validated by a case study corresponding to the 
position control of a servo system. Real-time experimental results are included. 

1 INTRODUCTION 

The design of control systems (CSs) making use of 
measurement data is successful in many industrial 
applications without models available for the 
controlled process. The time-consuming design of 
those models can be avoided. Fuzzy control is an 
alternative when very good steady-state and 
dynamic CS performance indices can be guaranteed. 
The systematic design of fuzzy controllers must be 
assisted by the analysis of the fuzzy CS structural 
properties i.e. stability, controllability, parametric 
sensitivity and robustness (Sala et al., 2005; Kovačić 
and Bogdan, 2006; Blažič and Škrjanc, 2007). 

Iterative Feedback Tuning (IFT) is a gradient-
based approach, based on input-output data recorded 
from the closed-loop system (Hjalmarsson et al., 
1998). The performance specifications are expressed 
in terms of objective functions in appropriate 
optimization problems. Those problems can be 
solved by iterative gradient-based minimization 
implemented as IFT algorithms. IFT makes use of 
closed-loop experimental data to calculate the 
estimates of the gradients of the objective functions. 
Several experiments are done per iteration and the 
updated controller parameters are calculated based 
on the input-output data. So the IFT belongs to the 
direct data-based offline-adaptive controller designs. 

The combination of IFT and fuzzy control leads  
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to the convenient performance enhancement of 
fuzzy CSs after their initial tuning (Precup et al., 
2008). The first contribution of the paper concerns 
the modification of the second experiment specific 
to IFT to be overlapped over the normal CS 
operation. Several useful remarks are introduced in 
relation with the signal processing and 
implementation of the IFT algorithms. The second 
contribution is a new design method of low-cost 
Takagi-Sugeno PI-FCs which is based on mapping 
the results from the linear case onto the fuzzy one in 
terms of the modal equivalence principle (Galichet 
and Foulloy, 1995). The third contribution is a 
stability analysis theorem based on Lyapunov’s 
theorem for time-varying systems derived from 
(Slotine and Li, 1991) to support the PI-FC design. 

The paper is organized as follows. Section 2 
discusses the signal processing and implementation 
aspects regarding the IFT algorithm. Next, Section 3 
presents the new design method for a class of 
Takagi-Sugeno PI-FCs. Section 4 addresses a case 
study associated with low-cost implementations of 
DC drive servo system position CSs. The 
conclusions are presented in Section 5. 

2 SIGNAL PROCESSING AND 
IMPLEMENTATION ASPECTS 
IN IFT ALGORITHMS 

The IFT-based CS structure is presented in Figure 1, 
where: r – the reference input, d – the disturbance 
input, yre −=  – the control error, u – the control 
signal, ρ – the parameters vector having the 
controller tuning parameters as its components, C(ρ) 
– the transfer function of the linear controller, a PI 
one, here to be replaced by the PI-FC, in order to 
improve the CS performance indices, F – the 
transfer function of the reference model that 
prescribes the desired behaviour to be exhibited by 
the closed-loop system, P – the transfer function of 
the controlled process, y – the controlled output, yd – 
the desired output produced by the reference model, 

dyyy −=δ  – the model tracking error, and IFT – the 
Iterative Feedback Tuning algorithm, i – the input 
vector to set the performance specifications. 

 
Figure 1: CS structure with IFT. 

The operational variable in the transfer functions 
has been omitted for the sake of simplicity. However 
that variable will be mentioned in the sequel in the 
well accepted notation s for continuous-time systems 
and z for discrete-time ones to improve the clarity of 
the presentation when needed. That is also the 
reason for inserting or removing the argument ρ. 

The controller parameterization is such that the 
transfer function C(ρ) is differentiable with respect 
to ρ. The controller must ensure an initially 
stabilized CS. The initial controller tuning affects 
the convergence of the iterative process. 

The accepted expression of the objective 
function J(ρ) is 

∑
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where: N – the number of samples setting the length 
of each experiment. A typical objective is to find a 
parameters vector *ρ  to minimize J(ρ) and make the 
error δy tend to zero by the optimization problem 
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where several constraints can be imposed regarding 
the controlled process or the closed-loop CS. The 
most important constraint accepted in this paper 
concerns the necessity of stable CSs, and SD stands 
for the stability domain. Other variables including 
the control signal can be used. That requires 
additional signal processing and increased cost. 

The IFT algorithms solve the optimization 
problem (2) by means of numerical optimization 
techniques. Newton’s method is popular in IFT since 
it can be treated independently of the difficulties 
inherent to the model-based techniques. It evaluates 
repeatedly a new solution based on a point of the 
function and its approximate derivative. The 
mathematical formulation is the following update 
law to calculate the next set of parameters 1+iρ : 
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where: i – the index of current iteration, )]([ iJest ρ
ρ∂
∂  

– the estimate of the gradient vector, iγ  – the step 
size, 0ρ  – the initial guess of the tuning parameters, 
and Ri – a regular positive definite matrix. Ri can be 
the Hessian or the identity matrix to simplify the 
signal processing. 

Differentiating (1), the gradient becomes 
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To calculate the general expressions of the gradient 
of the output error it is necessary to make use of the 
information obtained from the closed-loop system. 
The sensitivity function S and the complementary 
sensitivity function T must be expressed: 
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The differentiation of )(ρyδ  making use of (5) and 
Figure 1 leads to the gradient of )(ρyδ : 
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To obtain the estimate of the gradient of the 
model tracking error use is made of two experiments 
per iteration for the PI controllers. In the first 
experiment, the normal one, use is made of Figure 1, 
the reference input r1 is applied to the CS and the 
controlled output y1 is measured. In the second 
experiment, the gradient one, the control error of the 
first experiment 111 yre −=  is applied as the 
reference input r2 (Hjalmarsson et al., 1998) and the 
controlled output y2 is measured. That processing is 
far away from the normal CS operation. Therefore a 
new gradient experiment is suggested here where the 
reference input r2 is applied and the signal e1 is 
injected after the control signal. That can be 
expressed as the experimental scheme for the 
gradient experiment illustrated in Figure 2 where the 
blocks F and IFT have been dropped out. 

 
Figure 2: Experimental scheme for gradient experiment. 

Accepting the lower subscript pointing out the 
index of the current experiment, the reference input 
and controlled output in the normal experiment are 

111 )()()(  , dSrTyrr ρρρ +== .  (7)
For the gradient experiment, making use of the 
Figure 2, the results are 
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where the gain K has been inserted to show the 
proportional reference inputs in the two experiments. 
Next (7) is multiplied by K, extracted from (8), the 
relationship (6) is used and the result becomes 
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The second term in the right-hand side of (9) 
depends on the disturbance inputs, it affects the 
gradient, so it should be alleviated. Neglecting that 
term the estimate of the gradient of δy is evaluated: 
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The alleviation of the second term in the right-
hand side of (9) can be done by the proper initial 
tuning of the controller parameters because )( iS ρ  
plays the role of filter. That term can lead to shifted 
estimates with negative effects on the convergence. 
A similar approach (Hildebrand et al., 2005) is 
characterized by an additional prefilter designed as 
solution to optimization problems. That filter is not 
introduced here to simplify the signal processing 
accepting that K=1. The role of 0ρ  is highlighted 
from that point of view. 

Summarizing all signal processing aspects 
mentioned before in the linear case, one iteration in 
the IFT algorithm consists of the following steps. 

Step 0. Set 0ρ . 
Step 1. The two experiments are done making 

use of the CS structures presented in Figure 1 and 
Figure 2 and the outputs y1 and y2 are measured. 

Step 2. The output of the reference model is 
generated, yd, and the output error δy is calculated. 

Step 3. The estimate of gradient of J is calculated 
according to (4) and (10). 

Step 4. The next set of parameters 1+iρ  is 
calculated in terms of the update law (3). 
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3 DESIGN OF TAKAGI-SUGENO 
PI-FUZZY CONTROLLERS 

The Takagi-Sugeno PI-FC is a discrete-time 
controller built around the two inputs-single output 
fuzzy controller (TISO-FC), Figure 3, where 
Δe(k)=e(k)–e(k–1) and Δu(k)=u(k)–u(k–1) is the 
increment of control error and signal, respectively. 
The fuzzification is done by the membership 
functions presented in Figure 4, the inference engine 
employs the MAX and MIN operators assisted by 
the rule base presented in Table 1, and the weighted 
average defuzzification method is employed. 

 
Figure 3: Structure of Takagi-Sugeno PI-fuzzy controller. 

 
Figure 4: Input membership functions of TISO-FC. 

Table 1: Rule base as decision table of TISO-FC. 

Δe(k) e(k) 
N ZE P 

P Δuk = fk Δuk = fk Δuk = η fk 
ZE Δuk = fk Δuk = fk Δuk = fk 
N Δuk = η fk Δuk = fk Δuk = fk 

The rule base of the PI-FC can be reduced to two 
rules (Johanyák and Kovács, 2007). The rule 
consequents (Table 1) point out the term f(k): 

)]()([)( kekeKkf P α+Δ= . (11) 

Eq. (11) corresponds to the recurrent equation of an 
incremental digital PI controller. The Takagi-Sugeno 
PI-FCs will exhibit as bumpless interpolators 
between two linear PI controllers. The additional 
parameter η with typical values within 0<η<1 
reduces the overshoot. 

The parameters KP and α in (11) can be obtained 
either directly in the discrete-time form or by the 
continuous-time form of the PI controller 

)]/(11[/)1()( iCic sTkssTksC +=+= , (12) 

followed by the discretization in terms of the 
sampling period Ts (in terms of quasi-continuous 

control), where Ti is the integral time constant and 
kC, ciC kTk = , is the controller gain. In case of 
Tustin’s discretization method applied here the 
parameters KP and α obtain the expressions 

)2/(2 )],2/(1[ sisisCP TTTTTkK −=α−= . (13) 

Accepting the approximations specific to the 
quasi-continuous digital control (Precup et al., 2008) 
the Takagi-Sugeno PI-FCs can be considered as 
continuous-time fuzzy controllers. However the 
calculation of the maximum Ts such that the stability 
is also ensured is of interest. The IFT-based design 
method dedicated to the accepted class of Takagi-
Sugeno PI-FCs consists of the following steps. 

Step 1. Ts is set and an initial linear tuning 
method is applied to calculate the initial controller 
parameters, KP and α. They can be obtained also by 
an initial guess based on the designer’s experience. 

Step 2. The initial data of the IFT algorithm and 
the reference model parameters are set. 

Step 3. The IFT algorithm presented in the 
previous Section is applied resulting in the optimal 
controller parameters. 

Step 4. Be and η are chosen according to the 
performance specifications. The stability analysis to 
be presented as follows is taken into account. Next 
the modal equivalence principle is applied: 

ee BB α=Δ
. (14) 

The current trends in the stability analysis of 
fuzzy CSs employ Lyapunov’s (Wang et al., 2007), 
Krasovskii’s and La Salle’s approaches (Tian and 
Peng, 2006), the describing function method or 
algebraic approaches (Michels et al., 2006; Jantzen, 
2007). The stability analysis to be presented as 
follows employs the formalism applied in (Lam and 
Leung, 2008; Lam and Ling, 2008). The state-space 
equation of the controlled process is 

,)(),(),(),()( 00 xxxbxfx =+= ttuttt  (15) 

where Dxxx T
n ∈= ]...[ 21x  is the state vector, 

*Nn∈ , T
nxxx ]...[ 21=x  is the derivative of x 

with respect to the independent time variable t, 
nRD →∞× ),0[:,bf  are continuous functions of t: 
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T stands for matrix transposition, and the 
disturbance is absent. The PI-FC inputs are (n=2): 
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The expression of the control signal is 
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where iu  is the control signal produced in the 

consequent of the i-th rule, Bri ,1 = , rB is the 
number of fuzzy control rules, and iα  is the firing 
strength (Precup et al., 2008). 

The Lyapunov function candidate is 
xPxx  )(),( ,),0[: TtgtVRDV =→∞× , (19) 

where nnR ×∈P  is a constant positive definite matrix 
and ),0[),0[: ∞→∞g  is a continuously 
differentiable function. The derivative of V with 
respect to time with the system constrained to (15) is 
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(20) 

and its expression calculated for )(xkuu =  is ),( tVk x . 
Theorem 1. Let nRD ⊂∈= 0x  be an equilibrium 

point for (15) controlled by the accepted PI-FC and 
V the Lyapunov function candidate (19) such that 
the following two conditions are fulfilled: 
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where 1W  and 2
kW  are continuous positive definite 

functions on D. Then 0x =  will be uniformly 
asymptotically stable. 

Proof: Use is made of (20) and (21) leading to 
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Therefore Lyapunov’s theorem for time-varying 
systems is fulfilled due to the conditions (21) and 
(22), and the equilibrium point 0x =  will be 
uniformly asymptotically stable. 

Theorem 1 offers sufficient stability conditions 
in the choice of the parameters Be and η. Its 
application has been implemented for a real-world 
process in the Intelligent Systems Laboratory with 
the “Politehnica” University of Timisoara (PUT). 

4 CASE STUDY 

The experimental setup is built around the INTECO 
DC servo system with backlash laboratory 
equipment, Figure 5, with rated amplitude of 24 V, 
current of 3.1 A, torque of 15 N cm and speed of 
3000 rpm. The inertial load weighs 2.03 kg. 

 
Figure 5: Structure of experimental setup. 

The transfer functions of the simplified 
controlled process and reference model are 

15.1
1)(  ,

)1(
)( 2 ++

=
+

=
Σ ss

sF
sTs

ksP P , (23) 

88.139=Pk , s 9198.0=ΣT . The continuous-time PI 
controller has been obtained by frequency domain 
design which yields the parameters 01036.0=Ck  
and s 1043.3=iT . Discretizing with s 01.0=sT , the 
initial digital PI controller parameters are 

T
PK ]0029.001035.0[0 =α==ρ . The parameters 

obtained after 10 iterations for the step size 610−=γi  
are T]003226.0010346.0[10 =ρ . Setting 20=eB  
and 5.0=η , (14) results in 06452.0=ΔeB . 

The constant reference input rad 40=r  has been 
applied. The behaviour of the CS with linear 
controller before IFT is illustrated in Figure 6. 

 
Figure 6: Reference model output and controlled output 
(position) versus time for linear CS before IFT. 
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The behaviour of the CS with PI-FC after IFT is 
presented in Figure 7. The performance indices 
(overshoot and settling time) of the CS have been 
improved. A band-limited white noise of variance 
0.01 has been applied as the disturbance input d. 

 
Figure 7: y versus time for fuzzy CS after IFT. 

5 CONCLUSIONS 

The paper has proposed a stable design method 
dedicated to a class of Takagi-Sugeno PI-FCs. It is 
based on mapping the IFT-based linear case results 
onto the fuzzy control results. 

Several signal processing aspects regarding the 
simplification of the implementation have been 
discussed. They involve an original gradient 
experiment. A single gradient experiment is needed. 
However an additional one can be employed in other 
CS structures. 

The stability analysis can be applied to the fuzzy 
control of time-varying systems. It is valid because 
of the quasi-continuous digital implementation of 
the controllers that enables the controller design. 

One future research topic concerns the 
convergence analysis. Although the stability analysis 
suggested is attractive, the convergence is not 
guaranteed. The future research will be dedicated to 
the application of the approaches to other fuzzy 
controller structures (Valente de Oliveira and 
Gomide, 2001; Vaščák, 2007; Pedrycz, 2009). 
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