
Man Machine Interface in RFID Middleware: DEPCAS
User Interface

Carlos Cerrada, Ismael Abad, José Antonio Cerrada and Ruben Heradio

Departamento de Ingeniería de Software y Sistemas Informáticos
Escuela Técnica Superior de Ingeniería Informática, UNED

C/ Juan del rosal 16, 28040 Madrid, Spain

Abstract. Between the RFID middleware main components the editing and
management tools support the way to configure and deploy the RFID solutions.
The most important functions of Man Machine Interface for RFID middleware
component are to allow access to the monitoring, the management and the con-
trol included in the middleware. Among the key features that are necessary for
this component we can mention the flexibility, adaptability, and scalability to
the system middleware that implements it. We present a study on the interfaces
in some of the existing RFID middleware. We also include the prototype of
the user interface made for the RFID middleware architecture called DEPCAS
(Data EPC Acquisition System). This interface called GUV (Graphical User
Viewer) was developed through language EFL (Exemplar Flexibilization Lan-
guage)

1 Introduction

The use of information in the RFID business applications is marked by the mid-
dleware exploits that allows the transfer of information from acquisition sensors
to the application servers. The fundamental requirements of this type of middle-
ware are related to the management of infrastructure devices reading, the
processing information received from auto identification, the business needs to
incorporate auto identification and sharing of information [1]. To address these
requirements, software architectures that implement this type of middleware pro-
posed a set of layers that specialize in solving different requirements. These layers
are based primarily on the architecture proposed by EPCglobal organization[2],
including the resolution of a protocol for reading between the middleware and the
tag reading devices, called LLRP (Low Level Reader Protocol) and higher RP
(Reader Protocol) according to the standards [3] [4], an event process from the
reading of RFID tags [5], an assignment of semantic information to the object
through an RFID identification service [6], and a service to receive or transmit
information to business applications from the RFID middleware [7].

Existing middleware proposals solve, one way or another, all of these func-
tions. For this purpose they use a set of common elements that allow the integra-
tion of functionalities such as: software architecture supporting a framework for

Cerrada C., Abad I., Cerrada J. and Heradio R. (2009).
Man Machine Interface in RFID Middleware: DEPCAS User Interface.
In Proceedings of the 3rd International Workshop on RFID Technology - Concepts, Applications, Challenges , pages 125-132
DOI: 10.5220/0002202201250132
Copyright c© SciTePress

developing, a service platform, an specification language or environment for the
visual interface user.

Furthermore, the implementations include what is called generically man-
agement console that allows the access to certain RFID system settings and query
of the information being handled by the modules that are part of the RFID mid-
dleware These graphical interfaces include functions as: allow the configuration
of devices in the environment, show the overall performance of the middleware,
locate and identify the tagged objects, display system alarms and events or access
to consolidated information on the RFID system. In this article we focus on this
software component that is usually included in every RFID middleware and we
present the alternative in which we are working for the development of our pro-
posed architecture called DEPCAS (Data EPC Acquisition System).

DEPCAS define software architecture for solving the RFID middleware based
on system architecture for monitoring and control (SCADA) process. DEPCAS
propose the scenario concept to generalize the process that can be performed from
the acquisition of auto identification information. The processing of a scenario
produces results that contain elements relevant to their semantic direct use in
business applications. The graphical interface is called in DEPCAS GUV (Gra-
phical User Viewer) and is designed to standardize access to the information ma-
naged in the middleware regardless of the scenario being driving. Henceforth this
paper is structured as follows: Section 2 presents the user interfaces used in pro-
posals for middleware, which functions are included and how they are integrated
with other elements of the middleware, in Section 3 we presents the flexibiliza-
tion language used for defining the graphical environment of 3 DEPCAS, in Sec-
tion 4 we presents the architecture and how DEPCAS integrate the GUV envi-
ronment, and finally the section 5 describes the prototype GUI GUV developed
by applying the EFL concepts to the MMI development in DEPCAS.

2 The Man Machine Interface in RFID Middleware

The different RFID middleware proposals can be divided into commercial and
academic (Table 1). Among the commercial proposals two types are included:
those that correspond to large global software companies such as Sun MicroSys-
tems, IBM, Microsoft, ORACLE, Sybase, Verisign or SAP, and the solutions
provided from companies that are software (middleware, distribution, ..) special-
ists as RedPrairie, OatSystems, Vue Technologies, etc. Between the academic
solutions we can mention the solutions from autoid like the AutoId center in the
Massachusetts University (MIT), the StGallen AutoId Lab in St. Gallen Universi-
ty or the research on logistics such as the Los Angeles University or the Hong
Kong University.

126

Table 1. RFID Middleware and MMI Components.

 Name WebSphere RFID
Sun MicroS. Sun Java RFID System v3.0 RFID

Management Console
Sun Java RFID System v3.0
RFID Management Console

IBM Web Sphere RFID Information
Server

RFID Information Server
Management

Microsoft BizTalk RFID Solutions BIZTalk RFID Monitor
ORACLE ORACLE RFID And sensor based

services
ORACLE Enterprise Manager

Sybase RFID Anywhere RFID Anywhere Manager
Enterprise

OATSystems C4 Architecture C4 Architecture
VuewTech. TrueVUE platform TrueVue Site Manager
AutoID-MIT MENTOR
AutoID-StGallen Fosstrak (previous Accada) Reader Test Client
Chinese Univer-
sity of Hong
Kong

CUHK RFID CUHK Management Console

UCLA WinRFID WinRFID Management Con-
sole

The study of different RFID MMIs allows obtaining a set of characteristics that
are implemented to solve the user interface in the RFID middleware. Between
these features we include:
- Web Client
- Collection of dynamic information.
- Managing the database infrastructure of RFID.
- Managing the process database.
- Lists of information.
- Editing and management of graphical elements.
- Management and configuration of alarms.
- User management and privileges.

These features and functions define the operation of the user interface in RFID
middleware. For example, the SunMicrosystems RFID middleware incorporates a
client web-based interface called RFID Console Management which provides two
basic options, one for administration and another for RFID monitoring informa-
tion. In this interface there is no option to add new elements and the information
displayed is stored in the database and organized according to the topology of the
reading equipment that is currently on the system. Besides incorporating lists to
access the event information system middleware with different filtering options.
As an alternative approach, the middleware TrueVue Technologies incorporates
TrueVue Manager with two options of operation in local mode TrueVue called
Site Manager and corporate TrueVue called Enterprise Manager. Next table shows
the cross results between existing RFID middleware implementation and the MMI set
of characteristics presented in this section:

127

Table 2. Middleware RFID/MMI Characteristics.

Su
n

IB
M

Sy
ba

se

V
ue

Te
ch

M
EN

TO
R

FO
SS

TR
A

K

W
in

R
FI

D

Web Client Yes Yes No No No Yes No
Dynamic Information Yes Yes Yes Yes Yes Yes Yes
Configurable Dynamic
Information

No Yes Yes Yes No No Yes

RFID Database Manage-
ment

Yes Yes Yes Yes No Yes Yes

RFID process configura-
tion

No Yes Yes Yes No No Yes

Lists Yes Yes Yes Yes Yes Yes Yes
Graphical edition No No Yes Yes No No No
Alarms No Yes Yes Yes No No Yes
Events Yes Yes Yes Yes Yes Yes Yes
User Management Yes Yes No No No Yes No

3 Overview of the EFL (Exemplar Flexibilization Language)

This section introduces the main characteristics of EFL (Exemplar Flexibilization
Language) [8]. A technique for developing a DSL interpreter quickly is embedding it
into a dynamic general purpose language [9]. This way, all the host language capabili-
ties are implicitly available from the DSL. Unfortunately, the pay-off is that the DSL
concrete syntax has to fit in the host language concrete syntax. EFL is currently im-
plemented applying this technique: it is a library of the Ruby object oriented lan-
guage. As we will see, thanks to the Ruby extensibility, the EFL concrete syntax is
reasonably usable.

3.1 Defining Generators

Figure 1 shows a simplified EFL metamodel. EFL supports the writing of
generators that transform input exemplar files into output final product files
according to input DSL specifications. EFL generators are written as Ruby classes
that extend from the Generator class

This way, the generators can be easily reused by mean of the Ruby composi-
tion and inheritance capabilities. Alternatively, there is available the next syntactic
sugar to write generators as objects of the Generator class:
 my_generator = generator {<<generator definition>>}

128

Fig. 1. TrueVue Site Management.

One generator definition is composed of substitutions, productions and genera-
tions:

1.- A substitution describes the interchange of an exemplar code pattern, ex-
pressed with a regular expression3, to new code. Crosscutting generators often
apply the same substitutions over different exemplar files. To avoid the repetitive
writing of substitutions and support their reuse, substitutions are independent
from the exemplar files and the final product files. The main Generator methods
to define substitutions are: sub and gsub. A local substitution (sub) expresses the
interchange of the first occurrence of the reg_exp regular expression to the text
string. A global substitution (gsub) expresses the interchange of all the reg_exp
occurrences.

2.- A production describes the application of a substitutionlist to an exemplar
file to produce a final product file. Generator provides the next method to define
productions. EFL supports the detection of undesirable overlaps among the code
patterns of the sub_list substitutions.

3.- A generation executes a list of productions. Generator provides the next
method for generations. EFL supports the detection of undesirable collisions
among the productions of a generation.

3.2 Combining Generators

For writing complex exemplar transformations, EFL provides the next binary
operators to combine two generators g1 and g2:

- Sequence. Executes g1 first and g2 later:
- Add. Returns a new generator which substitutions and productions are the

union of the substitutions and productions of g1 and g2:
- Superposition. Updates the substitutions and productions of g1 with the substi-

tutions and productions of g2. Those with the same name are overwritten and
the remaining ones are added:

129

4 GUV (Graphical User Viewer) in DEPCAS

DEPCAS (EPC Data Acquisition System) is a proposed architecture for RFID mid-
dleware systems dedicated to data acquisition in real and heterogeneous environ-
ments. The scheme proposed is based on the supervisory and control systems known
as SCADA (Supervisory Control and Data Acquisition).. This central acquisition RID
system is the proposal of DEPCAS architecture (Figure 2).

Fig. 2. DEPCAS Architecture.

The basic structure of DEPCAS is divided into four sub-systems: the MDM (mid-
dleware device manager) for the management of infrastructure, MLM (middleware
logic manager) for auto identification process, the GUV (graphical user viewer) or
man-machine interface, and finally the EPCIS (EPC Information System) as software
component to communicate with other systems.

The main objectives of GUV are:
- to include a single common environment and information management in the

middleware. This environment is common to all management information system
configuration data regardless of being related to infrastructure, the processing log-
ic sets or walkways with information modules EPCIS

- a common graphical object to support list information. This list can be used like
dynamic queries with real time information or static queries to show database in-
formation.

- information about a particular object in real time. You may include in new
graphics another graphical object with real time attributes.

- an alarm system and alarm processing operations that can be configured according
the domain what is used. Treatment includes alarm management levels
alarm and the realization of automated operations.

- the treatment process and system events for the acquisition of auto identification
data.

- the management of graphical objects that are used and which allows their reuse in
different graphical interfaces.
Given the characteristics of DEPCAS architecture, the GUI should be able to be

adapted to the environment that uses the middleware. It is necessary to have the
graphical tools that allow creating and editing the specific configuration of the do-
main in which uses the environment. To achieve this we have used an approximation
based on generative programming called Exemplar Flexibilization Language. This

130

approach exploits the flexibility of examples to build the user interfaces based on the
basic issues that define the GUI adapted to each particular domain. Under these con-
ditions, the graphical environment of DEPCAS is made up of two fundamental ele-
ments: the graphical running environment, called GUV, is the result of a generation
from items handled by a graphic editing environment that we call ediGUV. The edit-
ing environment is intended to handle the language domain. This environment allows
specifying from the individual copies adjusted to certain systems. The key features of
the design of the editing environment allows the GUV provide additional flexibility
and customization for the graphic development, including a set of graphical objects
such as buttons, real time links, data, charts, summaries of alarms, etc.. which can be
adapted to the domain specific needs.

5 GUV Prototype Implementation

Based on the concepts of high-level design have been shown we have developed a
GUV prototype environment that allows building graphical environment from specific
domain. The prototype has a graphic editing system that allows creation, modification
and deletion of graphical elements. This environment ediGUV define a core container
referred as DEPCASGUV in which may include other edited elements. The prototype
operates two types of graphic elements: the basic elements that are provided directly
by the window SDKs that is in use. And the compound elements of DEPCAS that are
the result of basic elements compositions for a specific function in the DEPCAS. The
basic graphic elements in the original DEPCAS are: windows, buttons edit fields ,
text fields, check boxes, combo boxes. DEPCAS graphic elements are: panel database
(Add-Delete-Modify Data), list of dynamic database, list of static database, RFID /
EPC Label, RFID Reader Point, Dynamic graph (Route / Forecast)

Fig 3. Database panel example from DEPCAS GUV.

Each of the above elements is defined by his example to get your specification to
generate a corresponding graphical environment. For example, the following panel
specification database (add-delete-modify) is instantiated as shown in figure 3. This
panel includes all the fields in the table relates the antennas with the teams and read-
ers solve all operations to find add, delete or modify information in database. The
prototype has been developed that includes the use of a database in MySQL and
graphical elements are using the basic elements included in the JAVA AWT library.

131

6 Conclusions

Regarding the development of GUI middleware for RFID, there is little alternatives.
Most of the work developed in these middleware focuses on resolution of academic or
commercial layers from the proposed standards. Only some of the proposals have
focused on solving tasks related to the user interfaces for this type of middleware.

With regard to the proposed development of a graphical environment using an
adaptive generative approach based on the flexibility of predefined charts that copies
can be adapted and combined we can say that this is an adequate approximation for
the resolution of the basic tasks to be solved in the desired graph DEPCAS architec-
ture. About future work there are different issues to be resolved. First, to extend the
graphical elements in GUV with more modern graphic elements such as tabs, transpa-
rent data, etc. It is also required extensive work to enable us to provide an environ-
ment WYSIWYG (what you see is what you get) integrated with the generation-based
EFL and its operators. Additionally, DEPCAS evolution demands new graphics ob-
jects to those currently employed.

Acknowledgements

This research has been carried out under contract with the Spanish CICYT through
the DPI2005-03769 and DPI2007-61287 projects.

References

1. C. Floerkemeier et al., RFID Middleware Design -Addressing Application Requirements
and RFID. Proceedings of SOC-EUSAI (2005)

2. EPC Global Inc., The EPC Global Architecture Framework v 1.2. (2007)
3. EPC Global Inc., The RP Standard v. 1.1. (2006)
4. EPC Global Inc., The LLRP Standard v. 1.2. (2007)
5. EPC Glocal Inc. The ALE Standard v.1.1. (2008)
6. EPC Global Inc. The ONS Standard v.1.0.1. (2008)
7. EPC Global Inc. The EPCIS Standard v.1.0.1. (2007)
8. Heradio Gil, R. Metodologia de desarrollo de software basada en el paradigma generativo.

Realizacion mediante la transformacion de ejemplares. Ph. D. Thesis, Departamento de In-
genieria de Software y Sistemas Informaticos de la UNED, Spain (2007)

9. Fowler, M. Language Workbenches: The Killer-App for Domain Specific LanguagesURL:
http://www.martinfowler.com/articles/languageWorkbench.html (2005)

132

