
Mining Linguistic and Molecular Biology Texts through
Specialized Concept Formation

Gemma Bel-Enguix, Veronica Dahl and M. Dolores Jiménez-López

GRLMC-Research Group on Mathematical Linguistics
Rovira i Virgili University, 43002 Tarragona, Spain

Abstract. We present, discuss and exemplify a fully implemented specialization
of the Concept Formation Cognitive model into a model of text mining that can
be applied to human or molecular biology languages.

1 Introduction

In [2], an executable cognitive model of knowledge construction, Concept Formation,
was proposed and developed into a working system, inspired by constructivist theory
as well as by natural language processing methodologies. This system accommodates
user definition of properties between concepts, as well as user commands to relax their
enforcement under certain conditions. For instance, a language tutoring system might
include gender agreement properties, but relax the most commonly violated ones in
order to accept incorrect input while pointing out the source of the mistake.

In this article we specialize Concept Formation into a model of text mining that has
application in two important families of natural languages: human languages per se,
and the (also human albeit less overtly so) languages of molecular biology. Complete
running programs are given in at http://www.geocities.com/ CHRPrograms/SCF.html.

2 Motivation

We can imagine the human mind as a dynamically evolving store of knowledge, which
constantly updates itself from new information built from previous information through
some kind of reasoning. In this model, problems, events, feelings etc. that are on focus
(that is, in our consciousness at any given time) trigger a (partly or wholly) uncon-
scious search in the knowledge store for those pieces of information that relate to the
problem. Once found, these can be put together to draw new knowledge from them. A
rule appropriate for modelling the formation of the new knowledge might look roughly
as follows: c1, c2, ci --> newc. where the cis and newc are concepts expressed
as logic atoms.

These rules, referred to as Concept Formation rules in [2], are at the core of our text
mining methodology. As in that previous work, the concepts in question are represented
through logic terms, and thus may contain arguments, which were there used mostly to
represent values relevant to conditions to be tested. For instance, the concept of the
likelihood of a speeding ticket could be formed by a rule such as

Bel-Enguix G., Dahl V. and Jiménez-López D. (2009).
Mining Linguistic and Molecular Biology Texts through Specialized Concept Formation.
In Proceedings of the 6th International Workshop on Natural Language Processing and Cognitive Science , pages 117-121
DOI: 10.5220/0002199101170121
Copyright c© SciTePress

speed_limit(X), current_speed(Y) => test(Y>X), speeding_ticket(likely).

expressing that if the current speed Y exceeds the speed limit X, a speeding ticket is likely.
In this article we focus on such rules as well, but use the arguments mostly to store infor-

mation about the text being mined- in particular, to store subtext with desired characteristics as
we go along in the process of extracting it. We provide utilities specialized to text mining tasks,
which are then used by the core rule in our model– the Power Matching rule– to combine in one
stroke all the needed information previously scattered across the input text. This basic rule can be
tailored into further uses than the ones described in this paper, with the same underlying utilities
we provide.

3 Computational Preliminaries: CHR

Constraint Handling Rules (CHR) [3] have the format Head ==>Guard|Body
Head and Body are conjunctions of atoms and Guard is a test constructed from (Prolog) built-

in or system-defined predicates. The variables in Guard and Body occur also in Head. If the Guard

is the constant “true” (i.e., no tests need succeed in order for the rule to apply), then it is omitted
together with the vertical bar. Its logical meaning is the formula (Guard → (Head → Body))
and the meaning of a program is given by conjunction. There are three types of CHR rules:

– Propagation rules, which add new constraints (body) to the constraint set.
– Simplification rules, which also add as new constraints those in the body, but remove as well

the ones in the head of the rule.
– Simpagation rules, which combine propagation and simplification traits, and allow us to

select which of the constraints mentioned in the head of the rule should remain and which
should be removed from the constraint set.

The rewrite symbols for the first two rules are respectively: ==>, <=> and for simpagation rules,
the notation is Head1\Head2<=>body. Anything in Head1 remains in the constraint set and anything
in Head2 is removed from the constraint set.

4 Our Methodology Explained through an Example

4.1 Mining Spoken Languages
Consider the problem of finding a string of words of any length which is common to three short
sentences given as input. For instance, for the input corpus: {The drought of March has pierced
to the root; Alice has had enough of hares of March; Waters of March was written by Jobim}, the
output should include “of March” as one of the common sequences found, indicating moreover
the position where the sequence starts within each sentence.

Our system’s utilities first compile the sentences into Prolog definitions of each (named s1,
s2, s3), done in terms of atoms of the form w(i,j,W), where i is the sentence number, j the word’s
position in that sentence, and W the word itself. The above given input, for instance, compiles
into:

(1) s1:- w(1,1,the), w(1,2,drought), w(1,3,of), w(1,4,march), w(1,5,has),
w(1,6,pierced), w(1,7,to), w(1,8,the), w(1,9,root).

(2) s2:- w(2,1,alice), w(2,2,has), w(2,3,had), w(2,4,enough), w(2,5,of),
w(2,6,hares), w(2,7,of), w(2,8,march).

(3) s3:- w(3,1,waters), w(3,2,of), w(3,3,march), w(3,4,was), w(3,5,written),
w(3,6,by), w(3,7,jobim).

118

If we now initialize the system by calling all three strings, i.e.:

(4) ?- s1, s2, s3.

we are in a position to extract substrings from these sentences in a high level fashion, through the
following two propagation rules:

(5) w(Row,C,N), w(Row,C1,N1) ==> C1 is C+1 | sub([N,N1],Row,C).

(6) w(Row,C,N), sub(S,Row,C1) ==> C1 is C+1 | sub([N|S],Row,C).

Rule (5) detects two subsequent words in the same sentence, or row, and records them through
a new constraint sub/3 in list form (in the first argument of sub/2), keeping as well, in its second
argument, a record of the row (or sentence) the substring was found in, and in its third argument,
the column it starts at within that row. Rule (6) similarly identifies all other substrings in the input
strings, by adding one more word at a time to an already found string.

Of course, for different problems we may specialize these rules further, so that they zoom
onto some sufficient subset of the set of all substrings, e.g. on all those substrings of a given size.

We have now enough utilities for the first incarnation of our Power matching rule, which
extracts a substring S that is common to all three strings, and records the position in each sentence
where the substring appears:

(7) sub(S,1,C1), sub(S,2,C2), sub(S,3,C3) ==> common(S,[C1,C2,C3]).

This completes our formulation for this toy example. Among the results the system outputs, we
have:

common([of,march],[3,5,2])

Notice that in their declarative reading, our system’s rules form a specialized concept (e.g.
substring, common string, etc.) and in their operational reading, they produce all instances of that
concept with respect to given input.

4.2 Mining Molecular Biology Text
The same methodology can be directly used for mining sequences of nucleotides given as input,
without touching the system itself. All we need to do is change the input so that the compiler will
treat strings of nucleotides, e.g. from:

c a t g g c a a
t g g c a c t g
a c g t g g c a

the compiler will obtain (we now use “n” instead of “w” for mnemonics):
(1’) s1:- n(1,1,c),n(1,2,a),n(1,3,t),n(1,4,g),n(1,5,g),n(1,6,c),n(1,7,a),n(1,8,a).

(2’) s2:- n(2,1,t),n(2,2,g),n(2,3,g),n(2,4,c),n(2,5,a),n(2,6,c),n(2,7,t),n(2,8,g).

(3’) s3:- n(3,1,a),n(3,2,c),n(3,3,g),n(3,4,t),n(3,5,g),n(3,6,g),n(3,7,c),n(3,8,a).

Calling all input strings through rule(1) results in the output:
common([t,g,g,c,a],[3,1,4])

being generated among others, indicating that t g g c a is a common substring, and that its start
position in strings s1, s2 and s3 is respectively 3, 1 and 4.

So far we have only considered identical subsequences, i.e. there are no ambiguous elements
in the vocabulary. Our formulation however has been designed to accommodate ambiguous input
with minimum extra apparatus and computational overhead, as we discuss in section 5.1.

119

5 Three Special Cases of String Analysis

5.1 Ambiguous Matching

Whereas the basic nucleotide set consists of the nucleotides A,C,T,G, ambiguity (where a given
string’s position can take one value or another) is typically expressed by using extra names for
the ambiguous nucleotides, so for instance a nucleotide denoted as R can materialize as either A
or G.

Ambiguous matching usually introduces considerable extra work, both in terms of represent-
ing ambiguous strings, and of processing them.

In contrast, all our formulation needs in order to represent and process any ambiguous nu-
cleotide is for the compiler to materialize all its incarnations locally when the ambiguous string
is read in. For instance, a nucleotide of type R appearing in the third sequence, column 7, which
following our notation will be input as as n(3,7,r), compiles into the two nucleotides n(3,7,a)
and n(3,7,c). Non-ambiguous nucleotides in the same sequence remain represented as before, so
that complexity-wise, the representation grows only linearly with respect to the number of am-
biguous nucleotides. In order to process ambiguous strings, once we have compiled them as just
described, no further modifications are needed to our system: it runs as is.

5.2 Finding a Substring’s Frequency

In cryptanalysis [1], frequency analysis has been defined as the study of the frequency of letters or
groups of letters in a ciphertext. Frequency analysis is based on the fact that, in any given stretch
of written language, certain letters and combinations of letters occur with varying frequencies. It
is clear that the methodology presented here can be used to identify the common combinations
of letters and to assign them frequencies. In this section we exemplify with DNA strings, but as
before, the same methodology is applicable to linguistic texts.

In molecular biology, finding a substrings’ frequency can help, among others, to find DNA
words. Those sequences more frequently repeated have a high probability of being meaningful in
the genetic code.

For approaching this problem, we now modify our input to consist of just one sequence
(which results in binary atoms compiling from the input, since we no longer need to record the
sequence, or row, number), we introduce a parameter N in the call, which becomes go(N), with N
being the length of the subsequences sought, and we calculate subsequences of that length. The
Power Matching rule becomes (Max being the length of the substrings to be counted):

(8) n(C,N), sub(S,C1,L,Max) ==> L < Max, L1 is L+1, C1 is C+1 |
sub([N|S],C,L1,Max).

(9) sub(S,C1,Max,Max), sub(S,C2,Max,Max) ==> dif(C1,C2) |
repeated(S,[C1,C2]).

(10) sub(S,C1,Max,Max) \ repeated(S,Where) <=>
notin(C1,Where) |
repeated(S,[C1|Where]).

This rendition of the Power Matching schema illustrates matching an unknown number of
string occurrences. Rule (8) creates substrings of increasing length up to the maximum, rule (9)
detects two equal such substrings, starting respectively in positions C1 and C2, and after checking
that these two positions are different, records the fact that the string S appears in both those
positions. Rule (10) finds one more occurrence of the same string, and updates the information
accordingly, adding the new position in the list of positions where the string repeats.

120

5.3 Finding Gapped Patterns

Because of the existence of introns and junk, in some molecular biology contexts it is reasonable
to search for patterns that repeat in different sequences, even though they may be interrupted by
an arbitrary number of words. Several systems exist and are available on line to find these gapped
patterns in molecular biology, like MOTIF (http://motif.stanford.edu/) or TEIRESIAS
(http://www.research.ibm.com/bioinformatics/home.html). Finding the maximal (gapped) pat-
terns in a text (phrases with discontinuities), combined with the study of frecuencies, can easily
help to text summarization and text classification. Our methodology can be adapted to this task
as well, by keeping also the end point of the subsequences found, and using equations on them in
this version of the matching rule. For instance, for the input:

s1:- w(1,1,the), w(1,2,big), w(1,3,wolf).
s2:- w(2,1,the), w(2,2,big), w(2,3,bad), w(2,4,wolf).
s3:- w(3,1,the), w(3,2,big), w(3,3,ugly), w(3,4,silly), w(3,5,wolf).

our system produces as output:

pattern([[the,big],_B,[wolf]])

6 Concluding Remarks

We have presented a new text mining methodology as an extension, through specialization, of the
cognitive model of concept formation presented in [2]. We have not, in this article, exploited the
feature of property relaxation which is part of the Concept Formation general model, this is left
for future work.

Our focus at this point is expressiveness and elegance of formulation rather than efficiency,
but our results are nevertheless reasonably efficient considering the tasks at hand. With this initial
incursion into our methodology and its applications, we hope to motivate further research on its
suitability for many other different kinds of problems in string analysis.

Acknowledgements

Agostino Dovier and André Lesvesque useful comments on a previous draft of this article are
grateful acknowledged. This work was supported by V. Dahl’s Marie Curie Chair of Excellence
from the European Commission, by Canada’s NSERC, and the Universities of Simon Fraser and
Rovira i Virgili.

References

1. Becket, B. (1988), Introduction to Cryptology, Blackwell.
2. Dahl V. and Voll K. (2004) ”Concept Formation Rules: an executable cognitive model of

knowledge construction”, in proceedings of First International Workshop on Natural Lan-
guage Understanding and Cognitive Sciences, INSTICC Press.

3. Fruhwirth, T. (1998), Theory and Practice of Constraint Handling Rules, Journal of Logic
Programming, Special Issue on Constraint Logic Programming (P. Stuckey and K. Marriot,
Eds.), 37(1-3), pp. 95-138.

4. Zahariev, M., Dahl, V., Chen, W. and Levesque, A. (2009), Efficient Algorithms for the
Discovery of DNA Oligonucleotide Barcodes for DNA Sequences and Groups of Sequences.
To appear in Journal of Molecular Ecology Resources’s Special Issue on DNA Barcoding.

121

