
APRiL: A DSL for Payroll Reporting

Xiaorui Zhang1, Yun Lin2 and Øystein Haugen1,3

1SINTEF, Pb. 124 Blindern, NO-0314, Oslo, Norway
2Agresso R&D, Pb.4244 Nydalen, NO-0401, Oslo, Norway

3University of Oslo, Oslo, Norway

Abstract. The highly diverse payroll reporting structures within and between
organizations pose challenges to enterprise information system vendors.
Producing the database scripts for customized configuration of payroll reporting
has been traditionally a costly manual process. We show how this process can
be automated and made less error-prone and more user-friendly by introducing
a combination of Model-Driven Development (MDD) and a Domain Specific
Language (DSL). This paper addresses the development of Agresso Payroll
Reporting Language (APRiL), a DSL to describe payroll structures and
hierarchies. The language is supported by tailored tools created with open
source technologies on Eclipse. We look at the potential implications of our
approach on the development of payroll reporting system, along with its
advantages and challenges. We also explore possible improvements and
application of our approach in other areas of enterprise information systems.

1 Introduction

As the payroll reporting structures vary considerably within and between
organizations, time-consuming customization has been a key challenge to Enterprise
Resource Planning (ERP) software vendors. Although Agresso Business World ©
(ABW, an ERP product from Agresso1) provides powerful reporting tools – reporting
browser and templates, customization of payroll reporting is still a costly process
because the payroll reporting components and structures are difficult to re-use and
change from one organization to another. Customized configuration of reporting is
sometimes performed by experienced customer consultants producing helping tables
with SQL scripts. Besides business domain knowledge, profound SQL knowledge is
also required from customers consultants. Agresso is seeking a model-driven
approach to deal with the variability of customized payroll reportings.

Agresso Payroll Reporting Language (APRiL), a domain specific language (DSL)
to specify payroll reporting structures and to allow automatic generation of the
corresponding SQL scripts, is developed by SINTEF and Agresso R&D, Norway.
APRiL is designed to provide conceptual view of the payroll reporting structure as
well as to reduce human effort to customize the configurations. At first this approach

1 www.agresso.no

Zhang X., Lin Y. and Haugen Ø. (2009).
APRiL: A DSL for Payroll Reporting .
In Proceedings of the 1st International Workshop on Future Trends of Model-Driven Development, pages 23-32
DOI: 10.5220/0002197500230032
Copyright c© SciTePress

will help the consultants and speed up their customization. Furthermore, it is also
feasible that advanced customers could perform configuring themselves. It is one of
our goals that the APRiL-based configurations can be understood by customers as
well.

2 Current Payroll Reporting Customization Process

Model-Driven Development principles and technologies are not yet fully adopted in
Agresso. In the current development process of ABW, models are mainly used for
analysis to describe database structures and relationships. The models are created by
database specialists based on their understanding of the domain, user requirements
and system requirements. The models are reflected as manipulating the database,
mostly in the form of C# and C++ code. There is no MDD support for the
development of functional and non-functional requirements, which include a lot of
complex business logic and rules.

Agresso reporting tools allow users to build complex queries by directly
manipulating table columns and relationships. Since the data models of ABW are not
modeled for reporting purpose but for the financial process, most of the joints and
filters are used for creating a desired report query. From this point of view, it is not
easy to abstract out some concepts that are required for reporting, by only looking at
table definitions. Table relationships are complex in ABW, and it is hard for users to
grasp the business logic and create an advanced reporting in a short time. Thus,
Agresso consultants sometimes need to help customers to customize their reporting.
Usually the consultants are required to get an understanding of the customers’ domain
and requirements in a short period of time. Extra programming efforts might also be
made for some customized reports.

The payroll module is the most complex and variable component of ABW. A lot
of business logic and rules are involved in the payroll domain, and there are numerous
variations within and between organizations. For instance, payroll constitutions for a
sales representative and for a research scientist could be very different, thus the
differences will be reflected in their payroll reporting structures. Payment and
Deduction (P&D) are the basic components of payroll in ABW’s payroll management
system. They are defined with codes in ABW by Agresso customers. The payroll of
each person is a sum of the P&D values. The P&D values can be calculated through
the payroll transactions according to the person’s status, such as his/her position,
working department, working hours, employment type and etc. ABW can retrieve all
the calculated P&D values associated with the human resources from the database.

For payroll reporting, organizations need to produce the different views of payroll
information, such as personal actual or predicted salary in a certain period, or human
resource cost for a certain department or for a project, or average salary of certain
groups of employees. Every single P&D value is not that interesting for reporting, but
the aggregation of groups of P&Ds. It is impossible to provide a standard way to
group P&Ds out of the box by Agresso, because P&D are defined differently in each
organization and P&D grouping might also be varying from time to time even for one
organization. Customization of payroll reporting is required.

24

Fig. 1 illustrates the current workflow of customizing ABW payroll reporting
module. Agresso consultants firstly get to know the problem domain of customers’ in
several ways, i.e. go through internal documents or courses. Then the customers
provide the consultants with examples of payroll reporting structures as expected
output of the customization. Currently, ABW reporting tools do not provide a
solution for P&D grouping customization. Therefore the consultants sometimes need
manually to produce SQL scripts based on user requirements, domain specific
knowledge and experience on ABW reporting tools. The SQL scripts are fed into the
ABW database to generate an intermediate customized reporting table. This table
serves as input into ABW reporting tool which generates the final representation of
payroll reports for end users.

Fig. 1. Current workflow of payroll reporting customization.

The current process of customization hinders both the payroll reporting system
itself and its developers: for the system, the tailor-made SQL scripts are difficult to
reuse since it meets specific needs, and it may be incompatible with later releases of
the system; for the customer consultants in Agresso, there is a lack of a conceptual
view of payroll data structure in the current ABW and they need to have extensive
knowledge of ABW and SQL language to manipulate directly towards the underlying
database.

The two main goals of introducing APRiL are: 1) to externalize and visualize the
payroll reporting information using models, and 2) to ease the development of ABW
reporting tool in handling the complex variability of payroll structure, so as to reduce
error-susceptible manual work.

3 Agresso Payroll Reporting Language (APRiL)

APRiL is designed to address the problems in the current customization process of
ABW reporting tool. As illustrated in Fig. 2, APRiL serves as an extra abstraction
level between payroll reporting and the underlying database. Therefore Agresso
consultants would be able to use APRiL to model the specific payroll data structure in

25

its graphical or tree editor rather than manipulate on the database directly.
Furthermore, automatic generation of the SQL scripts from the model allows the
reduction of human efforts and thus makes the system less error-prone.

ABW Reporting Tool

Payroll
Reports

Payroll
Reports

Customized
Reporting Table

ABW
Database SQL

Schema

MOFScript Model-to-Text
Transformation Engine

APRiL Visual Modeling Tool

Payroll Reporting Structures
Specified in APRiL

List of P&D
Properties

APRiL Metamodel in EMF
+ APRiL syntax in GMF

Payroll Experts

Fig. 2. Future (APRiL) workflow for payroll reporting customization.

We shall give a brief description of the APRiL language, the implemented supporting
tools and the implemented model transformations. An introduction of the technologies
used in the development of APRiL is also given.

3.1 APRiL Description

APRiL is defined as an Ecore metamodel in the Eclipse Modeling Framework (EMF)
[3]. By specifying a metamodel for APRiL, EMF generates a tree editor automatically
for defining payroll reporting data structures. A simplified metamodel of APRiL is
given in Fig. 3.

Fig. 3. The APRiL prototype metamodel.

PaymentDeduction (Payment and Deduction, P&D) is the main concept in the
payroll reporting domain. The concept PrimitivePD represents the P&D terms that are

26

defined independent of other P&Ds and all of them have associated PdCode as their
unique identifiers in ABW Database. PDGroup is the P&D term that is defined
dependent on other P&D terms, namely that a PDGroup can consist of several
PrimitivePD as well as other PDGroups. PDGroups are not defined in ABW
database, but only for aggregation purpose in payroll reporting. The hierarchical
definition of PrimitivePDs and PDGroups makes it possible to model the payroll
reporting data structure in a more conceptual and intuitive manner. In APRiL,
relationships between P&Ds are able to be modeled explicitly by introducing the
concept PDGroupLink in the metamodel. The connection lines are not only to
visualize the relationship between P&Ds, but also to make it possible for users to set
the properties ChildPDOperator, ChildPDOperand and ParentPDOperator, in order
to configure the constituents of various P&Ds. We shall exemplify these concepts by
defining a real payroll reporting case in APRiL, as shown in Fig. 4.

Fig. 4. Payroll reporting example.

In this example, Monthly Salary as a PDGroup is defined as the aggregate of
PrimitivePDs: Fixed Monthly Salary, Overtime Pay and Tax. Yearly Salary, as the
topmost PDGroup, consists of the aggregate of the Monthly Salary for the whole year
and a PrimitivePD: Union Deduction GPMU. The corresponding PDCode of each
PrimitivePD is stated in the parentheses in Fig. 4.

3.2 APRiL Editors

To provide a more intuitive and user-friendly way of editing APRiL models, a
graphical editor for APRiL is generated using the Graphical Modeling Framework
(GMF) [4] in Eclipse, as shown in Fig. 5.

In GMF, a basic graphical editor based on APRiL metamodel can be created semi-
automatically based on the metamodel in three steps: 1) A graphical definition
describes the symbols corresponding to the the model elements in the editor; 2) A tool
definition defines the tool palette in the editor; 3) A mapping combines all these

27

together. The APRiL editor can then be automatically generated, but there are still
opportunities to customize the editor by altering generated editor code manually.

Fig. 5. Payroll reporting example in APRiL graphical editor.

With APRiL tree editor, payroll reporting structures can be modeled by creating
an APRiL model element as the container for all other model elements. Relationships
between P&D terms are defined in the “properties” view. While working with the
graphical editor, we specify payroll structures by dragging P&D terms from the
palette onto the APRiL canvas. Relationships between APRiL elements are defined
by drawing connection lines between the graphical representations of them. Payroll
reporting models created by either the tree editor or the graphical editor (Fig. 5) are
equivalent and can be processed by the same code generators.

3.3 APRiL Code Generation

MOFScript [2] is used to generate SQL scripts from APRiL models. MOFScript, as a
model-to-text transformation engine, is designed to traverse the model and generate a
text such as an SQL script. APRiL models are input to a MOFScript specification that
generates SQL scripts which are tailored for specific payroll reporting structures. Fig.
6 shows the generated SQL scripts based on our example.

The following code generation has been done: 1) the PrimitivePDs and PDGroups
modeled as tree nodes in the model are transformed into table columns, 2) the
PDCodes of the PrimitivePDs are transformed into the value references in SQL case
conditions, the properties to specify P&D relationships (ChildPDOperator,
ChildPDOperand and ParentPDOperator) are translated as PDGroup constituents’
calculations.

28

Fig. 6. SQL scripts generated from payroll reporting example.

4 Adding Variability Handling to APRiL

We have shown that APRiL is able to reduce manual customization efforts of payroll
reporting by applying MDD technologies; however, by identifying the differences and
commonalities between APRiL payroll structure models, we are able to automate this
process even further.

Haugen et al. [5] propose adding standardized variability handling to DSLs. The
basic idea of the approach is to facilitate Software Product Line (SPL) development
by separating variability modeling from the base domain modeling. They propose a
Common Variability Language (CVL) to model variability while still keeping
modeling the base model in DSLs. Several variability models can be defined in CVL
for a base model and each variability model can have several resolution models. Each
resolution model describes a variant of the base model, which is transformed by
executing CVL descriptions.

The payroll structure depicted in the uppermost pane of Fig. 7 can be seen as the
base model and the one in the bottom pane as a variant of it. The model variant has
one more constituent of Monthly Salary called Mobile Phone, and Yearly Salary has
Bonus instead of Union Deduction GPMU. In order to derive the variant from the
base model, we define the variability model that describes the differences between the
two and choose resolutions in the CVL editor shown in the left pane of Fig. 7. In
general CVL handles variability by categorizing it into value substitution, reference
substitution and fragment substitution. As applied here, we use CVL to define an
empty fragment of the base model substituted with a fragment in which Mobile Phone
is included; we also apply value substitution to PdName and PdCode in order to
replace Union Deduction GPMU with Bonus. The CVL description is then executed
using MOFScript and results in a resolved model as shown at the bottom of Fig. 7.

APRiL graphical editor integrates CVL tool support by implementing an interface
that provides coloring/highlighting of the elements in the base model according to the
selected CVL constructs, as shown in Fig. 7.

29

Fig. 7. CVL editor, APRiL editor with CVL integrated showing the base model, the model that
includes replacement fragment and the resolved model.

5 Related Work

After decades of experimentation, MDD has been applied in many real-world case
studies in different domains which result in significant productivity improvement in
product development. DSLs improve software development productivity by raising
the abstraction level beyond programming concepts. DSLs only contain language
constructs that are relevant concepts in the problem domain world, but not in the code
world. It follows the domain semantics, allowing the domain experts perceive
themselves work directly with domain concepts. Most domain modeling approaches,
such as FAST [8], DFR [9] and GenVoca [1], emphasize a DSL as an important factor
to leverage product development in SPL.

Kelly et al. [6] document a case study on how to apply MDD approach to simplify
and ease software development of insurance products by defining its tailored DSL. In
this case, an insurance expert, a nonprogrammer, draws models to define insurance
products in the graphical editor of the DSL, and then the code generator produces the
required data and code for a J2EE web site.

Haugen et al. [5] and Svendsen et al. [7] introduce their Train Control Language
(TCL) as a DSL of railway signaling for ABB, Norway. TCL allows train experts to
compose the station drawing and then generate different representations for various
purposes, such as interlocking table, source code for Programmable Logic Controllers
(PLCs). In such a safety critical domain, TCL provides more possibilities to ensure

30

security validation. CVL approach is also applied to produce various station variants
in this work.

6 Conclusions and Future Work

This paper has presented a DSL for payroll reporting domain (APRiL) and its tool
support. The big advantage of the approach is that APRiL provides a clear separation
of the concerns in the payroll reporting domain and reporting tool development. For
Agresso customer consultants who use APRiL, it makes them able to view the desired
data in a conceptual view and to perform less error-prone customization; even for end
users who are only specialists in the payroll domain, APRiL makes them capable of
customizing ABW reporting tool by themselves without seeking help from the
consultants or knowing any technical details of ABW reporting tool.

APRiL has been developed as a prototype and only been used in payroll reporting
for the time being. The preliminary experiments have been promising and we are
looking into extending the scope of the APRiL approach. We will explore the
possibility to proceed with the following work in the future:
• Integration with ABW reporting process. We will explore how to migrate APRiL

tool to .NET based ABW system.
• Generalize APRiL a DSL for reporting with various purposes in ABW. Tree

hierarchy is a very common structure for reporting, i.e. organizational hierarchy,
grouping hierarchy, subtotal and roll-up. Thus we can put some efforts on
generalizing APRiL as a Tree Hierarchy Modeling Language for reporting. Then
this DSL can be applied to most of the ABW reporting tools for different
purposes.

Acknowledgements

The presented work has been developed within the MoSiS project ITEA 2 – IP06035.
The APRiL has been developed by SINTEF in cooperation with Agresso R&D,
Norway.

References

1. Batory, D., Chen, G., Robertson, E., Wang, T.: Design Wizards and Visual Programming
Environments for Genvoca Generators. IEEE Transactions on Software Engineering. 26,
441-452 (2000)

2. Eclipse: Mofscript User Manual. Http://Www.Eclipse.Org/Gmt/Mofscript/Doc/Mofscript-
User-Guide.Pdf. (2008)

3. eclipse.org, “Eclipse Modeling Framework,” vol. 2007
4. GMF, “Eclipse Graphical Modeling Framework (Gmf).” http://www.eclipse.org/modeling/

gmf/
5. Haugen, O., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., and Svendsen, A., “Adding

31

Standardized Variability to Domain Specific Languages,” SPLC 2008, Limerick, Ireland,
(2008)

6. Kelly, S. and Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation.
John Wiley & Sons, Inc., (2008)

7. Svendsen, A., Olsen, G.K., Endresen, J., Moen, T., Carlson, E., Alme, K.-J., and Haugen,
O., “The Future of Train Signaling,” Model Driven Engineering Languages and Systems
(MoDELS 2008), Tolouse, France, (2008)

8. Weiss, D., C. T. R: Software Product-Line Engineering. Addison Wesley Longman, (1999)
9. White, S., “Software Architecture Design Domain,” 2nd Integrated Design and Process

Technology Conference, (1996)

32

