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Abstract. Supply chain master planning strives for optimally aligned produc-
tion, warehousing and transportation decisions across a multiple number of part-
ners. Its execution in practice is limited by business partners’ reluctance to share
their vital business data. Secure Multi-Party Computation can be used to make
such collaborative computations privacy-preserving by applying cryptographic
techniques. Thus, computation becomes acceptable in practice but for additional
cost of complexity depending on the protection level chosen. Because not all
data to be shared induces the same risk and demand for protection, we assess the
risk of data elements individually and then apply an appropriate protection. This
speeds up the secure computation and enables significant improvements in the
supply chain.

1 Introduction

Supply chain master planning (SCMP) strives for optimally aligned production, ware-
housing and transportation decisions across multiple partners. In practice, we can com-
monly observe a decentralized coordination mechanism (referred to as upstream plan-
ning) that usually only leads to local optima rather than to global supply chain optima
[9]. At least in theory, optimal master plans can be generated for the whole supply chain
if some planning unit has at its disposal all relevant information pertinent to the indi-
vidual partners in the supply chain. It is, however, a well known fact that companies are
typically not willing to share sensitive private data (e.g. cost and capacity data) ([17,
18]). They perceive the risk that the central planning unit or other parties misuse data
to their disadvantage in order to obtain additional benefits.

The major obstacles to centralized master planning can be removed if a mechanism
for securely and privately computing the supply master plan is in place [1]. A central
planning unit, e.g. a 4th party logistics provider (4PL), could then determine globally
optimal master plans and distribute these to the individual partners involved in the sup-
ply chain. To this end, Secure (Multi-Party) Computation (SMC) can be employed such
that the relevant data does not need to be disclosed even to central planning unit. This
offers the ultimate level of protection, since no data sharing risk remains. In this paper
we propose a framework for secure centralized supply chain master planning (SSCMP).
We introduce a basic model for centralized supply chain master planning and, from this,
derive the relevant data a central planning unit requires to optimally coordinate man-
ufacturing and transportation decisions. We then analyse this data with respect to its
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"criticality”. Criticality refers to how sensitive certaipieces of data are and how will-
ing the different partners will be to share this data. Theagility is determined by the
perceived risks associated with data sharing and its publipknowledge. In this con-
text, risk can be characterized by the potential negatiyEihthat occurs if a partner
misuses the data to its own benefit and the likelihood for tihikappen. We derive
an overall criticality assessment for each data elemenighrelevant for supply chain
master planning and use information about on the prior {pukhowledge of the data
to determine an overall criticality score. This criticgl#core constitutes an input to se-
cure computation of centralized supply chain master pMfsmap criticality scores to
protection levels which consist of certain technologies parameters for SMC. Lower
protection levels lead to faster SMC implementations. Véppse a mixed approach to
SMC combining the different protection levels in one impéartation and formulate a
new pivot selection rule in Linear Programming (LP) thatimizes the effort involved
by selecting based on the protection level. We experimignialify the effectiveness
of the new algorithm.

2 Reated Work

Numerous works in the area of supply chain management existapply chain master
planning as well as information sharing and collaboratiosuipply chains. In general, it
is a well acknowledged fact that sharing relevant infororatind planning in a collab-
orative fashion can improve supply chain performance anajaté the consequences
of demand variability, especially with respect to the weibwn bullwhip effect (see
for example [6, 14, 16, 23]). With respect to supply chain tmaplanning, numerous
authors have proposed multi-stage models that can beedtitiz coordinate planning
activities across multiple locations and firms (e.g. [10208). Various authors have
stated that employing a centralized approach to masteniplgwill lead to better re-
sults as compared to decentralized approaches that arecoragtonly employed in
industry. [21], for example, analyze the disadvantagepsfream coordination in com-
parison with centralized coordination. They compute therage gap between central-
ized and upstream coordination for several test scenaitbsv#arying cost parameters
and demand patterns. Similar findings are reported in [18\véVer, centralized supply
chain planning has not been widely adopted in industry. ft&fes: "it is difficult, or
maybe even impossible, to get a large network consistingi@épendent companies
to agree on and implement a centralised planning and costtation.” Reluctance
towards information sharing (a prerequisite for centeimaster planning) has been
identified as the main obstacle that inhibits centralizedtergplanning ([17, 18]). For
this reason, alternative approaches have been develogiszittier build on negotiation
based coordination ([9]) or hybrid forms ([17]). So far thdras been no research on
supply chain master planning based on mechanisms thatpfivaserving data sharing
and computation. To the best of our knowledge the only agrt@secure multi-party
computation in the area of supply chain management can melfiou1]. The authors
develop secure protocols for a Collaborative Planninge€asting, and Replenishment
(CPFR) process. Next to the fact that we, in our paper, censidifferent problem set-
ting, a major distinction between the research presentg snd our research is that
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they do not consider different protection levels for diffet risks of data to be shared.
They follow the approach to provide the highest protectiondll data using a spe-
cially developed protocol. Their protocols are two-pantgtpcols, while we consider a
multi-party problem. We will now review related work for SMC

SMC allows a set of n player® = Pi,..., P,, to jointly compute an arbitrary func-
tion of their private inputsf(z1, ..., x,). The computation is privacy preserving, i.e.
nothing else is revealed to a player than what is inferablhigyrivate input and the
outcome of the function. A cryptographic protocol is then hetween the players in
order to carry out the computation. Even if there are adviigalayers, the constraints
on correctness and privacy can be proven to hold under wakdtsettings. These
settings consider the type of adversary as well as his cangppbwer which can be
bounded or unbounded. An adversary can be passive, i.ewialj the protocol cor-
rectly but trying to learn more or he can be active, by arhbiyraleviating. For the
two-party case it has been proven by Yao in [22], that anytrayi function is com-
putable in privacy preserving fashion, using garbled hjreancuits. This approach has
been extended to the multi-party case in [4, 11]. Alterreasipproaches base on secret
sharing schemes. A player’s secseis split intom shares which are then distributed
to m players. Players can compute intermediate results on #reshand in the end a
reconstruction is performed in order to receive the finallte©ther approaches utilize
semantically secure homomaorphic encryption (HE) [8], alioubncryption scheme,
whereE(z) - E(y) = E(z + y) andz cannot be deduced by(x).

Using the general approach leads to solutions that havedoigiplexity and are there-
fore almost always not practically feasible [15]. Thus, mder to get a practical solu-
tion, a dedicated protocol should be constructed. Ataltath. €onstructed solutions for
a couple of supply chain problems, e.g. planning, forengstieplenishment, bench-
marking, capacity allocation and e-auctions ([1-3]). Tleyptographic protocols base
on additive secret sharing, homomorphic encryption anflgdrcircuits. A contribu-
tion of Atallah et al. which is closely related to ours is thisecure linear programming
[15]. It uses the simplex method introduced by Dantzig intf7$olve linear programs
which get expressed as a matiix The method consists of two steps: selecting the
pivot elementd,.; and pivoting all elements;; of D over this element. The pivot step
sets the new value af;;, denoted?;,, by

. fori=randj=s (pivot element)
di; = ZTJS fori=randj# s (pivot row)
dgj = _dd” fori# randj = s (pivot column)

dij = Giisdri fori# randj# s (all other elements).

The method is repeated until the optimal solution of the Lfoisd (resp., it is stated
that the problem is unbounded or infeasible). As input todtygtographic protocol,
matrix D gets additively split between both parties (i.B.,= D(® + D®). In order
to not reveal additional information (e.g. by the pivot aoluor row index), the matrix
gets permuted at the beginning of each iteration. Detadsoamnitted here, but can be
found in [15]. The pivot element selection and the pivot stiepthen carried out using
cryptographic tools additive splitting, homomorphic gmation and garbled circuits.
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3 Supply Chain Master Planning

In this section we first provide a basic model for centraligegply chain master plan-
ning. This model will be used to derive the relevant dataplatners in the supply chain
need to share for centralized master planning. We then gmpaimple approach to
assess the criticality of the individual elements.

3.1 Model for Centralized Supply Chain Master Planning

As a basis for our subsequent analysis we utilize a simpleriesupply chain master
planning model presented in [18]. Although rather simpiés model is sufficient for
the illustration of our concept and can easily be extendedder to account for further
practical requirements and restrictions.

We consider a supply chain withstages on which different operations (e.g. manufac-
turing, warehousing, etc.) are performed. We use indgx= 1, ..., I) to distinguish
the different stages. By + 1 we denote the final customer stage. Ry we denote
the set of nodes on stageEvery nodek € K; represents one production facility or
warehouse on stage= 1,...,I. The final customer locations are modelled through
nodesk € K ., on stage = I + 1. By N; we denote the set of products produced
on stage and usen € N,_; andn € N; as indices for the input and output products
of stagei. For a given supply chain, master planning determines théyation and in-
ventory quantities for every node and the material flows betwthe nodes for a given
time period. We introduce the following additional notatitm formulate a centralized
master planning model:

Master planning parameters (input)

D Demand for final finished produet € N at customer locatiohe K41

a™™ Quantity of input productn required for manufacturing one unit of output product

Br  Unit capacity requirement at locatiégne K; for output of product € N;

cap;,,; Production capacity at locatiodne K;

cpi’y,  Unit production costs of produet € N; at locationk € K;

cs;' Unit shipping costs of produet € N; from locationk € K; to locationl € K1

ch}'y,  Unit holding costs of product € N; at locationk € K;

Master planning variables (output)

x}',,  Production quantity of output produate N; manufactured at locatioh € K;

yix, Shipping quantity of product € N; shipped from locatiok € K; tol € K41

The following deterministic, linear programming model dag used to determine a
supply chain master plan.
Objective function

I I
Min C = SN el + Y D> > chlalit

i=1 keK; neN; i=1 keK; neN;

I
Z Z Z Z CSik 1Yick1 (2)

i=1 keK; leK; 1 nEN;
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Constraints
Z Yrey = DI Vn € N1l € K11 2
kEK]
The= Y Yk ¥n € Niji € {1,..., I}k € K @3)
leKit1
Z m — m,n _mn .
Yig kb = Z a LG g Vm € Ni—1,i € {1,..., 1}, k€ K; 4
jEK;—1 neN;
> Blaly < capix Vie{l,....I} k€ K; (5)
nen;
T g Yig = 0 Vn € N;ie{l,...,I}Lk€K; (6)

The objective of the model is to minimize the total relevaosts of the SC for
fulfilling final customer demand. The objective function @gdcounts for production
costs, holding costs, and shipping costs for finished prisdGonstraints (2) ensure that
the final customer demand at stafje- 1 is met. (3) and (4) represent finished product
and intermediate product balance constraints. The capemitstraints (5) ensure that
the available capacity of any location will not be exceedashstraints (6) ensure non-
negativity of all decision variables.

The output of this model is a supply chain master plan for glsiperiod that specifies
the production quantity for the individual products in eaclde and the shipping quan-
tities across the whole supply chain. From this basic modetan directly infer the
relevant data that needs to be shared in order to realizeatieatl supply chain master
planning. All parties in the supply chain need to make thevabiistedinput parame-
tersavailable to the central planning unit. After generatingghpply chain master plan,
the central planning unit has to communicate the resubtstfie values of theutput
variables) to the corresponding partners. In typical industry sg#ijrboth the input pa-
rameters and the master planning output constitute prilattethat is only accessible to
the planning units (firms, departments) responsible fowiddal nodes and arcs. The
willingness to share this data will depend on the risk theviddal data owners per-
ceive. The perceived risk, however, is not identical fooalhe relevant data elements.
A company may, for example perceive a low risk associateld stiairing forecast data,
but a high risk when revealing production cost or capacifgrimation. While SMC can
overcome the risk of data sharing in theory with the highestigetion level, in practice
such solutions can become too slow to be useful (e.g. if thepewation takes longer
than what the continuous planning period is). We therefeee the result of the risk
assessment, the criticality scores, to optimize the SM€Eh sat each data element is
handled at its appropriate risk level. We achieve a signifiparformance improvement
in our experiments.

3.2 DataCriticality and Protection Levels

In this section we illustrate a simple approach to determpidection levels for indi-

vidual data elements in the context of centralized mas#arphg. Although it is rather
straightforward to see that the risk will differ across thdividual data elements, it is
not possible to determine general criticality levels that ealid for any supply chain
setting. Whether other partners in the supply chain can atetd their benefit and to
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the disadvantage of the data owner depends on factors stioh distribution of power
among the partners, the type of industry and product, tlaivelposition in the supply
chain, trust among partners, etc. Production costs, fanpi@are generally considered
as critical data that a data owner will not want to share. H@rdn many industries
(e.g. for commodities) production costs are known by défgipartners without imply-
ing a negative impact. Because a general assessment oitibality is not likely to be
attainable, an individual assessment has to be conduatashyospecific supply chain.
We propose a simple scheme to support such a criticalitysasgmt. It is based on the
following questions that need to be answered for any onesodi#ita elements identified
in the previous section:

1. What disadvantage may a data owner potentially incur vehaning private data?

2. What is the probability that a partner in the SC (mis-) ubesshared data to the
disadvantage of the data owner?

3. To what extent is the data prior knowledge?

With the first two questions we capture the individual congras of the risk in-
duced by sharing a certain data element. When considerengdtential negative im-
pacts (question one), we have to consider that these mayleasnding on the position
of the data source within the supply chain and the poteniintives other partners
in the SC may have to (mis-) use the data. We differentiatedxst partners who are
responsible for nodes on the same stage (competitors) ase who are responsible for
nodes on previous or subsequent stages (supplier-buggicreships). For each of the
aforementioned cases it is necessary to assess the likéliifoa disadvantage on the
side of the data owner, i.e. the probability that anothetrgauin the supply chain will
actually make use of the knowledge of the data element (que8}. The risk cannot
be considered independent of the prior knowledge about dtee dt is reasonable to
assume that the criticality of certain data elements is tdfstbe data is already acces-
sible for some or all of the partners in the supply chain. FédL a) illustrates our basic
scheme for assessing the criticality of individual dataredats.

Potential negative impacts 18[] Required input/output rates
- induced by competitors: impact * probability => score = ) o
- induced by suppliers:  impact * probability =>  +score 18[| Variable shipping costs
- induced by buyers: impact * probability = + score I
[0; 51 [0:5) [0; 25] 10:[ Capacity usage rates o
Overall risk assessment (sum of individual scores): (o0 za:i Demand g
- Public knowledge(pub): score(pub) 7| Variable holding costs g
- Priorknowledge of specific sta €):  + score(spe) I . .
ge of sp gepe) R 5]@(33 ) 50 : Production capacity e
Prior knowledge e 50 [ ‘ Variable production costs
Prior knowled: ht: (1- pk/10; I A .
rior knowledge weight: (1- pk/10) 0,1] 60[ : Shipping quantity
Criticality assessment 79 : Production quantity
= Overall risk assessment * prior knowledge Wei 0; 7
P e 75 60 5 30 15
ﬂ very high  high medium low none

Input for secur e computation

a) b)

Criticality level of data

Fig. 1. a) Determination of criticality. b) Criticality levels ofifferent types of data (example).

We propose a scoring range between zero and five to adequestsdgs by dis-
crete values the potential negative impact and the expgctdzhbility of data misuse.
Through multiplication of both scores, we obtain a particuisk measure for negative
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impacts induced by competitors, suppliers, or buyers. Téuddition provides a mea-
sure for the overall risk. The overall risk for each data edatns then weighted with a
value that expresses the prior knowledge of data. Simjlarscoring range from zero
to five is used to measure the degree of public knowledge irrgéas well as specific
knowledge of individual SC partners. The sum of both scoreasures the level of
prior knowledge. A score of zero indicates that the data it to the data owner,
while higher scores indicate that the data may anyways be/kmior to centralized
master planning. We determine an aggregate weight for ibelprowledge as in order
to derive the overall criticality level. In Figure 1,b) wegwide an example of a possible
outcome of our criticality assessment. With our assesssigme, a criticality score
between zero and 75 is assigned to each data element.

4 Secure Computation

4.1 Protection Levels

The data criticality analysis of section 3.2 shows thatedédht variables in the SCMP
problem have different protection demand. The data clitjcacores of the variables
range from zero to 75. We map a data criticality scorertection levels. A protec-
tion level specifies a concrete set of SMC technologies aei ffarameters for pro-
tecting a variable. These technologies and parametergrarezomputationasetting
(information-theoretic, cryptographic or best-effott)e cryptographidools and the
tool parameters. Dependencies among the different parameters of a protdetiel are
possible, e.g. there cannot be a SMC computation that isnrgtion-theoretically se-
cure, but uses homomorphic encryption as a tool. The piotelgvels are arranged in
order of the effort for an attacker to infer the protectedieaHigher protection levels
require more effort and add more additional complexity.Higcriticality scores map
to higher protection levels. See Table 1 as an exemplaryfgagion for protection lev-
els which limits the available cryptographic tools to atisplitting and homomorphic
encryption. Table 1 gives concrete examples for five posgibbtections levels which
will be used in later experiments.

Table 1. Protection Levels for the 4PL Scenario.

Protection  Setting Tools Tool Parameters
very high inf.-theo. additive split w/ modulus modulus Nymoer of parties
high cryptographic  HE Darmgard-Jurik, key: 3072 bit
medium cryptographic  HE Paillier, key: 512 bit
low best effort additive split w/o modulus
none - -

4.2 Mapping

A monotone function maps the criticality score¢o a protection levep = f(c). We
propose a linear mapping. Other mappings are possible apdepeend on the conrecte
application context. We assume the ordered protectiondawaliffer in their effort by
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an almost constant factor. For a first mapping we define ardime@ping functiory (c)
which maps data criticality scoreo m protection levels by (¢) = 1+ [¢-m/(Cmaz+
1)], wherec,,,... in our case is 75 as received from section 3.2. Applying ttapping
to the criticality scores of section 3.2, we receive the galof Table 2. Considering

Table 2. Linear Mapping.

Protection Level 1 2 3 4 5
Criticality Score  0-15 16-30 31-45 46-60 61-75
Number of Data 3 4 0 2 2

Table 2, nine variables get a protection level assignedibtie maximum. Thus, for
nine of eleven variables computational effort can be redwmenpared to the former
approach of applying maximum protection.

4.3 Pivot Rule/Intergration

We adapt the solution by Atallah et al. for secure linear progming. We introduce
an additional matrix denote#’. Every element ofP, p;;, represents the protection
level of the corresponding data elementlin d;;. P is available to both parties, as
well as the table with the protection level specificatiorsctEparty may define its own
mapping function. Whenever a pivot step is performed in otdeeceive a new value
d;;, the new protection level valug; is set to the highest assigned protection level
value of all elements ab involved. According to the pivot step computation rules for
processing the current elemedy; the involved elements aré,,, d,;, d;s andd;;.
The new protection level faf;; then is received bynax(ps, prj, pis, pi;). Over time,
this leads to convergence of matixto the highest protection values contained. We
construct a pivot selection rule which not only bases oniesnuf D but also on these
of P and moreover prevenf3 from fast convergence. Recall that the LP is rewritten as

a matrixD. Let
CT —20
T (A b

wherec” denotes the vector of the objective function’s coefficienighe outcomeA

the coefficients of the constraints ainthe vector of the constraint values. The secure
linear programming solution originally uses a slight adapof the Bland’s Rule [5]

as pricing scheme. The rule computes the pivot colurbg min(s : ¢ < 0) and the
pivot row r by min(r : b,/a.s) for all a,.; > 0. Our approach keeps the part of the
Bland’s Rule for selecting the pivot column. We then replémepart for selecting the
row. We define- for 0 < r < m by

m—1n—1

by ,
r= mm(a7 ) : mm( Z Zmafﬂ(prs,ms,prj,pij) _pij)-
e i=0 j=0

Thus, every element in the selected pivot colunfinlfilling the minimum ratio test best
(i.e., no row in columrs with a smaller ratio exists) is checked for having the lowest
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impact on the convergence of mat#x Although every element of matrik is involved

in the computation for every element fulfilling the minimuatio criteria, selecting the
pivot row can still be considered very fast, sineegets updated by each party locally
in the exact same manner and the single operations are legdeoo Thus, even for big
m’s andn’s, the added computational overhead can be consideredsweaal}. In order

to have the indexes matching,gets blinded and permuted in the same way as this is
done forD within the original protocolP may leak little information, e.g. if there is a
unigue occurrence of a protection level.

4.4 Experimental Results (Mapping, Pivot Rule)

For further examination, we set up an experiment based aresudts of section 4.3 and
the secure linear programming protocol of Atallah et al. &wcuting the experiment
it is not necessary to actually run the cryptographic proltasince the main part of
the protocol remains unchanged. We rather focus on the p@rdli.e. computing the
elements of the protection level matrix, and run the simplegorithm locally in order
to simulate pivoting to have correct pricing data availabler preparation of the exper-
iment, we implemented the simplex algorithm in Java, firse. en implemented an
instance of a realistic 4PL scenario for medical equipmaetsils omitted for brevity)
and derived a LP matrix from that which has 191 rows and 48@mok. Table 4 shows
the results of our experiment using the linear mapping duoed in section 4.2. We
receive the total effort by adding the number of assignedegtimn levels in order to
simulate an execution of the pivot part of the cryptogragrimtocol. The measured
values are the number pfvot steps, the numbers of steps untibnvergence and the
total effort.

Table 3. Experimental Results.

Bland’s Rule  Modifier Bland’s Rule

Pivot Steps 140 112
Convergence Step 2 99
Total Effort 51249448 32102112

Figure 2 shows the convergence ratio during the run. Theergewce ratio is de-
fined as the ratio of the sum of all entries@fdivided by the number of elements Bf
multiplied with the maximum protection level (i.e., five).

100% ’—

75%

Bland's Rule
50% -

Modified
25% - Bland's Rule

convergence ratio

pivot steps

Fig. 2. Convergence Ratio.
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The modification of the Bland’s Rule led to a decrease of 20%wamall pivot steps.
The protection level matrix was kept from convergence updp 89 while the conver-
gence ratio quickly reached a value of 0.75. The total eéidded by the cryptographic
protocol was reduced to 63%.

5 Conclusions

We introduced a solution for Secure Supply Chain Masteriten(SSCMP) using se-

cure computation. Traditional SCMP computes the optimadipction and transporta-
tion plan across a number of parties using Linear Programriile showed that by risk

assessment and risk handling a significant performanceaserin SSCMP is possible.
We derived a methodology for risk assessment, the criticatiore, in supply chains
and then modify the pricing scheme of Linear Programminglliag each data item at
the appropriate risk level. In an experimental study based cealistic scenario using
this methodology we obtained a performance gain of 37%.rewtirk is to extend the

applicability of the method to other algorithms for linegotimization, e.g. inner point

methods, and to extend it to other supply chain optimizgti@blems adapting the risk
assessment step.

References

1. M. Atallah, M. Blanton, V. Deshpande, K. Frikken, J. Li,dah. Schwarz. Secure Collabo-
rative Planning, Forecasting, and Replenishment. WorRger, Purdue University, 2005.

2. M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara.i¥ate Collaborative Forecasting

and Benchmarking. Workshop on Privacy in the Electronid@g¢WPES), 2004.

3. M. Atallah, H. ElImongui, V. Deshpande, and L. Schwarz.u8eSupply-Chain Protocols.
Proceedings of the IEEE International Conference on E-Ceroen(CEC’03), 2003.

4. D. Beaver, S. Micali, and P. Rogaway. The round compleaftgecure protocols. In Pro-

ceedings of 22nd STOC, 1990.

. R. Bland. New finite pivoting rules for the simplex methbthth. of Op. Res. 2, 1977.

6. F. Chen, Z. Drezner, J. Ryan, and D. Simchi-Levi. The hhilbaeffect :managerial insights
on the impact of forecasting and information on variabilitya supply chain, in: Taylor, S.,
Ganeshan, R., and Magazine, M. (Eds.), Quantitative MddeBupply Chain Management,
Boston 1999.

. G. Dantzig, and M. Thapa. Linear Programming 1: IntrounctSpringer-Verlag, 1997.

8. |. Damgard, and M. Jurik. A generalisation, a simplificatand some applications of pail-
lier's probabilistic public-key system. In Internationaforkshop on Practice and Theory in
Public Key Cryptography (PKC) 2001, 2001.

9. G. Dudek, and H. Stadtler. Negotiation-based collaf@atlanning between supply chain
partners, in: European Journal of Operational Research2D805.

10. B. Fleischmann, and H. Meyr. Planning Hierarchy, Maagknd Advanced Planning Sys-
tems, in: De Kok, A. G., Graves, S. C. (Eds.): Supply Chain &pgment: Design, Coor-
dination and Operation, Handbooks in Operations ReseardtV@nagement Science, Vol.
11, Amsterdam 2003.

11. O. Goldreich, S. Micali, and A. Wigderson. How to play angntal game. In Proceedings
of the 19th annual ACM symposium on Theory of computing, 1987

()]

~



56

12

13.

14.

15.

16.

17.
18.
19.
20.
21.
22.

23.

J. Holstrom, K. Framling, J. Tuomi, M. Krkkinen, andAla-Risku. Implementing collabo-

ration process networks, in: The International Journalagjiktics Management 13(2), 2002.
V. Jayaraman, and H. Pirkul. Planning and coordinatfgaraduction and distribution facil-

ities for multiple commodities, in: European Journal of @timnal research, Vol. 133.

H. Lee, V. Padmanabhan, and S. Whang. Information tiistoin a supply chain: the bull-

whip effect, in: Management Science, Vol. 43, No. 4, 1997.

J. Li, and M. Atallah - Secure and Private Collabortivedar Programming. 2nd Interna-
tional Conference on Collaborative Computing: NetworkiAgplications and Worksharing

(CollaborateCom), 2006.

S. Min, A. Roath, P. Daugherty, S. Genchev, H. Chen, Adfrind R. Glenn Richey. Supply
chain collaboration: what's happening?, in: The Inteival Journal of Logistics Manage-
ment, Vol. 16, No. 2, 2005.

R. Pibernik, and E. Sucky. Centralised and decentthfgpply chain planning, in: Interna-
tional Journal of Integrated Supply Management 2(1/2)6200

R. Pibernik, and E. Sucky. An approach to inter-domaisatergplanning in supply chains in:
International Journal of Production Economics V. 108, 2007

A. Shamir. How to share a secret. Communications of thiel ATD79.

J. Shapiro. Modeling the Supply Chain, Pacific Grove 2001

N. Simpson, and S. Erenglic. Modelling the order pickimgtion in supply chain systems:
formulation, experimentation, and insights, in: IIE Traason 33(2), 2001.

A. Yao. Protocols for secure computations. In Proc. 2BEE Symposium on the Founda-
tions of Computer Science (FOCS), IEEE, 1982.

Z.Yu, H. Yan, and T. Cheng. Benefits of information shauwirith supply chain management,
in: Industrial Management and Data Systems, 2001.



