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Abstract: The thermal contact resistance between the balls and the inner and outer rings of an angular contact ball 
bearing is investigated. It is assumed that the bearing sustains thrust, radial, or combined loads under a 
steady-state temperature condition. The shapes and sizes of the contact areas are calculated using the 
Hertzian theory. The distribution of internal loading in the bearing is determined by the JHM method. The 
comparison between the experimental data and the calculated values confirms the validity of the prediction 
method for the thermal contact resistances between the elements of a bearing. 

1 INTRODUCTION 

In a high-speed feeding system, bearings are 
considered to be the main heat sources, and the 
thermal properties of the bearings need to be 
carefully studied. For a bearing, the thermal 
resistances for conduction through the bearing 
elements themselves and for radiation can be 
calculated using the dimensions, the thermal 
conductivities, the thermal-optical properties, and 
the temperatures of the elements. However, it ca be 
said that the thermal contact resistances between the 
balls and the rings, which are most closely related to 
the temperature differences across the bearings, are 
difficult to predict because few useful calculation 
method have been proposed yet. 

Since the thermal resistance results from the fact 
that most of the heat is constrained to flow through 
small contact areas, a reasonable step in determining 
the contact resistance between the balls and the inner 
and outer rings of the bearing would be to use a 
similar approach to that adopted to solve the thermal 
constriction problem for ideal smooth surfaces. The 
thermal constriction resistances for circular, circular 
annular, rectangular, and other geometrical-shaped 
contact areas are normally solved analytically or 
numerically as Dirichlet problems. The prediction of 
the thermal contact resistance necessitates the 

determination of the contact area. This is possible 
with the Hertzian theory when the contact surfaces 
are approximated as being smooth. In addition to the 
study by Clausing and Chao, the thermal contact 
resistance problem has been discussed in many 
papers. Most papers determine the contact areas 
using the Hertzian theory. However, a survey of the 
literature shows that only the studies by Yovanovich 

have dealt with the problem of the contact resistance 
between bearing elements. He studied the contact 
resistance under axial loads and concluded that the 
contact resistance depends on the size and shape of 
contact area as determined by the Hertzian theory 
and the thermal conductivity of the material. He did 
not, however, give thermal designers a tractable 
expression that considered the change in contact 
angle induced by elastic deformation at the contact 
points. Also, he did not consider other types of 
loadings such as radial and combined axial/radial 
loads. 

This article develops an approach that accurately 
predicts the thermal contact resistance between the 
balls and the inner and outer rings of an angular 
contact ball bearing. The contact forces required to 
calculate the contact area are explicitly formulated 
for axial, radial, and combined loadings. The 
prediction method for the thermal contact resistance 
is verified by comparing the calculated values with 
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experimental results measured in a high-speed 
feeding system. 

2 EXPRESSIONS FOR CONTACT 
RESISTANCE 

2.1 Contact Resistance 

The contact resistances between the balls and the 
inner and outer rings may be treated in the same 
manner as constriction resistance since both 
resistances result from the restriction of the heat 
flow due to small contact arrears. Thus, the 
assumptions utilized to solve the constriction 
resistance may be applicable to the present problem. 
It is assumed that one half of the thermal 
constriction resistance problem can be adequately 
represented by an isolated, isothermal area either 
supplying or receiving heat from an other-wise 
insulated conducting half-space. In the ellipsoidal 
coordinate system the Laplace’s equation is: 
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And a, b are the semi-major and semi-minor axes 
of the elliptic contact area, respectively; while u is 
the variable along an axis normal to the contact 
plane. The boundary conditions are: 

0,0 TTu == , const 
0, =∞→ Tu  

  (3)
  (4)

With Equation (1), (3) and (4), the temperature 
distribution can be obtained: 
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Where Q is all the heat leaving the elliptic 
contact area, and by the definition of the thermal 
contact resistance: 
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Using the complete elliptic integral of the first 
kind, Equation (6) can be written in the following 
form as: 
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Then, the contact thermal resistance between the 
ball and the inner or outer ring can be determined by 
using Equation (7). For most bearing, whose ball 
and both rings are made from the same material, 
i.e., oib kkkk ===  , we can write the contact 
thermal resistance per ball as: 
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These expressions permit us to predict the total 
contact resistance resulting from the contact of an 
arbitrary number of balls with both the inner and 
outer rings by connecting the thermal resistances in 
parallel. 

2.2 Contact Areas in a Ball Bearing 

The thermal contact resistance is generally 
considered as a function of the shape and size 1of 
the contact area. When two elastic bodies having 
smooth round surface are press against each other, 
the contact area becomes elliptic. The formulations 
that determine the semi-major and semi-minor axes 
of the elliptic contact area are summarized herein. In 
deriving the following eaxpressions, it is assumed 
that the angle between the two planes containing the 
principal radii of curvature of the bodies are 
perpendicular as in the case of balls contacting the 
inner or outer ring of a bearing: 
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In which r1, r1
’ are the radius of curvature for 

inner or outer race and groove, respectively. And r2, 
r2

’ are the radii of rolling ball. Considering the 
bearing model shown in Figure1, for the contact at 
inner ring side, the radius of curvature r1

’of the inner 
groove must be treated as negative in Equation (10); 
while at the outer ring side contact, r1, r1

’ must be 
treated as negative. 
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Figure 1: Schematic of bearing. 

The values of a* and b* are calculated as follows: 
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In which )
2
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elliptic integrals of the first and second, respectively. 
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Equation (11) can be solved numerically by the 
Newton-Downhill method, and then e can be 
determined, the value of I and J can be calculated. 
Finally, 
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3 LOAD TYPES AND CONTACT 
FORCE 

We can now use Equation (8) for the prediction of 
the thermal contact resistance if the contact force for 
each ball is determined from the total load on the 
bearing. 

3.1 Contact Force Under Centric 
Thrust Load 

Angular contact ball bearings subjected to a centric  

thrust load have the load distributed equally among 
the rolling elements. Hence 

αsinZ
FQ a=    (14)

Where a is the contact angle that occurs in the 
loaded bearings, and can be determined as follows. 
In the unloaded condition, the initial contact angle is 
defined by 

BD
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In which B is the total curvature, and Pd is the 
mounted diametral clearance. 
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A thrust load Fa applied to the inner ring as 
shown in Figure2 causes an axial deflection δa. This 
axial deflection is a component of a normal 
deflection along the line of contact such that from 
Figure2. 
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Since Q=Kδn
1.5, where K is the load-deflection 

factor. Substituting Equation (17) into (14), we get, 
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Equation (18) may be solved numerically by the 
Newton-Raphson method, the equation to be 
satisfied iteratively is, 
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Equation (19) is satisfied when a’–a is essentially 
zero. Simultaneously, from Fig.2, we can get 
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3.2 Contact Force Under Combined 
Radial and Thrust Load 

If rolling bearing without diametral clearance is 
subjected simultaneously to a radial load in the 
central plane of the roller and a centric thrust load, 
then the inner rings of the bearing will remain 
parallel and will be relatively displaced a distance δa 
in the axial direction and δr in the radial direction. At 
any    position     Ψ     measured     from    the    most   
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Figure 2: Angular contact ball bearing under thrust load. 

heavily loaded rolling element, the approach of the 
rings is, 

ψαδαδδψ coscossin ra +=    (21)

At Ψ=0 maximum deflection occurs and is given 
by 

αδαδδ cossinmax ra +=    (22)

Combining Equation (21) and (22) yields 
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For static equilibrium to exist, the summation of 
rolling element forces in each direction must equal 
the applied load in that direction. 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=

∑

∑
=

−=

=

−=

ψψ

ψψ
ψ

ψψ

ψψ
ψ

α

ψα

1

1

sin

coscos

QF

QF

r

r

   (26)

In which Ψ1 is the limiting angle defined as 
follow, 
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Using the integral form of Jr (ε) and Ja (ε) 
introduced by Sjoväll, Equation (26) may be written 
in equations system form. 
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where Jr (ε) and Ja (ε) are defined as follows, 
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The values of the integrals of Equation (28) can 
be get using Simpson Integral Method, Fig.3 gives 
the values of Jr (ε) and Ja (ε). 

 
Figure 3: Jr (ε) and Ja (ε) vs. ε for angular contact ball 
bearing. 
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Figure 5: interface of calculation software for thermal contact resistance. 

The nonlinear equations system has to be solved 
by iteration, so the Newton-Raphson method can be 
applied. When the axial deflection δa and the thrust 
deflection δr is determined, the contact force on each 
ball can be calculated by 

5.15.1 )coscossin( ψδδδψψ aaKKQ ra +==  (30)

3.3 Contact Force Under Radial Load 

Considering the structure of angular contact balling 
bearing, when subjected to purely radial load Fr , the 
normal force Qi of the rolling element can be 
decomposed into radial load component Qir and axial 
load component Qia (as shown in Figure 4). The sum 
of every axial load component was called derivative 
axial force S, which can be calculated as follows: 

αtan25.1 rFS =    (31)

 
Figure 4: Derivative axial force. 

To summarize, when rolling bearing is subjected 
to purely radial load, an additional derivative axial 
force is brought out. In this situation, the bearing can 
be treated as being subjected to simultaneously to a 
radial load and a centric thrust load. 

4 CALCULATION SOFTWARE 
AND AN EXAMPLE 

4.1 Calculation Software 

A calculation software has been made using the 
MATLAB/GUI, whose interface is shown in Fig. 5 
below. 

The calculation procedure of thermal contact 
resistance of ball bearing is as follows: 

1) Input following parameters of the ball 
bearing: ball diameter, ball number, radii of inner 
and outer ring, ratio of inner and outer groove, 
and the material properties, such as the modulus 
of elasticity, Poisson's ratio and the thermal 
conductivity. 
2) Calculate the initial contact angle and the 
load-deflection coefficient of the bearing, which 
are useful in the calculation. 
3) Define the loads of the bearing, and then 
the load form is analysed. 

a) If the radial load Fr=0, a supposed axial 
deflection value is needed. 

b) If both the axial and radial loads are 
positive, supposed axial and radial 
deflection   values   must be  input   for   the  
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calculation. 
4) The axial/radial deflection value and the 

final contact angle are calculated. 
5) Finally, the normal load and thermal 

contact resistance of each ball are obtained. 
6) The overall thermal contact resistance of 
the bearing can be get by connecting the thermal 
resistance of each ball in parallel. 
Take the following bearing as an example: the 

bearing has 7 spherical balls, and all elements are 
made from steel 440C; the diameter of the balls, 2rb, 
is 9.525 mm ; the groove radii ri’ and ro’ are 
1.03937rb, and the race radii ri and ro are 3.06037rb 
and 5.06562rb, respectively; the inner and outer 
bearing diameters are 22mm and 56mm. 

4.2 Contact Force Under Centric 
Thrust Load 

In this case, the bearing is subjected to varied thrust 
load (Fa) ranging from 20 to 200 N with a span of 10 
N. The calculated thermal contact resistances are 
shown in Figure 6. 

 
Figure 6: Thermal contact resistance under thrust load. 

From Figure 6, we can see with the thrust load 
increasing, the thermal contact resistance decreases. 
That is because when the thrust load increases, the 
normal load of each ball increases, then the contact 
area extends. 

4.3 Contact Force Under Combined 
Radial and Thrust Load 

In this case, the bearing is subjected simultaneously 
to radial load of 20, 50, 80, 120 N, and varied thrust 
load ranging from 20 to 200 N with a span of 5 N. 
The calculated thermal contact resistances are shown 
in Figure 7. 

 
Figure 7: Thermal contact resistance under combined 
thrust and radial load. 

From Figure 7, we can see Line1 represents 
much the same way as the line in Fig.4; While for 
Line2, when the thrust load FA increases from 20 to 
40 N, the thermal contact resistance changes rapidly. 
That’s because the number of balls subjected to 
normal load Qi changes from 1 to 4; For Line3, 
when the thrust load FA changes from 20 to S 
(derivative axial force, for Fr=80N, S=38.5N), 
because FA is smaller than S, the thrust load of the 
bearing Fa keeps Fa=S, and the thermal contact 
resistance stays at 67.76 W/K, with only 1 ball 
subjected to normal load Qi. The following part of 
Line3 represents the same way as Line2; Line4 is 
like Line3. 

In another way, for the thrust load FA=100N, the 
contact resistance of each line is 27.80, 28.00, 28.41, 
and 29.54, respectively. For combined thrust load 
FA=100N and Fr=20N, the contact resistance of 
each ball (as shown in Fig.6) is 185.19, 188.53, 
196.74 and 204.17, respectively; for FA=100N and 
Fr=50N, that is 173.85, 181.04, 201.08 and 223.07; 
for FA=100N and Fr=80N, that becomes 164.55, 
174.68, 206.62 and 250.58; and for FA=100N and 
Fr=120N, that is 173.85, 181.04, 201.08 and 223.07, 
respectively. 

As mentioned above, the total contact resistance 
is calculated by connecting that of every ball in 
parallel. Since the load distribution of Line1 is much 
more uniform than the others, the total contact 
resistance of Line1 is smaller. 

5 EXPERIMENTAL RESULTS 
AND COMPARISON 

A test program was conducted in order to verify the 
prediction method of the thermal contact resistance. 
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Table 1: Experimental results and predictions. 

Test 
Case no. 

Load, N Temperature, K 
Q, W ioR  

K/W 
sR  

K/W 
Measured, R 

K/W 
Predicted, R 

K/W Thrust Radial inner outer 
1 39.2 0 298.2 334.8 0.88 41.59 2.2 39.39 38.24 
2 0 98.1 300.3 336.8 0.54 67.3 2.2 65.1 63.30 
3 39.2 39.2 300.3 329.1 0.68 42.60 2.2 40.40 39.44 

 
 

 
Figure 8: Ball positions and temperature .measurement 
points (Supposing the balls locate symmetrically). 

The experimental apparatus is shown in Figure 9, 
using thermocouples as sensors. The dimensions and 
material properties of the bearing matched those 
described previously. The thrust and radial load was 
imposed by adjusting the pressure of the hydraulic 
devices. Figure 8 and 10 show the temperature 
measurement points on the bearing and the shaft. 
The test parameters were shown in Table. The 
temperatures shown in Table were obtained under 
steady-state conditions when temperature changed 
less than ±0.2℃. 

In the experiment, the bearing was considered as 
the heat source. The conductive heat flow through 
the shaft Q was calculated by, 
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Figure 9: High-speed experimental bench for thermal 
contact resistance measurement. 

 
Figure 10: Temperature measurement points on shaft. 

Where Ti, To and Rs denoted the measured 
temperatures of the inner and outer rings, and the 
conductive resistance for the solid existing between 
the measurement points. 
A comparison of the test result and the prediction 
values is given in Table 1, and the agreement 
between both results is excellent. Therefore, we can 
say that the calculation method is applicable to the 
prediction of contact resistance between the 
elements of a angular contact ball bearing sustaining 
thrust, radial and combined loads. 

6 CONCLUSIONS 

A calculation method based on precisely determined 
contact forces has been presented to predict the 
thermal contact resistance between the balls and the 
inner and outer rings of a space-use dry bearing. The 
study assumed that a stationary ball bearing 
sustained axial, radial, or combined loads under a 
steady-state temperature condition. While the 
thermal analysis method is the same as that 
employed to determine constriction resistance, the 
assumptions commonly utilized in the constriction 
problem have been numerically confirmed to be 
applicable to the prediction of the contact resistance 
between the bearing elements. Also, the calculation 
of the contact resistance has indicated that the 
careful consideration of changes in the contact angle 
is important to determine the contact force and area 
due to the axial loads. 

For the load types dealt with, limited test data 
were used to verify the proposed method because it 
was not easy to get the same temperature 
distribution across the bearing when the magnitude 
of load was changed, and the total number of 
operations had to be restricted to avoid changing the 
surface condition. However, it can be said that the 
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excellent agreement between the test results and the 
predictions has confirmed the applicability of the 
proposed calculation method. 
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