
COLLABORATIVE SECURITY ASSESSMENTS IN EMBEDDED 
SYSTEMS DEVELOPMENT 

The ESSAF Framework for Structured Qualitative Analysis 

Friedrich Köster, Michael Klaas, Hanh Quyen Nguyen, Walter Brenner 
Institute of Information Management, University of St. Gallen, Mueller-Friedberg-Str. 8, 9000 St. Gallen, Switzerland 

Markus Brändle, Sebastian Obermeier 
ABB Research, Segelhofstr. 1K, Post Box, 5405 Baden, Switzerland 

Keywords: Collaborative security assessment, ESSAF framework, Embedded systems security, Security knowledge 
management, Threat modeling. 

Abstract: The standardization of network protocols and software components in embedded systems development has 
introduced security threats that have been common before in e-commerce and office systems into the 
domain of critical infrastructures. The ESSAF framework presented in this paper lays the ground for 
collaborative, structured security assessments during the design and development phase of these systems. Its 
three phases system modeling, security modeling and mitigation planning guide software developers in the 
independent assessment of their product’s security, minimizing the burden on security experts in the 
collection of security relevant data. 

1 INTRODUCTION 

The use of networked embedded systems for the 
monitoring and control of critical infrastructures, 
such as energy, telecommunication or transportation 
networks and factory automation systems, has 
introduced similar IT security problems into these 
domains that have been existing in e-commerce and 
office networks for a long time (Byres and Lowe 
2004). The increasing use of commercial off-the-
shelf (COTS) software and standardized protocols 
such as TCP/IP in the development of these 
embedded systems increases both the number of 
vulnerabilities –  due to better accessibility of the 
systems – and threats – due to more widespread 
knowledge about the vulnerabilities (Igure, Laughter 
et al. 2006). 

Systematically assessing the security 
requirements and issues of these systems during the 
development phase is a crucial task in the design of 
any embedded system for critical infrastructures. 
Whenever a security assessment of such systems 
must be conducted, a multitude of stakeholders from 
different disciplines and with a diverse background 

should work together. Each of the stakeholders 
involved in building and assessing such systems has 
different pieces of information and different 
expertise, which can only contribute to a 
comprehensive evaluation of a system’s security if it 
is systematically collected and documented in a 
well-defined way. 

1.1 Contributions 

In this paper, we describe the ESSAF framework 
(Embedded System Security Assessment 
Framework), which provides a method and a 
software tool for the collaborative evaluation and 
documentation of embedded systems during their 
design and development phase. The framework 
includes a software tool currently under 
development, which supports the assessment and 
knowledge sharing process. The framework 
integrates techniques for system modelling, security 
requirements documentation, threat modelling, risk 
and mitigation management with collaboration and 
knowledge management techniques together with a 
consistent data model for the structured analysis of 
embedded systems. The method and tool enable 

305Köster F., Klaas M., Quyen Nguyen H., Brenner W., Braendle M. and Obermeier S. (2009).
COLLABORATIVE SECURITY ASSESSMENTS IN EMBEDDED SYSTEMS DEVELOPMENT - The ESSAF Framework for Structured Qualitative
Analysis.
In Proceedings of the International Conference on Security and Cryptography, pages 305-312
DOI: 10.5220/0002189903050312
Copyright c© SciTePress



 

system experts without specific security knowledge 
to participate in the evaluation process. They help to 
make security assessments more efficient than 
current “offline” or “brainstorming” based methods 
while enabling the integration of ongoing security 
evaluations into the development process. 

1.2 Related Work 

Several methods for the modeling of threats and 
vulnerabilities or the identification and assessment 
of IT security risks exist. Especially the field of 
“probabilistic” risk management approaches, which 
focus on the formulation of scenarios and their 
evaluation in terms of probability of occurrence and 
(monetary) impact, is now well described (Ralston, 
Graham et al. 2007). Sometimes, the monetary 
impact quantification is replaced or combined with 
other units such as loss of life or severity of injury 
(Tolbert 2005). National or international standards 
such as (Standards Australia & Standards New 
Zealand (SA/SNZ) 2000) and (ISO/IEC 2005) 
describe the organization of risk management 
processes that will also consider information 
security risks. They cover multiple phases of a risk 
management process, with a focus on the 
organizational aspects. 

In order to effectively solve the given assessment 
task, the abstraction level of the method needs to be 
considered. The well-known OCTAVE method 
(Alberts and Dorofee 2001), (Alberts, Dorofee et al. 
2003) has a focus on a strategic, high-level 
description of the risk assessment process, but leaves 
the choice of techniques to the users. This requires 
constant involvement of a specialist that can choose 
suitable techniques for data collection. Collaboration 
is often organized in the form of physical meetings 
with all stakeholders together with a security expert, 
as in the CORAS method (Vraalsen, den Braber et 
al. 2004). 

A security assessment method that takes into 
account the technical implementation of systems has 
been described by Microsoft researchers in 
(Swiderski and Snyder 2004) and (Howard and 
Lipner 2006). This method uses information about 
damage potential and affected users in order to rate 
risks, which is not generally known in the 
development scenarios which are targeted by this 
method. 

Aspects of collaboration in security assessments 
for IT systems without regard for a specific method 
have been covered by (Steffan and Schumacher 
2005) for the area of attack modeling. The concept 
of using a knowledge base in security risk 

management has been described by (Kailay 1995). 
Organizational and practical challenges in 
connection with IT security for critical control 
systems are described in (Naedele 2007). 

1.3 Roadmap 

We start in section 0 with a description of the 
ESSAF method. Section 0 describes the processes 
for collaboration. The description of knowledge 
sharing mechanisms can be found in section 0. Our 
findings are summarized in section 0. 

2 METHOD OUTLINE 

The main focus of the ESSAF method is to 
document what to protect (security objectives of 
assets) how (rationales, security measures) from 
which threats. The assessment process is divided 
into the three phases System Modeling, Security 
Modeling and Mitigation Planning, which are 
sketched in the process model shown in Figure 1.  

 
Figure 1: Iterative process Model of the three phases to 1: 
collect information about the system, its security 
objectives and security measures, 2: document and asses 
the system’s security and 3: plan necessary changes to 
improve the system’s security architecture. 

Even though the three phases are shown in 
consecutive order, it is not necessary to fully 
complete one phase before entering the next. For 
example, a vulnerability can be entered for an asset 
before the whole system model is completed. The 
idea is that as more information is entered into an 
assessment, the necessary cross-references between 
assets, security measures, rationales and threats will 
prompt for an iterative completion of the  

SECRYPT 2009 - International Conference on Security and Cryptography

306



Table 1: Some security objectives only apply to data assets, whereas others are useful to describe security needs of 
functions. Storages, for example, inherit the security objectives of the data they hold, but they can have their own 
availability requirement. 

 Authenticity Access Control Auditability Confidentiality Integrity Availability 
Function x x x   x 
Data    x x  
Storage    x x x 
 
information. Also, the overall process is designed to 
be carried out concomitantly to the design and 
development activities for the modeled system. 

2.1 System Modeling 

The system modeling phase starts by documenting 
the system’s assets and their relationships in a data 
flow diagram: Data, functions and storage entities 
are related to each other by data flows that connect 
them. A suitable level of abstraction should be 
chosen in order to keep the system model 
understandable to participants that are not involved 
in the actual implementation of the system (Schuette 
and Rotthowe 2004); not every implemented 
software function needs to become a function in the 
data flow diagram, and multiple data elements can 
be summarized as one entity if they are of the same 
type and have the same security objectives (e.g. 
different control data can be modeled as one entity). 

Assets are annotated with security objectives, 
which represent the required security level of a 
system. In a model instance, each security objective 
defines a protection goal for a specific asset. The 
following six commonly used security objectives 
according to (Dzung, Naedele et al. 2005) are pre-
defined, but more specialized security objectives can 
be added if needed (e.g. non-repudiability, plausible 
deniability, third-party protection (Ma 2004)): 

Authenticity: the identity of a user (e.g. an 
operator or another process) must be verifiable  

Access Control: access to resources is limited to 
authorized users based on rules; the authorization 
requires prior authentication 

Auditability: it is possible to identify the user that 
performed an operation 

Confidentiality: data may not be disclosed to 
unauthorized users 

Integrity: data must be protected during 
transmission and storage against unauthorized 
modification or destruction 

Availability: a resource must be accessible or 
usable upon demand by a legitimate entity or 
process 

Table 1 shows the security objectives that are 
applicable to each type of asset. For all applicable 
security objectives for each system component, 
ESSAF requires the security assessors to provide a 
reasoning if the security objective is deemed to be 
irrelevant. 

When the required security level has been 
described by all assets’ security objectives, the 
current security level of a system needs to be 
documented in rationales. A rationale describes how 
a security objective is achieved (or not achieved, or 
partially achieved) for a given asset. A rationale may 
use a security measure, which is security 
functionality provided by one of the system’s 
components. An example of a rationale using a 
security measure would be: “User credentials are 
encrypted by the web server’s SSL function”. If a 
rationale contains an assumption, the assumption 
must be explicitly formulated (techniques for 
uncovering hidden assumptions are described in 
(Bishop and Armstrong 2005)). In this case, one 
assumption is that “the web server’s SSL function 
will always be used if user credentials are 
transmitted over a network”. The list of all 
assumptions can later be used by other stakeholders 
who are concerned with the deployment or use of the 
system in order to make sure that all documented 
assumptions are met in the implementation. 

2.2 Security Modeling 

In order to check whether the current security 
architecture can uphold against the intended security 
requirements, the documented security objectives 
need to be mapped against the currently 
implemented security measures in a matrix. By 
reasoning about the sufficiency of each security 
measure, gaps can be identified where the currently 
implemented measures are not enough in order to 
ensure the security objectives. There may not be 
security measures in place for all the security 
objectives of all assets. In this case, the reasoning 
and assumptions behind the lack of security 
measures has to be documented in the rationale. 

COLLABORATIVE SECURITY ASSESSMENTS IN EMBEDDED SYSTEMS DEVELOPMENT - The ESSAF
Framework for Structured Qualitative Analysis

307



 

Vulnerabilities 

The question whether the implementation of a 
security measure or other functionality is correct and 
sufficient in order to uphold a security objective is 
not in the scope of this method, but needs to be 
assessed by (security) experts, possibly with the help 
of other tools such as port scanners, static code 
validation and external vulnerability databases 
(Viega, Bloch et al. 2000). It is possible that there is 
a security measure in place, but the technical 
implementation is not strong enough or can be 
circumvented in some way. It is not intended to 
automatically detect this kind of flaws, but known 
vulnerabilities should be stored in the knowledge 
base and can then be checked off each time a 
security measure is introduced. 

Another starting point for the discovery of 
vulnerabilities is the analysis of all assumptions. 
Whenever an assumption from a rationale does not 
hold true, this will very likely introduce a new 
vulnerability into the system. 

A third possibility to support vulnerability 
discovery is a rule based approach. The main idea 
behind rule based vulnerability discovery is to 
capture security expert knowledge into a set of rules 
that can be automatically (or in a check-list 
approach) applied to a system model in order to 
detect inconsistencies or “weak spots” that warrant a 
more careful analysis by a human expert in order to 
decide whether it is a vulnerability or not. The rules 
can be formulated in predicate logic. An example for 
a predicate logic rule that would point out that some 
confidential data has not been explicitly modeled 
may be: “Exists Function SSL Server And Not 
Exists Data SSL Certificate”. This approach is 
applicable for system elements which are classified 
hierarchically (cf. section 0), so that the semantics of 
the elements are known. 

Threats 

A threat is described in terms of a possible attack 
scenario that includes 

 the targeted assets and the security objectives 
that are endangered as well as the possible 
motivation for this compromise, 

 the associated assets that also play a role in this 
attack, 

 the vulnerabilities that could be exploited in 
order to realize this goal and 

 an approximated classification of the costs or 
complexity of the attack (low, medium or 
high). 

The complexity rating can be made according to the 
criteria that are described under “Access Complexity 
(AC)” in (Mell, Scarfone et al. 2007). 

Severity Rating 

A system developer of a sufficiently generic 
embedded system cannot quantify risk very well by 
means of probability and impact estimates due to 
limited knowledge about later usages of the system. 
Nonetheless, vulnerabilities need to be prioritized in 
order to make informed decisions about mitigation 
measures. Much of the information is already 
contained in the textual descriptions of the assets’ 
rationales and in the system model itself. In order to 
increase the manageability of the found 
vulnerabilities, a simple severity ranking scheme is 
proposed based on four factors: 

1. number of endangered security objectives of 
assets, 

2. importance of the endangered security objectives, 
3. number of threats that could exploit the 

vulnerability and 
4. exploitability (costs) of the threats for the 

vulnerability. 

Table 2: Derivation of the impact level for a vulnerability. 

Level Description

High 

at least three affected security objectives of 
“default” importance or 

at least one affected “critical” security 
objective 

Medium at least two affected security objectives of 
“default” importance 

Low 

one affected security objective of “default” 
importance plus 

any number of affected security objectives 
of “low” importance 

Table 3: Derivation of the exploitability level for a 
vulnerability. 

Level Description 

High 

at least two threats that exploit the 
vulnerability or 

at least one threat with low attack costs that 
exploits the vulnerability 

Medium at least one threat with medium or high attack 
cost that exploits the vulnerability 

Low no known threat that exploits the vulnerability

In a first step, factors 1. and 2. can be combined 
into an “impact” figure for each vulnerability (cf. 
Table 2), clearly focusing on the technical impact, 
not the business impact. Factors 3. and 4. can be 
combined into an “exploitability” figure (cf. Table 

SECRYPT 2009 - International Conference on Security and Cryptography

308



 

3) with the help of a vulnerability-threat-matrix that 
indicates which threats (if any) exploit what 
vulnerabilities. Each vulnerability can then be 
mapped in a severity matrix that has the impact 
rating on the x-axis and the exploitability rating on 
the y-axis (cf. Figure 2). The reasoning behind the 
exploitability rating acknowledges that even a 
vulnerability for which no threat is known can be 
very critical, as there is no technique which could 
assure that all threats have been documented. On the 
other hand, it does not ignore the threat information 
and gives a “best estimate” for the likelihood of 
attacks based on the known information. 

2.3 Mitigation Planning 

Mitigations address the found vulnerabilities in 
order to attenuate their effect, to provide additional 
countermeasures or to completely eliminate them. 
All possible mitigations are described with the 
following information: 

 security measures that will be introduced by the 
mitigation, 

 vulnerabilities that the mitigation is supposed to 
fix, 

 approximate cost of mitigation measure in 
person days and/or monetary value and 

 possible negative effects on the system 
(feasibility). 

As development resources are always limited, 
planning is needed in order to find a set of 
mitigation measures which will lead to the greatest 
improvement to the system’s security with the 
available resources under the constraints of technical 
feasibility and possible side effects. The basic steps 
of this process are as follows: 
1. Identify possible mitigation measures for the 

found vulnerabilities; relate all vulnerabilities and 
mitigation measures. 

2. Assess the approximate costs and mitigating 
effects for all measures; plan what new assets and 
security measures will be introduced by the 
mitigations and what the overall effect will be on 
the whole system. 

3. Select a set of mitigations for implementation (by 
expert reasoning). 

4. Go through the process for the new system model 
and adjust the system model and the vulnerability, 
threat and risk analysis accordingly. 

The implementation of new mitigations will 
introduce new assets, security measures and security 
objectives into the system model, and most likely, 
even new threats and vulnerabilities will arise from  
 

Ex
pl

oi
ta

bi
lit

y 
→

 

H
ig

h 

Medium High High 

M
ed

iu
m

 

Medium Medium High 

 Lo
w

 

Low Medium Medium 

  Low Medium High 

    Impact →

Figure 2: Severity matrix for vulnerabilities. 

the changes. This makes it imperative to go through 
a new iteration of the security assessment process 
once the new mitigations have been selected. The 
process will only stop once it is decided that no 
more mitigations are reasonable or feasible. 

3 COLLABORATIVE SECURITY 
ASSESSMENTS 

We divide the collaboration features into two 
independent processes: 1) The storage, sharing and 
collaborative creation of single assessments 
(described in this section) and 2) the creation, 
editing and sharing of an inter-divisional common 
knowledge base of findings (see section 0). During 
an assessment, it is important to capture the 
knowledge of as many stakeholders as possible. The 
role model described in section 0 prescribes which 
roles need to be filled as a minimum prerequisite for 
security assessments with validation by cross-
checking of the entered information. 

3.1 Role Model 

Practical experience shows that it is hard to start a 
security assessment “on a blank page”. In order to 
get started easily, the method begins by 
documenting the functions, data and storages of a 
system, which are well known to developers and 
system architects. Since a system architect is used to 
creating abstract models of systems and has the best 
overview of the system, he is tasked with the 
creation of an initial system model with the most 
important components. The system architect can 

COLLABORATIVE SECURITY ASSESSMENTS IN EMBEDDED SYSTEMS DEVELOPMENT - The ESSAF
Framework for Structured Qualitative Analysis

309



Table 4: Roles in the creation of a security assessment. 

Role Tasks and responsibilities 

System 
Architect 

Creates a first, complete overview of 
the involved system components and 
their relations. Documents rationales 

and existing security measures, 
identifies vulnerabilities. Provides 

feasibility judgments about possible 
mitigations. 

System 
Developer 

Provides specific input about the 
components in parts of the system. 

Identifies vulnerabilities. 

Product 
Manager 

Assigns security objectives to the 
system components. Checks plausibility 
and completeness of the system model. 
Describes and rates threats. Provides 

cost figures for mitigations. 

Security 
Expert 

Checks the plausibility and 
completeness of found vulnerabilities 

and threats. Proposes mitigation 
measures. 

Business 
Manager 

Checks the overall plausibility of the 
model and its assumptions. Approves 
versions of the assessment. Decides 

about mitigation measures. 

then delegate the detailed definition of parts of the 
system to system developers that are familiar with 
this part of the system. A product manager then 
defines what security objectives are needed for the 
system’s assets. For each security objective of each 
asset, the system architect (possibly again with the 
help of system developers) needs to provide a 
rationale that states how the security objective is 
achieved, also modeling the security measures 
involved. A crucial part is the identification of 
vulnerabilities, which is mainly the task of system 
architect and developers, but can be supported by the 
security expert. 

The assumption is that the role of the security 
expert is the hardest to fill, and the security expert 
will have the highest time constraints. One goal of 
the method thus is to minimize the effort for the 
security expert not directly related to the discovery 
and treatment of security issues. Therefore, the 
identification of vulnerabilities will also be 
supported by a central knowledge base (see section 
0). The security expert needs to judge whether 
vulnerabilities or threats have been overlooked, and 
he can propose mitigation measures such as suitable 
security measures or changes to the existing 
architecture or functions. When the system has 
reached a stable development state, the business 
manager is responsible to approve the assessment 
when he has the impression that it has been carried 

out diligently and reflects all major risks. The 
business manager also decides on mitigation 
measures based on the information about effects and 
costs provided by the system architect and the 
product manager. A summary of all roles that exist 
for a security assessment is provided in Table 4. 

3.2 Validation by Structure 

An important effect of collaborative modeling is that 
inconsistencies and different views about the 
“appropriate” representation of the system structure 
or security architecture often lead to the discovery of 
vulnerabilities. For example, when the system 
architect has to provide a rationale for an asset’s 
security objectives, he may use an assumption or a 
security measure. The system developers may then 
discover if they violate one of those assumptions, or 
if a security measure is used in a way that it was not 
intended for (e.g. using a checksum function to 
check for data integrity, which is not correct in a 
security context). 

Furthermore, the structure of the system model 
itself can help to uncover vulnerabilities. For 
example, a security measure such as “input 
validation” has to be attributed to a function in the 
system model that provides it. It is well conceivable 
that a system architect creates this security measure, 
but finds no function where to assign it. In the 
process of finding a developer which is responsible 
for this functionality, it may turn out that no suitable 
function can be found that provides input validation. 

4 KNOWLEDGE SHARING 

An additional support for security assessment 
collaboration is a common knowledge base that 
holds assessment objects and their related security 
information (e.g. security objectives, threats, and 
vulnerabilities) of previous assessments. The 
knowledge base fulfills three main goals: 1) To 
make the creation of new assessments more efficient 
by re-using objects from the knowledge base, 2) to 
validate individual assessments and check their 
plausibility against information from the knowledge 
base (Steffan and Schumacher 2005) and 3) to 
enable inter-divisional communication about 
security issues that pertain to objects from the 
knowledge base which have been used in more than 
one assessment. 

 

SECRYPT 2009 - International Conference on Security and Cryptography

310



 

4.1 Knowledge Base Content 

When deciding on what to store in the knowledge 
base for later re-use, it is important to distinguish 
between “negative” and “positive” security 
information. “Negative” information informs about 
required security levels, which may or may not be 
accomplished (e.g. security objectives, 
vulnerabilities, threats). “Positive” security 
information explains how the security levels are 
assured (e.g. rationales, assumptions, security 
measures); if missing, it will raise a “red flag” that 
prompts for action – either further documentation of 
the measures in place, or mitigation measures that 
remove an assets’ vulnerability. If “positive” 
security information is delivered from the 
knowledge base, this would carry the risk that 
rationales and security measures are adopted without 
checking if they are applicable in the new context. 
Because the reasoning behind the security 
architecture needs to be done by those responsible 
for a system, no rationales, assumptions or reasoning 
about why a security objective is not relevant to an 
asset can be stored in the knowledge base. 

4.2 Administration and Organization 
of the Knowledge Base 

Good data quality and sufficient retrieval methods 
determine the success of the central knowledge base. 
In order to support these goals, the knowledge base 
can only be filled by a dedicated knowledge base 
administrator. Once the security assessments of 
different teams are uploaded to a central server, the 
administrator evaluates them for system and 
“negative” security information that can be entered 
into the knowledge base. The editor can also group 
entities and assign a common name to this group of 
entities (e.g. a set of functions, storages and data 
flows which have a common purpose and usually 
exist together). When components are taken from an 
individual assessment, their name may be changed 
by the editor in order to adhere to a common naming 
scheme in the knowledge base. The components will 
still be identifiable by their assessment and object 
IDs which are not changeable by the editor. The 
knowledge base is stored and edited centrally on a 
server; the local client applications regularly 
download the current version of the knowledge base 
(or the changes since the last download, 
respectively). New information cannot be entered 
directly by clients into the knowledge base, but 
needs to be extracted from assessments stored on the 

server. The process of storing, editing and sharing 
knowledge is outlined in Figure 3. 

Server Local Tool 1

Knowledge
Base

Assessment
Repository

KB

AR

- System Modeling
- Threat Modeling
- Mitigation 

Identification
- Knowledge Base 

Search

Local Tool 2

KB

AR

- System Modeling
- Threat Modeling
- Mitigation 

Identification
- Knowledge Base 

Search

- Knowledge Extraction
- Knowledge Base 
Administration

- Versioning
- Locking
- Edit Control
- User 

Management
- Access 

Control

- System 
Components

- Inference 
Rules

- Vulnerabilities/
Threats/
Mitigations

Updating

Updating

Sy
nc

hr
on

iza
tio

n

Synchronization

.

.

.

 
Figure 3: Collaboration between different users through a 
central server. 

In order to identify and retrieve the objects from 
the knowledge base, it is essential to be able to 
classify them according to a common scheme. This 
classification is achieved by assigning tags to each 
system component. The tags can then be organized 
in a hierarchy for each entity class (i.e. one hierarchy 
for all functions, one for all data elements, etc.). 

This improves the organization of knowledge in 
two cases: When a new object is created by an 
assessment user and is then marked with a tag that 
already exists in the knowledge base, it is possible to 
automatically propose using an existing system 
component from the knowledge base which may not 
have been considered for re-use when entering the 
new entity in the assessment. And for administering 
the knowledge base, this hierarchy can speed up the 
process of finding duplicate entities in order to 
decide if some new information should be entered 
into the knowledge base or not. Security information 
such as vulnerabilities and threats are assigned to the 
system components that they can affect, and can be 
found by searching for their associated system 
components. 

4.3 Update Notification 

When a system component from the knowledge base 
is re-used in another assessment, it “remembers” its 
ID, just as components that are entered into the 
knowledge base also retain their original assessment 
and object IDs. In this way, if new “negative” 
security information such as security objectives, 
vulnerabilities or threats are discovered in one of the 
assessments where the component is used, all other 

COLLABORATIVE SECURITY ASSESSMENTS IN EMBEDDED SYSTEMS DEVELOPMENT - The ESSAF
Framework for Structured Qualitative Analysis

311



 

assessment projects can be notified of this new 
information after the next download of the central 
knowledge base. The assessment teams can mark the 
new information as “irrelevant” or “mitigated”, but 
they have to provide a reasoning why the 
vulnerability, threat, etc. is not relevant in their 
system. 

5 CONCLUSIONS 

The ESSAF framework enables the collaborative, 
structured documentation of an embedded system’s 
architecture, its components and their security 
objectives and security measures as a basis for a 
systematic analysis of vulnerabilities and threats to 
the system. This allows for informed decisions about 
a mitigation strategy for the identified 
vulnerabilities. Because assumptions and the 
reasoning behind evaluations are documented, the 
traceability of the results is ensured. 

The analysis can be carried out by system 
designers and developers, who do not need to be 
security experts, as part of their daily work. The 
assessment information can evolve gradually as 
more information is provided by different 
stakeholders. The resulting documentation serves as 
the basis for further analysis by a security expert, 
who can save effort in data collection. The data 
structure also allows for the use of a knowledge base 
that can assist in the identification of inconsistencies 
and possible vulnerabilities. 

No information about concrete use cases is 
needed for the analysis and rating of vulnerabilities, 
especially no probability or monetary impact figures 
have to be indicated. This supports the use of the 
method during the design and development of 
embedded systems that may be deployed in very 
diverse settings later. The supporting software tool 
enables the structuring of information.  

ACKNOWLEDGEMENTS 

This work was supported by the Swiss 
Confederation’s innovation promotion agency CTI. 

REFERENCES 

Alberts, C. and A. Dorofee (2001). OCTAVE Method 
Implementation Guide Version 2.0. Pittsburgh, PA, USA. 

Alberts, C., A. Dorofee, et al. (2003). "Introduction to the 
OCTAVE Approach."   Retrieved 2007-03-05, from 
http://www.cert.org/octave/approach_intro.pdf. 

Bishop, M. and H. Armstrong (2005). Uncovering 
Assumptions in Information Security. WISE4 Forth 
World Conference "Information Security Education". 
Moscow, Russia, Moscow Engineering Physics Institute 
(State University): 223-231. 

Byres, E. and J. Lowe (2004). 'The Myths and Facts behind 
Cyber Security Risks for Industrial Control Systems'. 
VDE Congress. Berlin. 

Dzung, D., M. Naedele, et al. (2005). "Security for Industrial 
Communication Systems," Proceedings of the IEEE, 93 
(6): 1152-1177. 

Howard, M. and S. Lipner (2006). The Security Development 
Lifecycle, Microsoft Press, Redmond, WA. 

Igure, V. M., S. A. Laughter, et al. (2006). "Security issues in 
SCADA networks," Computers & Security, 25 (7): 498-
506. 

ISO/IEC (2005). 27002:2005 Information Technology. Code 
of Practice for Information Security Management. 
Geneva, Switzerland, International Organization for 
Standardization (ISO). 

Kailay, M. P. J., Peter (1995). "RAMeX: a prototype expert 
system for computer security risk analysis and 
management," Computers & Security, 14 (5): 449-463. 

Ma, Q. (2004). A study on information security objectives and 
practices. Department of Management. Illinois, Southern 
Illinois University. 

Mell, P., K. Scarfone, et al. (2007). CVSS - A Complete 
Guide to the Common Vulnerability Scoring System, 
Version 2.0. 

Naedele, M. (2007). Addressing IT Security for Critical 
Control Systems. 40th Hawaii Int. Conf. on System 
Sciences (HICSS-40). Hawaii. 

Ralston, P. A., J. H. Graham, et al. (2007). "Cyber security 
risk assessment for SCADA and DCS networks," ISA 
Transactions, 46 (4): 583-594. 

Schuette, R. and T. Rotthowe (2004). "The Guidelines of 
Modeling - An Approach to Enhance the Quality in 
Information Models," Lecture Notes in Computer 
Science, 1507: 240-254. 

Standards Australia & Standards New Zealand (SA/SNZ) 
(2000). AS/NZS 7799.2:2000 Information Security 
Management. Homebush, Australia; Wellington, NZ, 
Standards Australia & Standards New Zealand. 

Steffan, J. and M. Schumacher (2005). 'Collaborative Attack 
Modeling'. ACM Symposium on Applied Computing. 
2005-03-13. 

Swiderski, F. and W. Snyder (2004). Threat Modeling, 
Microsoft Press, Redmond, WA. 

Tolbert, G. D. (2005). "Residual Risk Reduction," 
Professional Safety, 50 (11): 25-33. 

Viega, J., J. T. Bloch, et al. (2000). 'ITS4: A static 
vulnerability scanner for C and C++ code'. 16th Annual 
Computer Security Applications Conference 
(ACSAC'00). New Orleans, Louisiana. 

Vraalsen, F., F. den Braber, et al. (2004). The CORAS tool-
supported methodology for UML-based security analysis. 
Trondheim, Norway, SINTEF. 

SECRYPT 2009 - International Conference on Security and Cryptography

312


