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Abstract: Due to the increased complexity of tasks delegated to unmanned systems, their collective use is becoming of 
paramount importance for performing any reasonable jobs. An approach is offered where group behaviors 
are accomplished automatically rather than set up manually, as usual. Missions in the Distributed Scenario 
Language (DSL) can be executed jointly by communicating interpreters in system units. Scenarios like 
reconnaissance, camp security, convoy, mule, and explosive ordnance disposal in DSL, oriented on different 
numbers of cooperating units, are demonstrated. The approach allows us to effectively manage any teams, 
from human to robotic, and from homogeneous to heterogeneous, regardless of the number of components 
in them. A variety of other applications of the technology are outlined too, already researched or prospective, 
also its relation to the gestalt philosophy, where super-summative whole dominates over system parts, 
defining their sense and even existence, rather than vice versa. The paradigm discussed may also represent a 
distributed dynamic world super-machine operating in parallel with both information and physical matter. 

1 INTRODUCTION 

With the world dynamics increasing due to global 
warming, numerous natural and manmade disasters, 
military conflicts, and international terrorism, using 
unmanned (ground, sea, underwater, and air) 
systems can alleviate many problems and save lives 
in hazardous environments. Because of the 
complexity of tasks delegated to unmanned solutions 
and still insufficient capabilities of existing robotic 
vehicles, their simultaneous, collective use may be 
of paramount importance to perform any reasonable 
jobs. Operating together, the unmanned groups, 
often called swarms, can fulfill the required 
objectives despite possible runtime damages to 
individual units. 

We are offering a novel approach to organization 
of unmanned systems, oriented from the very 
beginning on parallel solutions in physical spaces, 
with swarm behaviors resulting naturally and 
accomplished automatically, rather than 
programmed manually. This approach, symbolically 
called “overoperability” from the previous 
publications (Sapaty, 2002, 2005), allows us to 
create, modify, analyze, process, and manage any 

distributed systems, establishing local and global 
dominance over them.  

Within the overoperability philosophy, an 
integral mission scenario, written in a special high-
level scenario language (Sapaty, 1999, 2005) and 
reflecting semantics of what to be done in a 
distributed space rather than details of 
implementation, is executed in a parallel and 
cooperative manner by dynamically networked 
unmanned units. During the scenario evolution, any 
operations can be accomplished in the world, along 
with the needed movement of code, equipment and 
“doers” (both artificial and biological), as well as 
creation and maintenance of physical and virtual 
infrastructures supporting the missions. 

This paper is essentially inspired by the 
European Land Robotic Trial (M-ELROB, 2008) in 
which the author participated. It was conducted to 
provide trials as close as possible to operational 
scenarios for UGVs/UAVs with focus on short-term 
realizable robot systems. The day and night trials 
were organized within the following five main 
scenarios: non-urban reconnaissance, camp security, 
transport convoy, transport mule, and explosive 
ordnance disposal. Only a limited number of robotic 
units were engaged in every scenario, just one or 
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two, whereas every scenario could potentially be 
executed with much higher efficiency if using 
robotic teams with many units, which cooperate with 
each other. 

The paper also reflects activity on the project 
started under the sponsorship of Alexander von 
Humboldt Foundation (AvH) in Germany. One of its 
aims is formalization of known mission scenarios in 
such a way that they could be performed by any 
available numbers of robotic vehicles, with the 
management burden effectively shifted to self-
organized robotic teams -- thus relieving human 
operators from traditional routines and allowing 
them concentrate on mission goals and global 
efficiency instead. 

2 DISTRIBUTED SCENARIO 
LANGUAGE (DSL) 

The approach described here is based on the 
Distributed Scenario Language (DSL), which allows 
us to set what to do in a distributed world on a 
semantic level, abstracting from details of how to do 
this and with which resources, delegating these to 
the intelligent automatic interpretation. Being a 
universal programming language with advanced 
parallel and distributed capabilities, DSL can also 
describe tasks and behaviors on any levels, if 
needed. The language can be used by humans who 
should follow its instructions individually or 
collectively, or can be directly executed by robots 
and their teams. Any mixed human-robotic 
organizations can be managed in DSL too. 

2.1 The World 

The world DSL operates with can be virtual, 
physical, or combined. 

 Virtual World (VW) is discrete and consists of 
nodes and links connecting these nodes. Any 
information can be associated with both nodes 
and links in the form of their names (contents). 
Nodes have unique addresses in VW, whereas 
their names (same as names of links) may repeat 
throughout the VW. Nodes can be accessed 
directly, globally, by their names or addresses, or 
locally, from each other, via the (named) links, 
whereas links can be accessed only locally--from 
the adjacent nodes. A variety of broadcasting 
possibilities are available in the VW, both in a 
global and local way, for example, from outside 
to all nodes, from a node directly to all other 

nodes, or from a node to all neighboring nodes 
via the selected or all adjacent links. 
 Physical World (PW) is continuous. Any point in 
it can be identified and accessed by the 
coordinates expressed in a certain coordinate 
system, also with certain precision. Staying in a 
PW point, you can lift local physical parameters 
from the world and, possibly, also change them, 
impacting the world locally too. 
 Virtual-Physical World (VPW) is the one where 
VW nodes additionally associate with certain 
coordinates in the PW. VPW is discrete on a 
snapshot, but the nodes can change their physical 
coordinates overtime. The VPW nodes can be 
globally accessed by their names, addresses, or 
physical coordinates (for the latter, more 
correctly: by coordinates of the expected center 
and a radius of the region, due to limited 
precision of the coordinates). Also locally, via 
links--same as for the pure VW. In addition to 
the broadcasting capabilities of VW, nodes in 
VPW can also be massively accessed/entered by 
identifying a probable region in PW where they 
are expected to exist--by the region’s center and 
a range (radius) from this center, where the latter 
may be of any value. 

2.2 High-Level Scenarios 

The world, as described above, is navigated and 
processed in a parallel and distributed way by high-
level DSL scenarios having the following main 
features. 
 

General Features: 
 A DSL scenario (or program, in a conventional 
notation) describes development of activities in a 
distributed world as parallel transitions between 
sets of progress points, or props.  
 Starting from a prop, a program action may 
result in one or more new props, or remain in the 
same prop. 
 Each prop has a resultant value and a resultant 
state. 
 Different actions (whatever complex they might 
be), starting from the same prop, may evolve 
independently or interdependently, and 
sequentially or in parallel, each contributing to 
the resultant set of props on this group of actions.  
 Actions may also succeed each other in the space 
of props, with new actions applied in parallel 
from all props reached by the previous actions, 
resulting altogether in the integrated set of props 
on all these applications. 
 Elementary operations can be defined on the 
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values of props reached by other actions (the 
latter of any complexity), leading to the resultant 
prop with associated value (which may be 
multiple) and resultant state. 
 The scenarios can form new or remove existing 
nodes and links in the distributed VW or VPW, 
allowing us to create, modify, and process any 
graph-based infrastructures in these worlds.   

Association with World Nodes/Points: 
 Any prop can be associated with a node in VW 
or a position in PW, or both, like in the case of 
VPW.  
 A prop can also be linked separately with VW 
nodes and PW positions, allowing us to operate 
with the two worlds independently.  
 Any number of props can be associated 
simultaneously with same points of the worlds. 
 Staying with nodes/positions in the worlds, a 
prop allows us to directly access local data in 
these points, both virtual (information) and 
physical (matter). 

 

Different Types of Variables: 
 Heritable variables – these are starting in a prop 
and serving all subsequent props, which can 
share them in both read & write operations. 
 Frontal Variables – are an individual and 
exclusive prop’s property (not shared with other 
props), being transferred between the 
consecutive props, and replicated if from a single 
prop a number of props emerge.  
 Environmental Variables – are accessing 
different elements of physical and virtual words 
when navigating them, also a variety of 
parameters of the internal world of DSL 
interpreter. 
 Nodal Variables – allow us to attach an 
individual temporary property to VW and VPW 
nodes; they can be accessed and shared by any 
props associated with these nodes.  
 Different types of variables, especially when 
used together, allow us to create efficient spatial 
algorithms which work in between components 
of distributed systems rather than in them. 

 

Hierarchical Control: 
 DSL scenarios can use a variety of spatial control 
rules, allowing us to assess local and remote 
states, make local and global decisions, and 
invoke or skip subsequent and terminate current 
operations, on the results of these decisions. 
 Nested control infrastructures, embracing the 
whole scenario, provide interdependent local and 
global decisions associated with proper points of 
the worlds. 

2.3 The Language Syntax 

DSL has a recursive syntax shown below together 
with names of its main constructs (where square 
brackets are for an optional construct, braces mean 
construct repetition with a delimiter at the right, and 
vertical bar separates alternatives). 

wave    constant | variable | [ rule ] ({ wave , }) 
constant   number | string | special  
variable   identifier | reserved 
rule    expand | transfer | modify | branch |  
                     advance | repeat | grant | echo |  
                     arithmetic | structural | assign | compare |  
                     timing | type | usage |  identifier | wave 
special   abort | thru | done | fail | any | random | all | 
               out | in | infinite | nil | empty | first | last | 
               andom | virtual | physical | combined | 
               neighbors | global | local | direct 
reserved  N{alphameric} | H{alphameric} |  
                    F{alphameric} | TYPE | QUALITIES |  
               NAME | ADDRESS | PLACE | WHERE |  
                    BACK | PREVIOUS | LINK |  
                    DIRECTION | ORDER | WHEN | TIME |  
                    SPEED | STATE | VALUE | COLOR |  
                    RESOURCES | DOER | USER | START 
expand     hop | move | create | linkup 
transfer    run | call | output 
modify      split | partition | select | replicate | integer 
branch     par | sequence | if | while | or | par or |  
                    and | par and  
advance   advance | sync advance  
repeat       cycle | loop | sling | repeat | repeat sync 
grant    free | release | quit | none | lift | stay | grasp 
echo    rake | min | max | sort | sum | average | 
                     product | count | state 
arithmetic  add | subtract | multiply | divide | degree 
structural  separate | unite | concatenate | append |  
                      intersect | content | index  | rand 
assign       assign | assign peers  
verify    equal | not equal | less | less equal | more | 
                     more equal | empty | nonempty |  
                belong | not belong | inside | not inside 
timing       sleep | remain 
type   nodal | heritable | frontal | environmental |  
                     info | matter | number | string | wave 
usage    address | name | place | center | range |  
               time | speed | doer | node | link | unit 
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The DSL top level structure can also be expressed 
graphically, as in Fig. 1. The basic construct, rule, 
can represent any action or decision and can, for 
example, be as follows: 

 Elementary arithmetic, string or logic operation. 
 Hop in a physical, virtual, or combined space. 
 Hierarchical fusion and return of (remote) data. 
 Distributed control, both sequential and parallel. 
 A variety of special contexts for navigation in 
space, influencing operations and decisions.  
 Type or sense of a value, or its chosen usage, 
guiding automatic interpretation. 

constant

number

string

special

identifier

reserved

wave [ rule ] ( { wave , } )

variable evolution

expansion
branching

advancing

repetition
granting

echoing

processing

combining

assignment

comparison
membership

linkage

type

usage

fusion verification essence

 
Figure 1: Recursive structure of DSL. 

Different variants of this syntax and semantics 
had been implemented for previous DSL subsets 
(Sapaty, 1999, 2005), where conventional 
expression of operations and delimiters between 
program parts can be used too, say, for better 
readability and compactness. For example: 

add(3, 5, 7) same as 3 + 5 + 7  
advance(w1, w2, w3) same as  w1; w2; w3 

 

where w1 to w3 may be arbitrary DSL programs 
(waves) themselves. The first example could have 
any programs instead of just numbers, each 
returning its (possibly, remote and multiple) results, 
as follows: 
add(w1, w2, w3) same as  w1 + w2 + w3    

3 DISTRIBUTED INTERPRETER 

A variety of options may be available for automatic 
interpretation of DSL scenarios – from fully 
centralized and sequential to fully distributed and 
parallel. Due to peculiar syntax and semantics, the 
language interpretation in distributed systems is 
transparent and straightforward. Some basic features 
of the DSL interpretation are as follows. 

 Direct association of props with world points 

drastically simplifies bringing data from the 
points to scenarios or vice versa: scenarios or 
their parts to world points.  
 Chained actions can self-navigate and match the 
world, while omitting used “heads” and 
forwarding remaining “tails” further.  
 Independent actions can be launched in parallel, 
developing autonomously in parts of the world. 
 The interpreter copy can be installed in internet 
hosts, mobile robots, laptops, mobile phones, 
smart sensors, or implanted into biological units. 
 The interpreter can also be a human being, 
performing manually of what is for herself while 
passing other parts of the scenario to other 
human or electronic interpreters and establishing 
dynamic command and control infrastructures 
between them.  
 Any other systems can be accessed via the 
networked interpreters, the latter forming a 
supervisory layer managed in DSL. 
 The interpreter copies may be concealed inside 
the systems to be impacted, even without their 
knowledge (to work in hostile environments). 
 The interpreters can also migrate in the worlds to 
be managed, collectively executing (mobile too) 
mission scenarios, resulting altogether in a 
flexible and ubiquitous system organization. 
 The DSL interpreter consists of a number of 
specialized modules working in parallel and 
handling and sharing specific data structures, 
which are supporting both persistent virtual 
worlds and temporary hierarchical control 
mechanisms (Sapaty, 1999, 2005).  
 The heart of the distributed interpreter is its 
spatial track system enabling hierarchical 
command and control and remote data & code 
access, also providing high integrity of emerging 
parallel and distributed solutions, achievable 
without central facilities. 

 

In application to robotic communities, the 
approach allows us to convert any group of mobile 
robots into a goal-directed cooperative system by 
integrating copies of the DSL interpreter, presented 
as a universal control module U in Fig. 2, with 
traditional robotic functionalities, as in Kuhnert, 
Krödel, 2005. (The figure exhibits mobile robots 
which participated in M-ELROB 2008 trial). 

Any mission scenario in DSL can start from any 
robot, covering and tasking the whole system (or its 
parts needed) at runtime and in parallel. 
Subordination between the units and dynamic 
command and control are established automatically, 
as a derivative of the mission scenario and current 
state of environment.  
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Figure 2:  Heterogeneous robotic teaming using embedded 
DSL interpreters.  

Due to fully interpretive nature of the technology, 
the scenarios can self-recover from any points, 
timely reacting on failures of robots. The whole 
group may remain fully functional and global-goal-
oriented even in case of indiscriminate damages to 
individual units. 

4 ELEMENTARY EXAMPLE 

An elementary task to be programmed in DSL may 
look like follows: 
 

Go to given physical locations of the disaster 
zone (represented in a proper system of coordinates 
by the three locations): (50.433, 30.633), 
(50.417, 30.490), and (50.467, 30.517). Evaluate 
damage in each location, then find and transmit the 
maximum destruction value on all locations, 
together with exact coordinates of the corresponding 
location, to a management center. 

 

The corresponding program in DSL will be: 
transmit(maximum( 

     move((50.433, 30.633),  
          (50.417, 30.490),  
          (50.467, 30.517)); 
     attach(assess(damage),WHERE))) 
 

This program reflects semantics of the task to be 
performed in a distributed space, regardless of 
possible equipment that can be used for this. The 
latter may, for example, be a set of sensors scattered 
in advance throughout the disaster zone, where 
hopping by coordinates may result in a wireless 
access of the sensors already present there, not 
necessarily moving into these points physically.  

As another solution, the program may task 
mobile robots to move into these locations and 
perform the needed damage assessment upon 
reaching the destinations. We will be showing here 

this latter option, using three available robots R1, R2, 
and R3.  

The possible starting position and initial scenario 
injection (let it be into R1) are shown in Fig. 3. 

50.417, 30.490

50.433, 30.633

50.467, 30.517

transmit(maximum(
move((50.433,30.633),   

(50.417,30.490),   
(50.467,30.517));

attach(assess(damage),WHERE)))

R1

R2

R3  
Figure 3: Initial scenario injection. 

After the creation of a distributed interpretation 
infrastructure covering all three robots, R1 is 
partitioning the scenario, and modifying and tasking 
itself and the other two robots, as in Fig. 4. 

move(50.467,30.517);
attach(assess(damage),
WHERE)

transmit

maximum

50.417, 30.490

50.433, 30.633

50.467, 30.517
DSL Interpretation 
Infrastructure

move(50.467,30.517);
attach(assess(damage),
WHERE)

move(50.467,30.517);
attach(assess(damage),
WHERE)

R1

R2

R3
 

Figure 4: Parallel tasking of three robots. 

All three robots then move independently to the 
locations optimally chosen for them, as in Fig. 5.  

DSL Interpretation 
Infrastructure

50.417, 30.490

50.433, 30.633

50.467, 30.517

transmit

maximum

move(50.467,30.517)

move(50.417,30.490)

move(50.433,30.633)

R1

R1

R2

R3  
Figure 5: Simultaneous robot movement. 

PROVIDING SPATIAL INTEGRITY FOR DISTRIBUTED UNMANNED SYSTEMS

33



 

In each location reached independently by a 
corresponding robot, the damage assessment and 
exact coordinates return and attachment take place, 
as in Fig. 6.  

 

transmit

maximum

50.417, 30.490

50.433, 30.633

50.467, 30.517

assess

assess
assess

Observed 
damage

Observed 
damage Observed 

damage
R1

R2

R3

 
Figure 6: Simultaneous damage assessment. 

And finally, R1, using rule maximum, finds global 
maximum damage value from those obtained in each 
of the three robots, and together with the 
corresponding location coordinates transmits it to 
the management center, as in Fig. 7. 
 

transmit

maximum

Damage level & 
coordinates

50.417, 30.490

50.433, 30.633

50.467, 30.517

Damage level & 
coordinates

DSL interpretation 
infrastructure

Damage level & 
coordinates R1

R2

R3

Management 
Center

 
Figure 7: Merging data, finding global maximum. 

As can be seen from the examples above, a semantic 
level scenario describing what to do in the 
distributed space, can be interpreted by robotic 
teams autonomously, and by different numbers of 
cooperating robots (we could use two or a single 
robot instead). The number of available robots can 
also vary at runtime, during the scenario evolution. 

5 MORE ROBOTIC SCENARIOS 

We will be using here the main scenarios that were 
the basis of the M-ELROB 2008 trial. 

5.1 Non-urban Reconnaissance 

For this scenario, it is supposed that a group of 
unknown vehicles is located in some distance in a 
non-urban area (defined, say, with the position of a 

center and area’s radius), with security situation 
unclear there, so the reconnaissance should be done 
by robotic vehicles for not risking own personnel. 
The objective is to go to this target area and search 
for vehicles with specific characteristics. If found, 
they should be examined in detail, with their 
parameters collected and reported to the control 
station.  

The general picture is shown in Fig. 8, where the 
reconnaissance facilities should first go to the target 
area (i.e. its center), observe the area by 
cameras/sensors to roughly locate most probable 
targets (by their size, for example). The next will be 
to move directly to these selected targets and sense 
& collect their detailed parameters, with sending the 
results to the control point where they are stored and 
analyzed. 

Start

Target
area

Target 
vehicles

Radius

Center
Find

Result 3

Move

Result 2

Result 1
Move

 
Figure 8: The reconnaissance scenario. 

Parallel Solution. This, in DSL, may allow us to use 
as many reconnaissance vehicles as possible (a 
single one including), potentially involving 
individual vehicles for each target identified, for 
their detailed examination. 
 

 USER =(move(start); WHERE=center;  
  Targets=recognize(radius,features); 
  split(Targets); WHERE = VALUE;  
  collect(size, type, speed)) 

Explicitly Sequential Solution. The following DSL 
program just details navigation and organization 
procedures to execute the reconnaissance scenario in 
a strictly sequential way, which may be useful for 
optimization of the use of a single vehicle only. 
 

  move(start); WHERE = center;  
  Targets=recognize(radius,features); 
  loop(WHERE = withdraw(Targets,1);  
   Result &=collect(size,type,speed));  
  USER = Result Avoiding Obstacles. The 
movement to the target area and inside it may be 
complicated due to presence of obstacles, as shown 
in Fig. 9. The following DSL program, for the move 
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from Start to Center, uses an external procedure 
approach_or_stop to detect obstacles and stop to 
avoid collision, and the procedure suitable to find 
next suitable waypoint on the way to the destination, 
from which the move should continue. 
  move(start); 
    loop(approach_or_stop(center);  
   WHERE != center; 
   WHERE = suitable(depth,center));    

 

Start

Target
area

Target 
vehicles

Radius

Center
Find

M ove

Obstacle

Next

Next

Stop

 
Figure 9: Avoiding obstacles. 

5.2 Camp Security 

For the camp security scenarios, a defined urban 
area has to be monitored (think military camp) and 
this should be executed by robotic vehicles too, to 
minimize risk to human personnel. The objective is 
to detect and report irregularities in the area, like 
intruders, while acquiring their positions and 
imagery, and transmitting to control station. 
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Figure 10: Camp security scenario. 

The general picture is shown in Fig. 10, where 
the camp units (numbered 1 to 6) are simultaneously 
patrolled by a number of robotic vehicles moving 
along the paths between and around the buildings. 
Distributed Campus Map. The proper routing of 
vehicles and resolution of possible conflicts between 

them (like collision avoidance) can be assisted by 
the creation of a distributed map of the campus area 
(just reflecting Fig. 10) by the following DSL 
program (with node names reflecting X-Y 
coordinates of the crossings, and all links named r): 
 

create(#3_1; F1=A; r#2_1; F2=A;     
 r#1_1; F3=A; r#0_1;(r#0_2; r#1_2;    
 r#F3, (r#2_2; r#F2,(r#3_2; r#F1))), 
 (r#0_0; r#1_0; r#F3, (r#2_0; r#F2,  
 (r#3_0; r#F1)))) 

 

Random Movement. The next program organizes the 
duty performance by three parallel processes (which 
may be executed by three robots) using the created 
distributed map, with random choice of the next-hop 
crossing and activation of the external service 
procedure move_check_report to analyze the 
local security situation while on the move. 
hop(0_1, 2_2, 3_0); WHERE = CONTENT; 
repeat(or((hop(link(random));   
 grasp(Mark == nil; Mark = 1);  
 (hop(BACK); Mark) = nil; 
 move_check_report(CONTENT)), stay)) 

 

Movement via Predetermined Routes. If to use 
predetermined routes only, like the ones shown in 
Fig. 11 (one route using links named r1 and another 
one r2), the collisions between robots can be 
avoided in full. 

1 32
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Figure 11: Using predetermined routes. 

Additional links r1 and r2 in the campus map can 
be installed by the following DSL program: 
 

Linkup((#0_2;  r1#1_2;  r1#1_1;  r1#1_0;  
 r1#0_0; r1#0_1; r1#0_2), 
 (#3_2; r1#2_2; r1#2_1; r1#2_0;  
 r1#3_0; r1#3_1; r1#3_2)) 

 

And two independent spatial processes navigating 
the campus via the new links (which may engage 
two robots) can be organized by the following 
parallel DSL code: 
(hop(0_1); Flink = +r1),  
(hop(3_0); Flink = +r2);  
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WHERE = CONTENT; 
repeat(hop(link(Flink));   
 move_check_report(CONTENT)) 

 

Any imaginable combinations of different types of 
simultaneous movement through the camp (like 
those by predetermined routes and/or by free, 
random, wandering) with collision avoidance can 
also be easily organized in DSL. 

5.3 Transport Convoy  

Imagine there is a delivery for a camp located in 
some distance. The objective is to move at least two 
vehicles to the target location, where only the first 
one can be manned and the second should follow the 
route of the first one, on a certain distance from it. 
We will consider a fully robotic solution for such a 
convoy, with two and also any number of vehicles, 
where only the first vehicle knows (and follows) 
waypoints toward the target location, while others 
dynamically chaining with, and following the 
previous ones on the move. 

Two-unit Convoy. It is represented by the 
communicating Leader and Follower, where the 
first one defines its movement by a sequence of 
waypoints, and the second one, regularly requesting 
the Leader, moves to the positions previously 
occupied by it, while keeping a certain threshold 
distance. This is shown in Fig. 12, and by the DSL 
program that follows. 

Waypoints

Range

Leader
Follower

Start Leader, 
Follower

 
Figure 12: Two-unit convoy. 

move(start);  
(create(Leader);  
 Waypoints = (w1, w2, w3, …);  
 loop(WHERE = withdraw(Waypoints,1))), 
(create(Follower); sling( 
 Lcoord = (hop(range, any); WHERE);  
 distance(WHERE, Lcoord) > threshold; 
 WHERE = Lcoord)) 

 

Multiple-unit Convoy. A scenario for the convoy 
with any number of chained processes (to be 
materialized by robotic units) is described by the 
following DSL program and depicted in Fig. 13. For 

this case, only the first process is a pure leader and 
the last process a pure follower, while all other 
processes combine both functionalities, i.e. being 
followers for the previous processes and leaders for 
the subsequent ones. 

 

move(start); 
cycle(N < number; create(N += 1)); 
(NAME == 1; Waypoints = (w1,w2,w3,…); 
 Loop(WHERE = withdraw(Waypoints,1))), 
(NAME != 1; sling( 
 Lcoord = (hop(range,NAME-1); WHERE);  
 distance(WHERE, Lcoord) > threshold;  
 WHERE = Lcoord)) 

Waypoints
Range

Leader

Leader
Follower

Leader
Follower

Leader
Follower

Follower

Start

1

5

3

4 2

Nodes:
1, 2, 3, 4, 5  

Figure 13: Multiple-unit convoy. 

5.4 Transport Mule  

Fir this scenario, there are two camps with a certain 
distance in between, and a cargo with a given weight 
should be transferred between the camps. We will 
consider here different possibilities to deliver 
payload between the camps, using unmanned 
vehicles as “mules”.  

In a Single Piece. This may be the case if cargo’s 
weight allows it to be put on a single vehicle, as 
shown ion Fig. 14. 
  Cargo

Campus2Campus1
 

Figure 14: Single piece cargo delivery. 

  Limit
Campus2Campus1

 
Figure 15: Shuttling delivery. 

The related DSL program will be as follows: 
move(Campus1);  
frontal(Cargo) = “substance”; 
move(Campus2); Store = Cargo 

Shuttling between Camps. For this option, the 
process shuttles as often as possible between the two 
camps after partitioning the cargo into portions for 
the weight allowed, unless all the cargo is delivered, 
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as shown in Fig. 15 and by the following program. 
move(Campus1); frontal(Load); 
Cargo = “substance”; Limit = 50; 
loop(or((weight(Cargo) > Limit;  
  Load = withdraw(Cargo,Limit)), 
 (weight(Cargo) > 0; Load = Cargo)); 
 hop(Campus2); Store += Load; 
 hop(Campus1)) 

 

Multiple, Parallel Delivery. For this case, different 
processes (vehicles) are considered to be 
independent from each other, each moving to the 
destination as quickly as possible on its own (see Fig. 
16 and the following program). 
move(Campus1); frontal(Load); 
Cargo = “substance”; Limit = 50; 
cycle(or((weight(Cargo) > Limit;  
  Load = withdraw(Cargo, Limit)), 
 (weight(Cargo) > 0; Load = Cargo))); 
move(Campus2); Store += Load 

Limit

Limit
Limit

Limit
…

Campus2Campus1

 
Figure 16: Parallel cargo delivery. 

Multiple, Convoy Delivery. For this scenario, the 
vehicles, each with a limited partition of cargo, are 
dynamically chaining in a column for a cohesive 
movement towards the destination (see Fig. 17 and 
the subsequent DSL program). 
move(Campus1); frontal(Load); 
Cargo = “substance”; Limit = 50; 
cycle(or((weight(Cargo) > Limit;  
   Load = withdraw(Cargo, Limit)), 
  (weight(Cargo) > 0; Load = Cargo));    
 create(N += 1)); 
(NAME == 1; move(Campus2)), 
(NAME != 1; loop(WHERE != Campus2;  
  WHERE = (hop(NAME-1); WHERE)); 
Store += Load 

Limit Limit Limit …Limit Campus2Campus1

Figure 17: Delivery in a convoy. 

5.5 Explosive Ordnance Disposal 

Explosive Ordnance Disposal (EOD) means the 
detection, identification, onsite evaluation, rendering 
safe, recovery, and final disposal of Unexploded 
Ordnance (UXO) including detonation and burning. 
It is often said that the EOD operation is a 3 Ds one, 
which is Dangerous, Dirty and Demanding (or 
Difficult) job. Using robotic vehicles, especially 

multiple ones, is therefore becoming the most 
promising EOD option.  

Various kinds of EOD scenarios for navigation 
and examination of the target territory may be 
offered. We will just hint here on the simplest two 
options, easily expressible in DSL. 

Sequential Territory Search. This represents a 
single-thread process (oriented on a single vehicle), 
where the whole territory is incrementally scanned 
unless all being searched, as described by the 
following program and depicted in Fig. 18. 

 

X1 X2Y1

Y2

DYStart

Finish

 
Figure 18: Sequential navigation. 

X1 =…; X2=…; Y = Y1 =…; Y2 =…; DY =…; 
loop(WHERE = (X1,Y); WHERE = (X2,Y);   
     (Y += DY) < Y2; WHERE = (X2,Y); 
     WHERE = (X1,Y); (Y += DY) < Y2)  

 

The sequential coverage of the territory can be 
organized with minimum waypoints to pass, in a 
zigzag way, as shown in Fig. 19 and by the 
following program. 

X1 X2

Y1

Y2

DY

Start

Finish

 
Figure 19: Sequential zigzag navigation. 

X1 =…; X2=…; Y = Y1 =…; Y2 =…; DY =…; 
loop(WHERE = (X1,Y); (Y += DY) < Y2;  
     WHERE = (X2,Y); (Y += DY) < Y2) 

 

Another solution, starting from the region’s 
periphery and then gradually moving to its center, is 
shown in Fig. 20, and by the next DSL program. 
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X1
X2

Y1

Y2

Start
DY

DX
Finish

 
Figure 20: Sequential out-in navigation. 

X1 = …, X2 = …; Y1 = …; Y2 = …;  
DX = …; DY = …; X = X1; Y = Y1;  
DDX = X2 – X1; DDY = Y2 – Y1; N = 1;  
WHERE = (X,Y); 
loop(Y += DDY * N; WHERE = (X,Y);  
     X += DDX * N; WHERE = (X,Y);  
    (DDX -= DX) > 0; (DDY -= DY) > 0; 
     N *= -1)Parallel Territory Search. This 

can be represented by a number of independent 
processes, each starting from a different location, 
and navigating altogether the whole region in 
parallel, as depicted in Fig. 21, and explained by the 
DSL program that follows (taking into account that 
all processes follow predetermined routes for this 
case). 

X1 X2

Y1

Y2

DYSt
ar

t

Fi
ni

sh

 
Figure 21: Parallel predetermined navigation. 

X1 =…; X2=…; Y1 =…; Y2 =…; DY =…; 
frontal(Y) = Y1; DDY = 0; 
cycle((Y += DDY) < Y2; DDY += DY);  
WHERE = (X1,Y); WHERE = (X2,Y) 

 

Parallel search of the territory can also be organized 
in a random way, where each process randomly 
chooses its next hop, also taking into account that 
the chosen next destination should not have been 
visited before (at least to look like this, with the help 
of visual sensors). Parallel random search may have 
an advantage before predetermined search in that it 
can eventually cover all the territory despite possible 
failures of individual processes (robots). Such a 
search, with processes starting from some initial 
points (named c1 to c5), where processes also keep 
certain threshold distance from each other, is shown 
in Fig. 22 and by the following program. 

X2Y1

Y2

X1

Range

Random

New

Random
Random

c1

c2

c3

c4

c5

 
Figure 22: Parallel random navigation. 

move(c1, c2, c3, c4, c5); Range = …;  
X1 =…; X2=…; Y1 =…; Y2 =…; D =…; 
loop(New = WHERE + 2(random(-D, D)); 
 inside(New, (X1, X2, Y1, Y2)); 
 hop(New, Range) & seen(New) == nil; 
 shift_check_act(New)) 

6 OTHER APPLICATIONS 

Many other applications of the paradigm are 
possible, as follows, some of which already 
investigated, tested, and published (Sapaty, 1999, 
2002, 2005, 2007, 2008, 2008a; Sapaty, Sugisaka, 
Finkelstein, Delgado-Frias, Mirenkov, 2006; Sapaty, 
Morozov, Sugisaka, 2007).  

Emergency Management. Using interpreters 
installed in massively wearable devices may allow 
us to assemble workable systems from any wreckage 
after the disasters, using any remaining 
communication channels, manual including. These 
emergent systems can provide distributed self-
awareness, collect statistics of casualties, guide the 
delivery of relief goods, and coordinate collective 
escape from the disaster zone. 

Directed Energy Systems. The technology can 
provide high flexibility in organizing directed 
energy (DE) systems, especially in crisis situations, 
making automatic distributed decisions with the 
“speed of light” too. It may also help automate the 
global power dominance by optimized delivery of 
directed energy into any world points via 
dynamically organized networks of relay mirrors.  

Distributed Avionics. Implanting interpreter copies 
into main control points of the aircraft may provide a 
higher, intelligent, layer of its self-analysis and 
recovery, by the spreading recursive scenarios 
starting from any point and collecting & fusing key 
data from other points. The embedded interpretation 
network with local, dynamic, and emergent links 
will be fully functional under any damages, 
especially with wireless communications between 
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the interpreters. This may always provide global 
control integrity, even in a physically disintegrating 
object, helping to save lives and complete missions. 

Sensor Networks. Wireless sensors may be dropped 
from the air massively, as “smart dust”. Having a 
limited communication range, they must operate in a 
network to do nonlocal jobs in a distributed 
environment. With the technology offered, we can 
convert their emergent networks into a universal 
parallel computer operating in DSL. It can 
effectively solve complex distributed problems--
from just collecting and fusing scattered data to 
outlining and assembling images of the distributed 
phenomena like, for example, flooding, smog, flocks 
of birds, movement of troops, etc. 

Advanced Command and Control. In DSL, it is 
possible to define high-level scenarios concentrating 
on mission goals and top decision-making while 
delegating C2 routines, appearing at runtime as a 
derivative of the mission and environment states, to 
automatic interpretation. It is also convenient to 
express in DSL any theoretical and practical issues 
of advanced C2 explicitly. 

Infrastructure Protection. Navigating the systems at 
runtime, the technology can analyze safety and 
integrity of critical infrastructures and key resources, 
establishing protective networked mechanisms 
throughout them. Other systems can be involved 
from the WPT layer for emergent infrastructure 
protection and recovery, including air and space 
defense, police and army. In relation to energy 
infrastructures, the technology can help observe 
power networks from the air or ground, trace 
electric, gas, or oil supply lines, sensing their states 
(and, if needed, directly accessing the disaster 
zones), also providing regular or emergent sentry 
duties at power installations, etc.  

Global and Battlespace Dominance. The DSL 
scenarios, using any electronic media, can self-
spread, outline, and grasp distributed systems of 
different natures while establishing global 
dominance over them. They can analyze their 
internal infrastructures, finding strong and weak 
points, orient behavior, or destroy the infrastructures 
or the system as a whole if required. The approach, 
as an intelligent self-recovering super-virus, which is 
difficult to discover and kill by traditional means, 
can effectively employ advanced robotic facilities, 
like swarms of aerial and ground vehicles, to attack 
adversarial systems. 

7 GESTALT-RELATED 

Our approach may be considered as one of the first 
attempts to formalize and implement the notion of 
gestalt (Wertheimer, 1924), under which the whole 
dominates over parts (being greater than the sum of 
them), with parts having sense only in the context of 
the whole, rather than vice versa. Gestalt theory 
represented the main departure from atomistic vision 
of systems at the beginning of the last century. Many 
existing systems, especially distributed ones, are still 
based on the concept of predetermined parts (agents) 
that communicate with each other in an attempt to 
get the global behavior needed. The latter, with 
rapidly growing number of agents in complex 
systems and starting from the agents level is 
becoming more and more problematic. 

Within the approach offered, we have come to 
quite a different and higher level model of the 
system organization. Abstracting from system parts 
and their interactions, which may be emergent and 
varying at runtime, we can describe the needed 
global system behavior on a semantic level, where 
parts and their interactions may not be known in 
advance, and may dynamically appear (disappear 
too) just to maintain the global behavior needed.  

The technology developed allows us to 
automatically interpret global system scenarios in 
any networked systems (comprising internet hosts, 
laptops, mobile robots, mobile phones, smart sensors, 
and/or humans themselves). It allows us to get even 
higher—to describe what the system should do on 
the highest level, where its local and global behavior 
is a derivative of this description, which, in its turn, 
makes the system structures and operation as a 
further derivative.  

8 CONCLUSIONS 

A novel ideology and technology, converting any 
distributed system into a universal spatial machine 
capable of solving complex problems on itself and 
on the surrounding environments, has been 
presented. This conversion can be achieved by 
implanting into the system sensitive points and its 
active doers, humans and robots including, of the 
same copy of a universal control module, 
communicating with other such modules via 
available channels. Their entire network, which may 
be dynamic and emergent, collectively interprets 
mission scenarios written in a special high-level 
language, which are defining system’s internal and 
external behavior. 
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Created and modified on the fly, the scenarios 
can start from any component, covering the system 
at runtime through the cooperating interpreters. 
During the scenario evolution, any operations can be 
carried out throughout the distributed world, along 
with the needed movement of code, equipment and 
artificial or biological doers, humans including, as 
well as creation and maintenance of physical and 
virtual infrastructures supporting the missions.  

The approach offered can dramatically simplify 
application programming in distributed systems, 
especially robotized ones. As can be seen from the 
examples throughout this paper, programming multi-
robot scenarios in distributed and dynamic 
environments in DSL may not be more difficult than, 
say, programming of routine data processing tasks in 
traditional languages like Fortran, C, or Java.   

The distributed robotized systems are of rapidly 
growing importance in many areas, and especially in 
defense, where robotic swarming on asymmetric 
battlefields is becoming a major dimension of the 
new military doctrine for the 21st century (Singer, 
2009). The written above is much in line with these 
trends, allowing us to flexibly combine loose 
swarming with more classical command and control, 
which can help gradually transform fully manned 
into mixed and ultimately totally unmanned systems. 

Other prospective applications of this work can 
be linked with economy, ecology and weather 
prediction—by using the whole networked world as 
a spatial supercomputer, self-optimizing its 
performance. 

The approach offered may also be compared 
with the invention of the first world computers and 
first high-level programming languages (Zuse, 
1948/49; Rojas, 1997). In our case, this computer 
may not only operate with data stored in a localized 
memory, but can cover, grasp, and manage any 
distributed systems, the whole world including, and 
can work not only with information but with 
physical matter or physical objects too. 
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