
IMPLEMENTING TRUE RANDOM NUMBER GENERATORS IN
FPGAS BY CHIP FILLING

Octavian Creţ, Radu Tudoran, Alin Suciu and Tamas Györfi
Technical University of Cluj-Napoca, 15, C. Daicoviciu street, Cluj-Napoca, Romania

Keywords: True random number generators, FPGA, Electrostatic and magnetic interferences.

Abstract: This paper presents a new method for implementing TRNGs in FPGA devices. The design is based on
filling the chip close to its maximal capacity and exploiting the interconnection network as intensely as
possible. This way, there are strong chances for the design to exhibit a nondeterministic behavior. Our
design is a computationally intensive core that generates 64-bit numbers, accumulated into a normal, fixed-
point accumulator. From the 64-bit words only those bits are extracted that exhibit the maximal entropy.
They are then post-processed using the classical XOR-based bias elimination method. The resulting TRNG
provides high quality random numbers; other advantages of this new method are its stability and the fact
that the design encapsulates all its components in one chip. An explanation of the observed phenomenon is
proposed, based on electromagnetic interferences inside the chip and cross talk. A method for developing
new designs based on this approach is also proposed.

1 INTRODUCTION

The increasing need for random numbers is due to
the emergence of many application fields where
these numbers are indispensable. Random numbers
are useful for a variety of purposes, such as
generating data encryption keys, simulating and
modeling complex phenomena and for selecting
random samples from larger data sets. When
discussing single numbers, a random number is one
that is drawn from a set of possible values, each of
which is equally probable, i.e., a uniform
distribution. When discussing a sequence of random
numbers, each number drawn must be statistically
independent from the others.

A supplementary constraint on the random
numbers is the throughput at which they are
generated. This is also a condition for proving the
randomness itself. In some cases, if a generator only
yields a few numbers, it is almost impossible to
check their statistical properties, because the number
of output values is insufficient.

Although it is impossible to prove that a given
sequence is random, it is possible to conclude that
the sequence is not random. This is done by
performing some statistical tests grouped in batteries
like Diehard (Marsaglia 1996), NIST (Rukhin et al.

2001) and more recently TestU01 (L’Ecuyer and
Simard, 2007).

Most true random number generator (TRNG)
systems rely on physical phenomena to capture
randomness. But after capturing entropy by some
analog device, the signals must be sampled and
digitized to become useful bits. This hybrid
approach has a set of disadvantages: low speed, poor
throughput, high vulnerability against harmful
attacks (this aspect is important especially in
cryptographic applications).

It is thus by far preferable to have the whole
system in one digital chip. But it is difficult to get a
digital system to do something “by chance”. For
instance, a computer is (or should be, if not broken)
completely predictable.

There is a lot of ongoing research for improving
and obtaining new methods to generate true random
numbers, based on software (Drutarovsky and
Galajda, 2007) and hardware (Gentle, 2004)
strategies. There are three main approaches to
generating random numbers using a computer, with
quite different characteristics:
• Pseudo Random Number Generators (PRNGs)

are algorithms that use mathematical formulae
or simply pre-calculated tables to produce
sequences of numbers that appear random. A
good deal of research has gone into pseudo-

167
Cret O., Tudoran R., Suciu A. and Györfi T. (2009).
IMPLEMENTING TRUE RANDOM NUMBER GENERATORS IN FPGAS BY CHIP FILLING.
In Proceedings of the International Conference on Security and Cryptography, pages 167-174
DOI: 10.5220/0002177001670174
Copyright c© SciTePress

random number theory. If the algorithm is
complex and the period of the PRNG sequence
is long enough, it can produce quality numbers.
The advantage is that they are easy to
implement in software; the major disadvantage
is their predictability: for equal external seeds
the output sequence will always be the same.

• Unpredictable Random Number Generators
(URNGs) are algorithms that basically rely on
unpredictable human-computer interaction to
capture entropy. Such examples are the mouse
movement on a given area by a human operator
or the amount of time between keystrokes. Even
though the source is not a truly entropic one (a
good knowledge of the operator’s habits can
ease the prediction of the next event), the results
generated show a good quality and this type of
methods are used in several cryptographic
products (e.g. PGP). By combining several such
entropy sources the results can be improved.

• True Random Number Generators (TRNGs)
produce the random numbers based on some
physical phenomena (e.g. radiation, jitter, ring
oscillators, internal noise etc.) that are digitized.
They do not have an internal state like the
PRNGs and the next generated bit is based
entirely on the physical process. In general
these bits are not uniformly distributed (the
probability of a ‘1’ is not 50%) so they require
some post processing in order to reduce the
bias.

The main difference between PRNGs and
TRNGs can be seen as follows: in a PRNG anyone
can predict with 100% accuracy the next state based
on the current state, while in a TRNG nobody can do
that (even its designer).

At this moment, three main techniques were
reported in the literature for creating TRNGs:
• Ring oscillators (ROs): basically, this method is

exploiting the jitter of a clock signal in a purely
digital design (Kohlbrenner and Gaj, 2004),
(Schellekens et al. 2006);

• Direct amplification of the noise that is intrinsic
in analog signals: this method relies on the
amplification of the shot noise, the thermal
noise, the atmospheric noise or the nuclear
decay. The noise is amplified and then, using
comparators and analog-to-digital converters,
bits are “extracted” from it (Jun and Kocher,
1999);

• Chaos-based TRNGs: this method is based on a
well-defined deterministic analog signal that
exhibits chaos. Existing implementations

exploit Markov’s chaotic sources theory
(Drutarovsky and Galajda, 2006) and use mixed
analog-digital chips.

In this paper we report an empirical discovery:
the possibility to obtain high quality TRNGs in
FPGAs by almost completely filling the chip with
active logic and intensely using the interconnection
network. This way, a design that should work
deterministically starts exhibiting a nondeterministic
behavior. We measure the quality of the random bits
obtained this way and propose an explanation of the
observed phenomena. Finally, we propose a new
method for implementing TRNGs in FPGAs based
on these observations.

2 RELATED WORK

There are systematic efforts for creating RNGs both
in software and hardware. Few TRNGs exist
nowadays in software, because of the problems they
face with and due to the reduced number of true
sources of randomness. Such problems are for
instance the throughput – for generators which rely
on user’s actions, or the strong dependency on some
computer hardware components – e.g. the network
card activity. Even a generator which does not
depend on such inefficient factors – like the one
proposed in (Colesa et al., 2008) – faces difficulties
regarding the dependency of the output sequence on
the environment of the workstation on which it was
obtained.

The hardware methods proved to behave better
than the software ones, but they also face sometimes
problems like portability or sensibility to physical
environment factors.

FPGAs are emerging as an attractive platform
for cryptographic implementations, offering benefits
such as:
• compactness: the generator is embedded in a

single chip;
• fully digital: the ideal source of entropy is a

digital signal, not a mixed analog-digital one;
• low development costs;
• reduced time-to market.

One of the first FPGA-based implementations
was proposed in (Fischer and Drutarovsky, 2002),
where the oscillator jitter was used as the entropy
source. The system was based on PLLs (Phase
Locked Loop, a component available in Altera
FPGAs and used for frequency synthesis and clock
skew reduction) in which very fine control of the

SECRYPT 2009 - International Conference on Security and Cryptography

168

output frequency is possible. Unfortunately, this
implementation is limited to Altera FPGAs.

A reliable FPGA vendor-independent
implementation of TRNGs is based on ring
oscillators (ROs) and on the exploitation of jitter.
An RO is a circuit composed of an odd number of
inverters connected to form a ring (i.e. the output of
the last inverter is connected to the input of the first
one, in a “circular” manner). The RO can also
contain Latches, to allow the fine tuning of the
propagation delays inside it. In all implementations,
at least a pair of ROs is necessary.

There are two main methods of using ROs for
building TRNGs:
• One of the ROs is sampling the other one – this

method was proposed in (Kohlbrenner and Gaj,
2004)

• The ROs are working independently, in parallel,
and the entropy is collected from them by
means of an XOR gate – this method was
proposed by (Schellekens et al., 2006) and
further developed by (Klein et al., 2008).

3 A NEW METHOD FOR
CREATING ENTROPY

The method we introduce here was empirically
discovered while working at another design. Even
though the underlying phenomenon is not new, the
possibility to exploit it in a coherent and useful
manner was a surprise.

It is common knowledge between experienced
designers that problems can arise when a design fills
the FPGA chip almost completely. After 90% of
logic resources consumption, strange manifestations
can appear: a design that used to work fine becomes
totally unpredictable after extending it with more
logic blocks. In short, the design becomes
nondeterministic after passing a “fill threshold” in
the amount of logic resources used.

The concept of “design usage percentage”
usually refers to the amount of active logic that is
used in the design. In our opinion, for this design
one must also consider the concept of
“interconnection network usage”, with a particular
accent on the number of repeaters that are used. The
two concepts are related, but the latter is more
important in TRNGs design using the method
presented in this paper.

Unfortunately, it is not clear where this threshold
is positioned, because there are also many designs
that behave normally (i.e., completely deterministic,

as expected) even if almost 100% of the FPGA chip
is used. However, the nondeterministic behavior
around 90% of chip usage is a phenomenon that
occurs too often to be ignored.

We discovered such a behavior while working on
a complex design that implies creating a multi-stage
pipeline of arithmetic floating-point operators. This
design’s block structure is shown in Figure 1.

The floating-point operators used are well-tested,
completely reliable (i.e. deterministic) ones, as
developed in the FloPoCo project (FloPoCo, 2007).
The design was aimed at computing some physical
parameters of a medical device for stimulating the
human nervous tissue (Creţ et al. 2008). We used a
Digilent XUP board featuring a Virtex2Pro30 FPGA
device and the Xilinx ISE 8.1 software.

At the beginning, the architecture was
completely deterministic (all components were
tested separately and they clearly manifested a
deterministic behavior).

This design implements a very computationally
intensive algorithm and the pipeline produces a new
number in each clock cycle. Because of some
research we did on the final results’ precision (De
Dinechin et al., 2008), we tried to improve the final
accumulator, so we designed a new one.

Of course, the results obtained by the new
accumulator had to be compared with those
produced by the old one. That is why we added the
new accumulator in the design, on 64 bits instead of
32, working in parallel with the old one (Figure 1).

At this point, the “fill threshold” mentioned
above was reached, and the design became
nondeterministic. The same .bit file downloaded into
the FPGA device produced each time a different
final result, both from the old accumulator and from
the new one.

To observe rigorously this phenomenon, we first
tested this 150 times: at each time the final result
was different. As the final result is on 64 bits, we
observed that differences in the final results
appeared after the two most significant hexadecimal
digits. The same test was done on several identical
boards, and in all cases, without exception, the
results were different at each run.
It is important to mention that as soon as the
additional accumulator (the improved one) was
removed, the design became deterministic again.
When adding it back, the design became
nondeterministic, etc.

Trying to understand what happens, we have
created a very simple debugging environment
(Figure 2).

IMPLEMENTING TRUE RANDOM NUMBER GENERATORS IN FPGAS BY CHIP FILLING

169

32

Pipeline interface (takes data from the
memory and passes it to the pipeline)

Memory

containing point
coordinates
(X, Y, Z)

Pipeline

 + Regular
Floating-point
accumulator

Improved +
Accumulator

Pipeline result

Final result Final result 64

Figure 1: Architecture of the first design.

Pipeline interface (takes data from the
memory and passes it to the pipeline)

Main memory

containing point
coordinates
(X, Y, Z)

Pipeline

+ Regular
Floating-point
accumulator

Improved +
Accumulator

Pipeline result

Final result Final result

VGA
display

PC PC

VGA
controller

VGA
controller

PC transmission
controller

VGA
display

Cache memory

Computational
core

32 64

 64

32 64

Figure 2: The simple debugging environment.

The intermediate results were captured in the PC
and also monitored on a VGA display. The operating
mode was simple: the computational core and the
transmission module work simultaneously. But the
former is faster than the latter; therefore, after the
computational core fills the cache memory, it must
be stalled until the transmission module empties the
cache memory and transmits all data to the PC. After
the cache memory is emptied, the computational
core is restarted. So, the transmission module works
all the time, while the computational core must

periodically be stalled. Still, the VGA display allows
monitoring the results produced by the
computational core before being cached.

During debugging the following abnormal
behavior was observed:
• The same one-bit signal was displayed on two

different rows of the VGA display: it was ‘0’ on
the first row and ‘1’ on the second one, as
shown in Figure 3.

• During a functioning cycle while the
computational core was stalled, the signals
displayed on the VGA screen changed at
apparently random moments of time, even
though the computational core did not receive
clock impulses. Of course, this means the
corresponding registers modify their content in
the absence of a clock impulse.

• We have displayed the value of the “pipeline
result” signal sent to the improved accumulator
and to the initial accumulator, and it was not the
same value.

Signal (S)

0

1

VGA display FPGA chip

Q D

CLK

Figure 3: Example of abnormal behavior: the signal S
appears to be simultaneously ‘0’ and ‘1’.

In our opinion, these phenomena are due to cross
talk and other electrostatic or magnetic interferences
that appear in the interconnection network, as
detailed in Section 7.

4 EXPLOITING THE
NONDETERMINISM

We reflected about how to use in a creative manner
this phenomenon.

As we were doing some research on random
numbers (TRNGs) (Suciu, 2007) we asked ourselves
if there is any way we could exploit this and capture
all the intermediate numbers generated by the
computational core, not only the final result. If these
numbers have all the necessary statistical properties,
the system could be successfully used as a TRNG,
because the throughput is relatively high.

Another advantage is the fact that the numbers
produced by the computational core and
accumulated in the improved accumulator are 64-bit

SECRYPT 2009 - International Conference on Security and Cryptography

170

wide, aspect that allows selecting from them only
the groups that change the most.

We had to select numbers that fulfill the
following conditions:
• Show significant differences from a run to

another – since the design is nondeterministic,
how can one be sure that the numbers, even if
they pass the statistical tests, are different in
consecutive runs?

• Show good statistical properties – i.e. do they
pass all the tests from the universally accepted
test batteries?

The first question was capital for the quality of
the TRNG. We compared successive runs and
discovered that at the beginning the numbers
generated by the computational core are identical,
but after less than 2% of the generated test file they
started being different and continued to be different
until the end of the execution. We can consider this
first period (from the beginning until the first
interference appears) a warm-up of the TRNG.

After series of testing their statistical properties,
we have concluded that not all the bits show the non
deterministic behavior with the same rate. The
phenomenon that determines the nondeterministic
behavior of the design seems to affect more often the
middle bits of the Accumulator from 39 to 8 (Figure
4). These will be the TRNG’s raw random numbers,
because they obtain the best scores when tested.

63 54 53 48 47 40 39 32 31 24 23 16 15 8 7 0

Final results from
the computational

core

Improved
accumulator

Figure 4: Bits with the best statistical properties from the
randomness point of view.

An interesting aspect is that nondeterminism can
not be located in the architecture: it is impossible to
say that it appears in the computational core, in the
accumulators or in the PC transmission module. We
have tested several variants of PC transmission
modules (RS-232 and Ethernet), and several
accumulators (we added more “improved
accumulators” in the design, in parallel with the ones
from Figure 2, but we didn’t operate changes at the
level of the computational core). Every time, for all
combinations, the nondeterministic character of the
whole design was preserved.

5 BUILDING A HIGH QUALITY
TRNG

Based on the above described phenomenon, we
developed a hardware TRNG. The randomness
shown by the nondeterministic design is still not
enough to pass rigorous statistical tests like NIST
and TestU01. We can thus consider these numbers to
be raw numbers with high entropy, but the level of
entropy is still insufficient to make them acceptable
as high quality random numbers. Therefore, we had
to add a post-processing unit to improve the quality
of the numbers produced by the architecture.

The most popular post-processing methods
nowadays are the von Neumann (Jun and Kocher,
1999) and the XORing (Fischer and Drutarovsky,
2002) methods. We opted for the XOR method,
which takes n bits and XORs them together, thus
producing one bit. XORing is a popular post-
processing method offering multiple advantages,
like bias reduction and entropy development (by
XORing deterministic with non-deterministic bits,
the result will be non-deterministic).

If XORing is applied on more than two bits, even
greater improvements can be achieved. The
drawback of XORing is that it reduces the bit
generation rate by a factor of n (where n is the
number of bits XORed).

 X

 X
Random numbers

Xor
operator

 63 54 53 48 47 40 39 32 31 24 23 16 15 8 7 0

Final results from
the computational

core

High entropy
raw numbers

 X

Post-processing
unit

Figure 5: The XOR-based post-processing unit.

The design was thus extended with a XOR-based
post-processing block, as shown in Figure 5. As one
can notice, only the groups of bits having the best
chances to pass the statistical tests were selected to
enter the post-processing unit. We have used only
the results produced by the improved accumulator.

After the end of the exploratory steps, the
debugging environment (the VGA display) was no

IMPLEMENTING TRUE RANDOM NUMBER GENERATORS IN FPGAS BY CHIP FILLING

171

longer necessary. We noticed that removing the
debugging environment and adding the post-
processing unit does not affect the system’s
nondeterministic character – Figure 6.

6 TESTING AND RESULTS

The proposed TRNG possesses a strong physical
source of entropy that is completely reliable and
shows some interesting additional features.

We have developed this TRNG on a Virtex 2 Pro
FPGA device. The random behavior was observed
on 150 tests of the same architecture (the same .BIT
file was downloaded on the FPGA chip and the
application was launched 150 times); all tests
yielded different final results (a short excerpt is
presented in Table 1).

Pipeline interface (takes data from the
memory and passes it to the pipeline)

Main memory

containing point
coordinates
(X, Y, Z)

Pipeline

+ Regular
Floating-point
accumulator

Improved +
Accumulator

Pipeline result

Final result Final result

PC

PC transmission
controller

Cache memory

Computational
core

XOR-based
post-processing unit

Figure 6: Complete scheme of the TRNG.

All tests were done on several Digilent XUP
V2P30 boards (so this phenomenon does not occur
only on one particular FPGA chip). The working
frequency was of only 45MHz, which excludes
overclocking as a source of entropy.

We observed that the design is nondeterministic:
both the final value obtained in the improved
accumulator and the sequence of intermediate
numbers are different from a run to another.

Table 1: Short excerpt of the results generated by the
nondeterministic design.

Test
no.

Final value in the improved
accumulator

Final value
in the initial
accumulator

1 43EF5C23E955001C 4BB7D363
2 43EA36059DDAFEFF 4BB7D99D
3 43E3F5FEFBA49059 4BB7BD16
… … …
150 43D664FABB240B66 4BB7A1DE

We have also compared consecutive runs
(separated by a physical shut-down of the generator)
and computed the similarities between the numbers
occurring on the same position in each sequence. If
the generator is non-deterministic, then the
proportion of identical bits from different runs
should be equal with the probability that two random
bits are equal, i.e. 50%. In Figure 7 we present this
proportion.

Proportion of identical bits

48
49

50
51

52

0 1000 2000 3000 4000
Blocks

P
ro

po
rti

on
 (%

)

Figure 7: Proportion of identical bits in consecutive runs
(separated by a shutdown).

This proves that the TRNG does not tend
towards the same sequence of numbers, giving the
possibility of using it for an infinite period of time.
The generator has some coincidences at the
beginning, but after a very short warm up period of
approximately 100K numbers (with very small
variations from a run to another), the sequence of
values is clearly different. The length of the warm
up period is very small compared to the running
period of the generator.

This offers a great entropy source since neither
the occurrence of the phenomenon or its amplitude
(locally or globally) cannot be predicted.

For validating the results the NIST (Rukhin et al.
2001) and TestU01 (L’Ecuyer and Simard, 2007)
tests were used. We have applied these tests on more
than 40 sequences of outputs, testing different
lengths (between 256 KB to 200 MB). The outputs
were obtained from several Virtex 2 Pro FPGA
boards, since the architecture does not rely on any
isolated malfunction of one particular board. More

SECRYPT 2009 - International Conference on Security and Cryptography

172

than 98% of the sequences passed all the NIST tests
(there were situations when some instances of the
tests weren’t passed, but the number of failed
instances is limited – 5 out of 186 instances), and
also all the TestU01 tests. The failed instances were
not the same, and also the number of instances
varies, so there isn’t any pattern in the TRNG which
causes this. Statistically, even a TRNG can produce
sequences of outputs on which isolated tests can fail,
because of what looks to be a pattern, but since this
doesn’t repeat on multiple executions (different
outputs), this phenomenon is considered normal and
doesn’t question the quality of the RNG.

7 SOURCE OF RANDOMNESS

Our method consists in filling the chip closed to its
maximum capacity (using almost all its logic and
interconnection resources). This way, the
interconnection network will be used close to its
maximal routing capacity. It is well known that the
interconnection network occupies about 90% of the
physical space in an FPGA chip; if used close to its
maximal capacity, the electrostatic field can produce
serious interferences. Figure 8 shows the device
utilization summary produced by Xilinx tools.

Selected Device: 2vp30ff896-6
Number of:
Slices: 13380 out of 13380 100%
Flip Flops: 15350 out of 27392
56%
4 input LUTs: 24156 out of 25427 88%
BRAMs: 130 out of 136 95%

Figure 8: Synthesis report of the design.

We believe that the nondeterminism is caused by
electrostatic and/or electromagnetic interferences
generated by the full usage of the interconnection
network. It could be a cross talk between parallel
lines as well as a global influence caused by the
electrostatic field.

A strategy consisting of filling the FPGA chip
close to its maximal capacity increases the chances
for this phenomenon to take place. The happening of
this phenomenon does not ensure that the values
carried by the wire will always be modified. Its
influence can also be just a local one, so two
different receivers can read distinct values from the
same connecting wire. The uncertainties which rise
from this physical phenomenon ensure us with a
very good source of entropy.

Another possible explanation (although we tend
to give credit to the first one) would be that the
maximal fan-out of the FPGA chip is exceeded
because of the large number of Flip-Flops used in
the design.

We believe this could constitute a novel
methodology for designing TRNGs in FPGAs:
1. Create a design that performs intense

computations (preferably a pipeline on at least
64 bits) and produces a new number in each
clock cycle.

2. Make this design big enough to fill the FPGA
chip close to its maximal capacity (use as many
slices and Flip-Flops as possible).

3. Try to use the interconnection network at its full
capacity. This can be done by setting the routing
effort to “low” in the synthesis tools and by an
adequate usage of the placement constraints
(LOC, RLOC etc.). Use the “one sender-
multiple receivers” model.

If the fill threshold is reached, the design has
good chances to become a high quality TRNG.

The classical methods based on ROs are very
sensitive to a fine tuning of the ROs, which should
have almost equal periods (Kohlbrenner and Gaj,
2004). It is known that ROs are sensitive to
temperature; this can seriously affect the quality of
the generated random numbers. On the contrary, in
the present design the entropy level increases with
the temperature or any other extreme condition
which could influence the chip (like radiations, etc.).

8 CONCLUSIONS AND FURTHER
WORK

We have presented a new way of implementing
TRNGs in FPGA devices. Our design is based on
filling the chip close to its maximal capacity, from
the Flip-Flops and slices point of view, and
exploiting the interconnection network as intensely
as possible. This way, the design becomes
nondeterministic.

The design is a computationally intensive core
that produces 64-bit numbers, accumulated into a
normal, fixed-point accumulator. From the 64-bit
words we extract only those bits that exhibit the
maximal entropy and post-process them using the
classical XOR-based bias elimination method. We
consider this an interesting way of exploiting a
phenomenon that otherwise is neglected or avoided
by most designers.

IMPLEMENTING TRUE RANDOM NUMBER GENERATORS IN FPGAS BY CHIP FILLING

173

The resulting TRNG was proven to provide high
quality random numbers and we also believe it has
the advantage of resisting to extreme functioning
conditions (temperatures and radiations), which can
only increase its quality. Other advantages of this
new method are its stability and the fact that the
design encapsulates all its components in one chip,
thus increasing the generator’s security. Since it
does not depend on any external factors, an attacker
cannot intervene in any way to study it in order to
make any prediction about the source of
randomness.

The design (in the form of a .BIT file) can be
freely downloaded from (Suciu, 2007) together with
an Installation Guide, so it can be tested by anyone
who wants to convince him/herself about its
nondeterministic behavior.

We have also proposed a method for developing
new designs based on this approach, which are
FPGA vendor independent. The only drawback of
this method is that the FPGA chip will be used at its
full capacity, which will make it impossible to
implement anything else in the same chip.

Future work will focus on constructing a generic,
device-independent architecture which could be
applied to any FPGA by only modifying the generic
variables in order to completely fill the chip.
Another research direction will be to compare this
TRNG with other generators, when exposed to
external factors (temperature variations, radiations,
current fluctuations) to determine the stability of
each method.

ACKNOWLEDGEMENTS

This work was supported by the Romanian National
Centre for Program Management (CNMP) under
grant nr. 11-020/2007 (the CryptoRand project).

REFERENCES

Marsaglia, G., 1996. DIEHARD: Battery of Tests of
Randomness. [Online]. Available:
http://stat.fsu.edu/pub/diehard/

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.,
Leigh, S., Levenson, M., Vangel, M., Banks, D.,
Heckert, A., Dray, J. and Vo, S, 2001. A Statistical
Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. NIST
Special Publication 800-22 (with revisions dated May
15, 2001). http://csrc.nist.gov/rng/SP800-22b.pdf.

L’Ecuyer, P. and Simard, R., 2007. TestU01: A C library
for empirical testing of random number generators. In

ACM Transactions on Mathematical Software,
33(4):22.

Drutarovsky, M. and Galajda, P., 2007. A robust chaos-
based true random number generator embedded in
reconfigurable switched-capacitor hardware. In
Radioelektronika, April 2007.

Gentle, E. J., 2004. Random Number Generation and
Monte Carlo Methods. Springer.

Kohlbrenner, P. and Gaj, K., 2004. An Embedded True
Random Number Generator for FPGAs. In
Proceedings of the ACM/SIGDA 12th International
Symposium on Field Programmable Gate Arrays,
Monterey, California, pp. 71-78.

Schellekens, D., Preneel, B. and Verbauwhede, I., 2006.
FPGA Vendor Agnostic True Random Number
Generator. In Proceedings of the International
Conference on Field Programmable Logic and
Applications, Madrid, pp. 1-6.

Jun, B. and Kocher, P., 1999. The Intel Random Number
Generator. Cryptography Research, Inc. White Paper
prepared for Intel Corporation:
http://www.cryptography.com/resources/whitepapers/I
ntelRNG.pdf.

Drutarovsky, M. and Galajda, P., 2006. Chaos-based true
random number generator embedded in a mixed-signal
reconfigurable hardware. Journal of Electrical
Engineering, vol. 57, no. 4, pp. 218-225.

Coleşa, A., Tudoran, R. and Bănescu, S., 2008. Software
Random Number Generation Based on Race
Conditions. In Proceedings of the 10th International
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing SYNASC’08, Timişoara,
Romania.

Fischer, V. and Drutarovsky, 2002. True random number
generator embedded in reconfigurable hardware. In
Proceedings of the Cryptographic Hardware and
Embedded Systems Workshop (CHES), pp. 415-430.

Klein, C., Creţ, O. and Suciu, A., 2008. Design and
Implementation of a High Quality and High
Throughput TRNG in FPGA. In Proceedings of
DASIP’08 Conference on Design and Architectures
for Signal and Image Processing, Université libre de
Bruxelles, Belgium, pp. 52-56.

FloPoCo project, 2007: http://www.ens-
lyon.fr/LIP/Arenaire/Ware/FloPoCo/ .

Creţ, O., Trestian, I., De Dinechin, F., Darabant, L.,
Tudoran, R. and Văcariu, L., 2008. Accelerating The
Computation of The Physical Parameters Involved in
Transcranial Magnetic Stimulation Using FPGA
Devices. In Romanian Journal of Information, Science
and Technology, vol. 10, no.4, pp. 361-379.

De Dinechin, F., Detrey, J., Creţ, O. and Tudoran, R.,
2008. When FPGAs are better at floating-point than
microprocessors. Sixteenth ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, Monterey, California.

Suciu, A., 2007. The CryptoRand project http://crypto-
rand.utcluj.ro.

SECRYPT 2009 - International Conference on Security and Cryptography

174

