Planning Process Instances with Web Services

Charles Petrie

Stanford University, Stanford, CA, U.S.A.

Abstract. Planning is an important approach to developing complex applications
composed of web services, based upon semantic annotations of these services.
Despite numerous publications in recent years, the problems considered in the
literature typically do not require planning as it has been well-defined in com-
puter science. This could lead to confusion about which technologies are being
designated, and raises the question of what whether planning is an appropriate
technology for services.

We describe the essential features of planning technology and note its advantages,
which include the dynamic synthesis of processes and the lack of need to verify
the correctness of the message exchange.

We show that planning technology really is necessary by giving an example of
web service composition that cannot be solved with simpler technologies as could
previously published examples.

We describe the basics of adapting planning to web service composition. We re-
strict its use to process instance synthesis in order to simplify exploration of some
fundamental issues. A major issue is that web services are usually incompletely
modeled. We illustrate this with a second example. We show some additional se-
mantic annotations of web services can be used to solve the problems similar to
the example when used in conjunction with re-planning.

1 Introduction

We begin by defining “web services” as a general technology of remote procedures in-
voked with common Internet protocols conforming to descriptions of at least inputs and
outputs in some machine-readable Internet generic syntax and accessible with common
Internet protocols[3]. This definition captures the distinctive properties of this class of
technology and the salient properties needed for planning: a description of the service
that can reasoned about prior to service execution. Such a general definition also avoids
being tied to particular protocols and syntax that are popular among industrial software
developers at any given time but includes them.

These input and output descriptions can be thought of as semantic annotations, when
they are sufficiently declarative, similar to the information required for planning. It is
necessary in general to further add preconditions and effects to service descriptions to
apply planning technology. With such semantic annotations, planning has the poten-
tial to synthesize automatically processes composed of web services using well-known
techniques.

Petrie C. (2009).

Planning Process Instances with Web Services.

In Proceedings of the Joint Workshop on Advanced Technologies and Techniques for Enterprise Information Systems, pages 31-41
DOI: 10.5220/000217140031004 1

Copyright © SciTePress

32

2 Process Instance Synthesis

The general problem of synthesizing programs is very haddsarf one would like to
construct arbitrary applications using web services, phalblem will be almost as hard
even if web services have the advantage of being componétitgestricted inputs
and outputs. Thus we would like to further restrict the kindishese applications in
certain ways. Often this is done by saying the output must\welaservice itself, or a
workflow in some particular format, such as WS-BPEWe start with an different but
strong restriction.

In general, a planning problem always has a goal state of tirédvexpressible
in some form of logic. Our restriction is that we will only csider service planning
problems in which all of the variables in such a goal are mstted. Some of the
discussion may indeed apply to goals with free variableswaionly require logical
propositions for the goals of the planning discussed infihjser.

The plans that result from composing web services togethestitute a process.
Such a process consists of calling a designated set welzagiini a certain order with
particular inputs. When the goal has fully instantiatedatales, we will call the result-
ing plan aprocess instance

One reason for this restriction is that classical planninly deals with such fully
instantiated goals. In the so-called “blocks world”, we $lagt we want to achieve a
state in which block#\, B, andC are stacked in a certain order. The science and tech-
nology of planning in this completely modeled world is we#veloped and understood.
We would like to apply such planning directly to planning weatsvices and can almost
do so, if we have instantiated goals. We do so by declaring¢hé@ces to be planning
operators, corresponding to those in the blocks world sa¢BBACK ?X ?Y)

Another reason is pedagogical. Some technologies workvelale algorithms for
automatically synthesizing workflows. We restrict plargiio automatically synthesiz-
ing a process that would be a single instance of such a workflbespower is still the
same and the issues of planning can be more easily explored.

The utility of this restricted approach is still significa@iven a goal state, some
information about the constraints governing the processdbapon business logic, and
the current state of the world, including databases, ptapoan synthesize a single-use
process that achieves the goal if such a process is posEheresult is the same as
if the workflow were re-generated each time in response tagdconditions, except
that the problem is simpler. The resulting process, as wi Sbg, is guaranteed to be
correct.

3 Planning

For general purposes, it will suffice to say a planning tetdghas the capability to
reach some goal staté; from some initial state, by ordering instances of perfor-
mance of some subset of actiohd;}. Each action may change the state of the world:
it haseffects Conditions that were previously true may no longer be truthé state

1 Business Process Execution Language for Web Services: ://thtips.oasis-
open.org/wsbpel/2.0/0S/wsbpel-v2.0-0OS.htmi

33

that exists after the action is performed. Such effects nfi@gtathe preconditionsof
other actions in the plan: conditions necessary for th@adt be correctly performed.

In a correct plan, the the preconditions of each action irotder are satisfied in the
state in which the action is called. There are a number of &imations of planning in
the literature published over the last thirty years, attleassistent with our informal
characterization. The situation calculus[1] is a variainthis general description that
avoids defining a state but is otherwise consistent with #seidption above.

Some planners perform planning by deductive synthesignitst elegant version
being situational calculus. The sequence of actions istngeted as a proof of the goal
state. When so proven, a correct plan is alsondin the logical sense. This has the ad-
vantage that no further properties about the the messagkar®yed among the services
need be verified: the message exchange implicitly definedhéyplan is necessarily
deadlock-free and will terminate.

There may be service composition approaches that do naotraoha plan by proof.
In order to avoid specifying the technology used for plagnime characterize a plan-
ner as a technology that given a planning problem, can pedyalan that could be
formalized as a proof of the goal.

However a plan consisting of the action sequefidg} = {Ay,...4,,...A,} for
goal G is synthesized, it is a correct plan whe@4,, S;), whereS, denotes théth
state, in whichA; will be called,preconditions(A;, S;) A ef fects(A;, Si+1) where
Sit+1 is the successor state in whieh,; will be called; andGy A {A4,} = Gy.

But then do we require a planner to be complete? There arelewmers that can
solve any planning problem for which there is a solution. Bute do not require a
planner to be complete, then what is to keep us from claimipgréicular technology
is a planner when it simply reproduces a previously prograchsolution to a single
problem when given it? And there are different classes ofmpleg problems. Research
needs to be done to define such classes and say that a plaamamer for that class
if it can solve all of the problems in that class, or perhapssIrestrictive, at least an
infinite number of them. But we ignore such issues for now amtentrate on the idea
of creating a correct plan.

4 Simple Web Service Planning

Now let us proceed to describe a simple web service plannérdtystating some fun-
damental assumptions.

A plan consists of a partial order of web service calls, whigsults in a partial a
set of states ordered by the relatismbsequent-. Let (p = a,.5) denote that input
or output property has values in stateS. It would be more elegant to make these
special cases of preconditions and effects, but we havedfdwefficient to treat them
differently.

Let servicelVg be called in staté; with some inputs and preconditions , and return
outputs and effects in stafg;. ThenS; < Sy; V p, (input Wg p), 3a | (p = a, S:);
andvp, (Output Ws pb), (p = b, Sy).

This b is not the unknown value at execution time but rather a skiziation of that
value.

34

Further, there is nepoiling we have the persistence frame assumptigps=
U,,Sk) = (p:a,SZv)/\(Si < Sk)/_aSj,(pr,Sj) | S < Sj < Sk/\a;éb.

We may haveconstraintsthat are service-specific or global conditions that refstric
property values and service calls in state sequenceraferenceshat are property
values and service calls in some state sequences whichedegrpd.

For a really simple planner, we would like to have the metast@int of single-
valued propertiesa((p = a, S) A (p = b, S)). However, the alert reader will see that
such a seemingly innocuous assumption will cause a probigmowr simple formula-
tion: you can'’t use the property names twice in successatest

Suppose the plan is to withdraw money from Johnny’s accaustateS;. The
Bal ance in 5; is, say 100. The next step in the plan to deposit money in Feank
account. What is the input value fBal ance in S;?

The mistake in the formalization above was in conflating tieb gervice part names
with the actual object property. Our formulation shouldp® = a, S), whereo is the
object of whichu is the value of the propertyin stateS. We shall have to have separate
objects that represent Johnny’s And Frankie’s accountsiimplan representation.

With that refinement, we can now talk ab@ainditions These will be described by
fluents which are relations upon features of the state of the wamldn(A, B), On
is a fluent.

Since our inputs and outputs correspond to the blocks waddndition will consist
of a fluent and a set of such properti¢sp.o = a)}. If we want such a condition to
hold in statesS;, we will say fluent({(p.o = a)}, S;). The preconditions and effects of
web services are such conditions. We can make inputs andtsuggkind of condition
as well by using the distinguished fluéntow to say that the condition is that we know
the values of these properties in a state.

We can now give aimplepseudo-algorithm for composing web services to achieve
agoal.

PlanSingleGoalConditiorn(Sy, Sg, G,):

P1.Given Goal of some single conditiah = F, ({(p.o = a)}, Sf), a set of preferences
and constraints over the solution that are fixed, and candifiC; } true in initial state
S,, call procedure.

FindGoal(Sy, Sr, G,):

F1. Attempt to prove tha is already true in the target stasg, whereS, < S;.

F1.11f true, returnSy.

F1.21f no proof is possible, find the set of web servidé§s} to be called in staté;
with an effect, or output (i¥, = know), Eo such thati unifies with Eo for eachiWg

in the set.

F2. Select oneJVg, from among the equivalence set of services that conforms co
straints of the problem, selecting first those that confolsp & the problem prefer-
ences. Do not use any previously selected in the next stap.rfore exist, fail.

F3. Attempt to unify the inputs, outputs, preconditions, effeaf Wg with G.

F3.11f one will not unify,or if a constraint is violated, fail wit1¥s and select another
in F2.

F3.21If successful withiVs, Mark the effects and outputs as being true in stgtand

35

the inputs and preconditions as being true in sfaf¢hatS; < Sy, and thati?'s was
called inS;. ReturnS;.

End of FindGoal

P2.Let {Conditions} be the set consisting of each preconditighof W as currently
instantiated, and, for each input¥fs, I =7value, perhaps with variablévalue bound
by unification so far, add t§Conditions} G’ = know(I =?value, S;). Then order
the set{ Conditions} so that the Input conditions are selected first in the nepsste
P2.1Select the firsGG’ € {Conditions} and letS,. = FindGoal(Sy, S;, G'})).

P2.2If the last call toFindGoal failed, fail.

P3.1f S, results in new states and unifications, propagate new itistiams of variables
in the inputs to the preconditions, outputs, and effectd’gfin statesS; andS;. Repeat
P2 with the rest of{ Conditions} until all are done.

P4.Return the call o5y and all other states and calls as marked.

End of PlanSingleGoalCondition

The only reason that inputs and outputs are distinguishedittons and that inputs
are attempted to be achieved before preconditions is sithplyit is often efficient to
do so, since preconditions may have arguments consistisgvefal of the inputs.

This simple procedure suffices for many cases of web sergogosition prob-
lems. However, this is not yet planning because it does raltwligh conjunctive goals
in which multiple conditions should be achieved in the gaates which is what makes
planning hard.

5 A Simple Web Service Planning Challenge Problem

A web service planner should to be able to handle many welicegolanning problems
with the kind of action effect/precondition interferen@guired to solve the famous
Sussman anomaly[8], which is caused by conjunctive golaésjrtdividual plans of
which interfere with one another.

The simple procedure defined above is a constructive one wageo make it a
planning algorithm would be to modify it so that given a castfimong conjunctive
goals, it would either make a new subplan or re-sequencaudttert action sequences.
This would make it a goal-regression[7] planner. There dheroways to solve this
problem. Any procedure that completely explores the spéedl possible action se-
guences will also solve conjunctive goals though this mainegicient.

Being able to solve conjunctive goal problems like the Swssanomaly is a fun-
damental test. If it can'’t, it's not a planner. At least thésttfor planning gets us beyond
analogous US Supreme Court method of recognizing pornbgriat “we’ll know it
when we see it?

Many, if not most, web service planning problems in the éitare do not seem to
require planning with conjunctive goals, or even precaadg and effects other than
the inputs and outputs of web services. For instance, [3] ocohsiders the inputs and
outputs of web services together with the fluent “know” agprelitions and effects, but
these inputs and outputs can never interfere with each.d®farning is not required.

2 Jacobellis v. Ohio, 378 U.S. 184, 197 (1964)

36

We contribute here the outline of a web service problem thgtiires planning,
possibly unique in the web service planning literaturesméiguirement to handle action
effect/precondition interference.

Consider the following supply chain problem for car mantifeer CENTRAwhich
provides a CD player with a CD dispenser in its cars. SuppieCDs offers a CD
player that it has already connected to a power supply. mPARCDs offers a CD
dispenser. All of these systems use a unique connectiomdéndy that allows both
power and signal to flow among the daisy-chained componeiish may be con-
nected in any order. The physical connections are uniguetodmpany that makes the
connections, and can only be disconnected by the compangréeted the connection.
Any company that makes a connection offers a service to disect that connection.

SupplierUNIBUS offers a service for connecting CD components that are sklipp
to it with instructions, if any, for the order of componen®ENTRAnNeeds the CD
Player connected to a CD dispenser connected to a powerysopghuse of how the
components will fit to the car chassSGENTRAhas a service that can connect one
component to the car chassis. Each CD component has two it8)fpo connections:
the chassis has unlimited ports.

A shipping service can move components (connected comp®aenalso compo-
nents) from company to company. What is the shortest plamtleatsCENTR/As re-
guirement, ignoring the niceties of purchase orders andireaents, and considering
only the services that offer, connect, and ship the compsreenong the companies?
(Actual formulation of the services with their effects anggonditions is left as an
exercise to the reader.)

What happens in this problem is that constructive planndtsrwto ship the com-
ponent consisting of the CD player and power supply from We@Bd the component
CD dispenser from CARCDs both to UNIBUS with instructionsrfr CENTRA to
connect the CD player to the dispenser and the dispenseetpaier supply. Then
the connected components are shipped to CENTRA. There ismdeft to connect to
the chassis. The subplan to fix this is quite long and re-sezjng should result in the
shortest plan.

6 The Travel Expense Approval Problem

We now give an simpler web service problem in more detail tloats not have con-
junctive goals but which illustrates a fundamental probleith planning web services.

It is sometimes pointed out that web services may create hgecis, unlike the
blocks world which is closed, but this is not the main diffiguT he related fundamental
problem for planning is that web services are “black boxés', they may only be
incompletely modeled. We know always the exact resu(SIFACK A B)is (ON A B)
in the blocks world. We are not assured of the analogoustrigsulieb services.

At plan time, we may not know the value of an output of a plansedice. The
simplest example is a request for a stock quote. We can pl&andw it and expect
that there will be a value when the service is executed. Bplaait time, often the best
that we can do is to skolemize such an output by assigningcguamame to its value.

37

The meaning will be thathere exista value at plan time. (In the Appendix, we use a
naming convention.)

As an example, consider a corporation that has the followiigies in place for
processing travel expense claims:

— Travel Clerk can approve under $5K

— Request to manager needed otherwise

— Unless the requester is a manager

— But requesters can’'t approve themselves

— Who is a manager is determined by HR Policy

— Currently requires 10 direct reports

— Seniority currently based upon number of direct reports
— Use the least senior manager to authorize if necessary.

Further, suppose there are the following facts about thepaom

— NumberDirect Reports(Melanie Ralston 10)
— NumberDirect Reports(Jackie Brown 12)
— Department(Max Cherry Travel)
— Role(Max Cherry Clerk)
— Can — Authorize(Tauthority Trequester) <=
Requester — Name(?claim ?requester)
Requested — Amount(?claim ?amount)
(< ?amount 5000)
Department(?authorityTravel)
Role(?authority Clerk)
(#£?authority Trequester)
— Role(?manager DepartmentManager) <
o NumberDirectReports(?manager Tnum)
o (> Tnum9)

There are some services available to accomplish the resament of a travel claim
request described in the appendix (with some omitted plaeset and formalizations
to be discussed).

A minimal process instance that would satisfy a request leDRobbie to reim-
burse a claim for $5000, meeting all of the company policed|ustrated by figure 1
in which we go from a state in which certain key facts are touartother state in which
new facts are true because we have called a web service. &ztdhdt is the output or
effect of one web service satisfies the input or preconditicthe next service, except
for the first fact that Jackie Brown is qualified to approvebguest, which is simply
provable and the basic employee information for Ordell Reljhot shown above) that
is needed for the service that gets the employee bank infamahlso, note that this
is a partially ordered set of actions, rather than a sequerscthis last service can be
called anytime prior to calling the employee reimbursensentice.

Had the goal been to reimburse Ordell Robbie for $4000, themptocess would
have been the same except that the service requesting izatiwr would not have
been called as it would have been provable that Max Cherriddave approved the
request. This is the difference between writing a workflog amiting an algorithm that
produces a correct process when needed: the workflow woutdiheluded conditional
flows for all cases, and the process instance only works igsfor one case.

38

SO (Initial state in which claim properties known)

State G-19 \L
Jackie Brown Qualified]

[Request Claim Approval J
State G-16

[Claim Approved] State G-5

[Create Claim Authorization] [

Employee Bank Info]

State G-10 \L
(_ Claim Authorized)

[Company Bank Xfer]

\L State Penultimate
[Funds Held for Transfer] [Reimburse Empolyee J

State Final \L
[O. Robbie Reimbursed $5000]

Fig. 1. A Process Instance Solution.

7 Using Default Values

Jackie Brown was used because she was the least senior mdnaweéer to respect
such policy preferences, a straight-forward use of mariyrelogies, such as theorem
proving, will require that all solutions be produced andihtige preferred solution tried
first. This is less efficient than proving which path shouldhe&t pursued in a depth-
first exploration of the search space, as in the simple praeguteviously shown.

What if Jackie Brown declines to approve the request? Then ttext least se-
nior manager should be tried. This illustrates the fundaaigmmoblem of incomplete
modeling for planning. We don’t know which, if any, of the naayers will approve the
request.

At least traditional synthetic deductive approaches megthiat plans cannot fail
because they must be sound. And as we have seen, the ventidefofi planning
requires some idea of sound proof, no matter what technasogsed.

One approach is to make conditional plans that decide ontarches based upon
sensing. But in the travel expense problem, the next manktgdanie Ralston, may
also decline to approve the request. There is no way to malenalpat is guaranteed
to succeed somehow, even with conditional planning.

Pragmatic planning of web services (at least) needs a nesvtlef soundness.
One candidate might be analogous to paraconsistencyraet#{2] where we identify
all conditions that could cause failure and prove that tlae ¥ sound when these are
excluded.

Without waiting upon a new theory of soundness, we can préigatly make plans
that are very simple process instances because we can sigaplgn when one of these
failure conditions occurs at execution time. If Jackie Bnowfuses authorization, we
repair the plan with a request to Melanie Ralston. Suchledged execution plan repair
seems a promising pragmatic approach. This also has intiplsafor the semantic
annotation of web services.

39

But it is not enough to say that the output of the service
Request - Cl ai m Aut hori zat i onis of typeAut hori zat i on- Request : we
must be able to say what the possible output values are. Astation such as
Possi bl e- out put - val ues Request - C ai m Aut hori zati on
Aut hori zati on- Request (Approved Deni ed Deferred)) isrequired. We may
also make the stated valueAdit hor i zat i on- Request the keywordRETURNto
indicate the possibility of selecting one value. Such anotattion may be derivable
from the existing web service description. But we need éhmrainnotation that must
be derived by knowledge engineering.

In order to know how to plan with the possible output valuesnged to know that
approval is a reasonable default with which to plan, so wel reegnantic annotation
such asSel ect abl e (Request-d ai m Aut hori zati on
Aut hori zati on- Request Approved). The planning practice of choosing a likely
default such as approval, because it satisfies an plan @amditight be calledHopeful
Thinking

We need such an annotation because we wish to &Vahful Thinkingn planning,
in which there is no reason to choose one of the possible tugxeept that it works
for goal we wish to achieve. A good example might be the pldwutoa new car, which
only requires that we we buy a winning lottery ticket. Suchrpis as at least as likely
to fail as not.

Another semantic annotation required for general web semianning is whether
or not the web service always returns the output value fogrgimput values whether
or not the service is a mathematical function. Consider a seghice that gives your
drivers license number given your name and date of birthsugeone that gives you a
stock quote given the ticker symbol. The latter is a functiaty when the time of exe-
cution is included as an input value, which may, though netgs, present a problem
for planning. This is a special case that requires additisgrvice annotation.

This example does not show this requirement, nor the reqpainéto handle loops,
which is known to be problematic. For instance, considenthé service that in re-
sponse to a single input, outputs serial values, concluditigone that meanBinished
At least this kind of loop can be inefficiently handled simplymaking the exit condi-
tion the desired output of a service and then repairing tha plith the same subplan
until that output is returned at execution titnd@his also requires additional service
annotation to inform the planner that it is not being insagdriing the same sub-
plan repeatedly and expecting a different result. Thesalaaglditional challenges for
service planning research.

8 Conclusions

We define planning and show the basics of adopting planningesolving of com-
posing web services into a process that achieves a fullgnitisted goal. Apart from
problematic considerations of completeness, a programlamerif the resulting goal
state is entailed by the plan and it can solve conjunctivégradlems. Web service ex-
amples that require conjunctive goal solving are rare angneeide one.

8 Suggested by Georg Jung, U.Potsdam.

40

The definition of planning that we give allows us to distirgflubetween the tech-
nology used to build a planner and planning in the sense dfilexent. Even Java
can be used to write a planner. The seminal paper [4] aboupasimg web services
describes a method of programming the goals, preferencégamstraints of the prob-
lem with Golog: the resulting formulation is turned over toiaterpreter that functions
as a planner.

We describe the basic requirements of producing a plan sheaprocess instance,
which is simpler than producing a workflow. Because of thesjimlity that some web
services at execution time will return outputs that conflicth the current plan, or
simply fail, sound planning is inadequate for planning wetviges.

If some outputs (and by extension effects) can be assumedfault semantic an-
notations of these, in addition to preconditions and effecain be used in conjunction
with re-planning to solve problems of synthesizing prodestances from web ser-
vices. This kind of defeasible reasoning will require a s@m of sound entailment for
planning.

We have used Redux[6] as a Goal-Operator-Oriented Progiragr{@®@OOP) method
to build a planner that can achieve the examples in this gapdeclarative expression
of preferences as operators and goals to try first, consdrtiiat must not be violated,
characterization of the undesired output values@gingenciesand by using the re-
sequencing method for conjunctive goal interference.

Finally, the reader is encouraged to try the two very simgbmgples in this paper
on their own service planning technology. The example ofdd@wemanufacturer out-
sourcing the CD player may be the first example in the web sesvilanning literature
to require real planning.

Acknowledgements

This paper was sponsored by SAP Labs USA and benefited fraugdi®mns with many
people, especially Michael Genesereth,Tim Hinrichs, I8hdcllraith, Daniel Meyer,
Harald Meyer, and Richard Waldinger.

References

1. Finzietal.: “Open world planning in the situation calgsll, it Proc. AAAI 2000, AAAI Press,
2000. Available at http://logic.stanford.edu/servieepling/readinglist/openworldsitcalc.pdf

2. Kassoff and Genesereth: “PrediCalc: a logical spreaishanagement systenT’he Knowl-
edge Engineering Revie®2, Cambridge University Press, Nov 2007, pp 281-295.

3. Ludwig et al.: “Cross Cutting Concern®agstuhl Seminar 05462 on Service-Oriented Com-
puting November 2005. Available at http://tinyurl/webservdef

4. Mcllraith and Son: “Adapting Golog for Composition of W&ervices”,8th Int. Conf. on
Knowledge Representation and Reasoning (KR20@8)gan Kaufman. , April 2002

5. Oh,Lee, and Kumara: “A comparative illustration of Al plang-based web services compo-
sition”, ACM SIGecom Exchange$:5, pp 1-10, ACM, 2006.

4 http://java.com/en

41

6. Petrie: “The Redux’ ServerRroc. Internat. Conf. on Intelligent and Cooperative Infation
Systems (ICICISRotterdam, May, 1993.

7. Pollock: “The logical foundations of goal-regressiomrpling in autonomous agentsA|
Journal 106, 1998, pp 267-335.

8. Sussman: “A Computer Model of Skill Aquisition”, Amerit&lsevier

Appendix: Web Services for Travel Expense Approval

— Web- Service Create-C ai mAuthorization
e Input Create-C ai mAuthorization Requester-Nanme
e Precondition Create-C ai mAuthorization
Aut hori zed" ((Requester-Nanme ?requester) (Authorization-Request Approved)
(Authority ?authority))
e Qutput Create-C ai mAuthorization O ai mAuthorization
RETURN- Cr eat e- Aut hori zat i on

— Web- Servi ce Request-C ai m Aut hori zati on

e | nput Request-C ai mAut hori zati on Request er - Nanme

e Precondition Request-C ai mAuthorization
Qualified-Authority (Requester-Name ?nane Authority ?authority)

e Effect Request-C ai mAuthorization Authorized (Requester-Nanme ?requester
Aut hori zat i on- Request ?approval Authority ?authority)

e Qut put Request-C ai m Aut hori zati on Authori zati on- Request
RETURN- Request - Cl ai m Aut hori zati on

— Web- Servi ce Conpany- Bank
e | nput Conpany-Bank Request ed- Anount
e | nput Conpany-Bank Currency
e | nput Conpany-Bank Cl ai m Aut hori zation
e Effect Conpany-Bank Hel d-for-Transfer (Requested-Anmunt ?anpunt
Currency ?cur)

— W\éb- Servi ce Enpl oyee- Bank
e | nput Enpl oyee-Bank Requester- Nanme
e Qut put Enpl oyee- Bank Enpl oyee- Bank- Number RETURN- Enpl oyee- Bank- Nunber
e CQut put Enpl oyee- Bank Enpl oyee- Bank- Nane RETURN- Enpl oyee- Bank- Nanme

— Web- Servi ce Rei nbur se- Enpl oyee
e | nput Rei nburse-Enpl oyee
Request er - Nane Enpl oyee- Bank- Name Enpl oyee- Bank- Nunber Request er - Addr ess
Request er - Nane Request ed- Anbunt Currency
e Qut put Rei nburse- Enpl oyee Confirmati on RETURN- Rei mbur se- Enpl oyee- Confirm
e Effect Reinburse-Enpl oyee (Reinbursed
Request er - Nane ?nanme Request ed- Anbunt ?ant)

And there is a company banking policy expressed as:

— Precondition ?service Held-for-Transfer
(Request ed- Ambunt ?anpunt Currency ?currency) <
e Effect ?service Reinbursed
(Request er - Name ?nane Request ed- Anount ?ant)

