
GROUNDING AND MAKING SENSE OF AGILE SOFTWARE
DEVELOPMENT

Mark Woodman and Aboubakr A. Moteleb
Middlesex University e-Centre, School of Engineering & Information Sciences

The Burroughs, Hendon, London NW4 4BT, U.K.

Keywords: Agile Software Development, Sense-making, Grounded Theory, Information Systems Methods.

Abstract: The paper explores areas of strategic frameworks for sense-making, knowledge management and Grounded
Theory methodologies to offer a rationalization of some aspects of agile software development. In a variety
of projects where knowledge management form part of the solution we have begun to see activities and
principles that closely correspond to many aspects of the wide family of agile development methods. We
offer reflection on why as a community we are attracted to agile methods and consider why they work.

1 INTRODUCTION

This is a short exploration of philosophical and
methodological underpinnings of Agile Software
Development. We offer it as a contribution to deeper
understanding of agile approaches. We propose no
new method or critique of an existing one. Our
examination of what may be the basis of agile
approaches has helped us in our work and may help
others – or may merely entertain and intrigue.

A purpose of this enquiry is to try to join up
previously unconnected concepts, which, for us,
have gained our attention by a fortuitous collocation
of a set of commercial R & D projects with
traditional academic research: at our centre we
support academic research by consulting to business.
We have been engaged in forms of agile
development, while researching fundamental issues
in knowledge management, service-oriented
architectures and methodologies for such research.
During these projects we began to encounter
research ideas that appear to make contributions to
the understanding of the philosophical
underpinnings of agile methods and to why the
human-centric, iterative, incremental production and
deployment of software has such a profound effect.

Two areas of work to do with knowledge and
systems for organizing and utilizing knowledge
appear to match ideas in the pragmatic approaches
of the various agile methods. The relationship
between agile development and lean manufacturing
have received considerable comment and discussion,
especially in their common goals of providing the
client with what they want, in emphasizing actions

that result in value, continuous improvement of the
product, faster time-to-market, and avoiding waste
(e.g. associated with overblown processes). It is
usual in our industry and discipline to look for
antecedents in other areas; we naturally look for
reassurance, validation and fundamental ideas to
extend in our own way. No doubt, the comparisons
have helped in pragmatic terms. However, little
insight has been offered as to why in terms of
accepted concepts agile software appears to be
applicable and to work. The two areas that we have
found contribute to such thinking are Grounded
Theory, a long-accepted expression of how people
develop an articulation (a “theory”, often as a
model) of how something is or should be, and a
Cynefin, a “sense-making framework”, which
explains behaviours, decision-making and practices
in terms of people’s patterns of multiple
experiences, personal, cultural and business-based.
We believe that these two areas can help us
understand what underpins agile development.

We begin by reflecting on what is going on when
we develop and deploy new software (or indeed
make major changes to an existing system) in terms
of software as models and in terms of people
experiencing change. Next we describe some of on
what appeals to us about agile software development
– those aspects of XP, Scrum, DSDM, etc. that just
seem to be right or just seem to work. In subsequent
sections we briefly summarise the main points of
tools from other disciplines: Grounded Theory and
the Cynefin Sense-making framework. These, or
something very like them appear to be underpinning
agile methods.

234 Woodman M. and A. Moteleb A. (2009).
GROUNDING AND MAKING SENSE OF AGILE SOFTWARE DEVELOPMENT.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
234-240
DOI: 10.5220/0002015502340240
Copyright c© SciTePress

2 CONSTRAINED MODELS OF A
POSSIBLE FUTURE

We begin by considering some high-level notions of
what is happening when, typically, a client engages
a developer to design, implement, deploy and
operate (at least initially operate) a system to support
a chunk of the client’s business, ultimately business
with its customers. We make very general remarks
here that should not be taken to abstract some
specific approach to software development. Also, we
will tend to use the term “organization” and
“business” without regard to whether there is a
financial-profit motivation for such entities.

What is really going on when a business decides
it needs a new IT system and commissions a
developer to build and deploy the system? First the
business will have identified a need. It does not
matter how poorly researched and costed or vaguely
stated the need is, the business, usually a person with
a vision of the future business, has said it must have
an IT system, α. Implicitly what is being said is that
the business wants to have changed from its current
situation, K, to a new situation, P, and to do so it
needs an α. So, wanting a new system, wanting α,
means wanting to change – wanting a new business
based on the current business.

All IT systems, especially their software
component, represent a model of the business and
processes of an organisation. Imagine a range of
business models for a firm, each model being
represented by a letter of the alphabet. If a mature
company operating according to model K, wants to
move from K to P by introducing α, the essential
elements for making P a reality must be captured in
the system α. In other words, α must provide, as
best as possible within time and budget constraints,
an essential model (McManemin & Palmer, 1984) of
the business P (not of the original business K). So,
whatever methods software developers use to work
out what model captures the essence of P, whether
they use SSADM, OOAD, XP, Scrum, software will
be implemented and deployed to represent just some
part of the world of the anticipated, future business
P, even though it was first envisaged in the world of
business K. In other words: as people in our
community know, but sometimes don’t talk enough
about, there is a lot going on when software is being
developed. Pretending we know exactly how a
business system will turn out is at best being
optimistic, and getting from the starting point (K, as
a business was) to the end point (P, as the business
wants to be) is often very, very tricky.

There are systems, often dominated by the
mathematics of science or engineering, whose
requirements can be fully stated in advance of

design, coding and testing (e.g. various forms of
control systems) but IT systems that are concerned
with business or complex organizational behavior
are rarely of this sort. So, what frequently happens is
that on the way from K to P, the business visionaries
typically realise that P, is not where they want to end
up at all. At some point it is realised that Q is the
place to aim for, then R seems the obvious end point,
and so on. Agile software developers know this and
act to accommodate the inevitable change. The
question is why is it so clear in agile development
and so concealed in so-called traditional approaches.

However, the development process is not just
about getting from one model of some part of a
business to another. The interactions with people is
profound and complex. Often these disrupt a
business because the change represented in an IT
system are unwelcome by many of those affected.

The commissioning, development, deployment,
operation and use of software-intensive systems
means change to a business – regardless of whether
the introduction of a new system, or major
modifications to an existing system are to take place.
This is again because the IT system is a model
representing the business and processes of an
organisation, albeit a grossly simplified, possibly
distorted model. This can be seen even in the most
simple situation. For example, if a successful (non-
chain) main street retailer introduces a system to
monitor and manage inventory levels, it will be
because of a reason – maybe the retailer has realised
that too much of its capital is tied up in stock. If the
situation were acceptable no change would be
needed: the need for change gives rise to the IT
system. To develop or procure a system to manage
inventory will require some model of what the
business is going to be (after the introduction of the
new system). However, even if those promoting the
change understand it, members of an organisation
that are affected by it may not really understand the
motivation for change.

One explanation of this type of situation
characterises work environments in terms of
“ordered dimensions” and “unordered dimensions”.
Change, including that enabled or accelerated by IT,
shifts the ordered dimensions of an environment so
that they become unordered. In ordered dimensions
people function within known and/or predictable
environments; in unordered dimensions they
function within chaotic/unpredictable environments
(the effects of which can be magnified by personal
change). In response to chaotic/unpredictable
environment people seek identify new patterns of
behaviour to follow, make sense of it depending on
previous experience and knowledge, and respond
towards finding new order. IT systems tend to make
all this harder, because for most people it obfuscates

GROUNDING AND MAKING SENSE OF AGILE SOFTWARE DEVELOPMENT

235

the patterns, prevents recognition of relevant
experience and knowledge, and blocks responses to
order. These problems cannot be managed away, in
the sense of logistical optimisation, but require the
management of the behavioural responses, which
means truly involving people.

A complementary view comes from game
theory. We can consider the introduction and
deployment of a new IT system as a move in a zero-
sum game or, for some business situations, as an
attempt to move to a new Nash equilibrium point
(Nash, 1950). Either case represents a change of
business context in which an organisation’s
workforce can become uncertain of the game they
are to be engaged in. A new or revised IT system
becomes the embodiment of the business change,
and so resented and rejected by users who still have
the previous context. This notion would explain the
multiple changes of direction that occur when trying
to sort out what a future business is supposed to be
and what its IT system is supposed to be.

3 THE APPEAL OF AGILE
DEVELOPMENT

Since Kent Beck first revealed the ideas of Extreme
Programming (Beck, 2000), as a community we
have been reflecting what it means to be agile and
what approaches to software development can be
blessed with the term “agile”. Cockburn (2001),
Highsmith (2002) and others have helped make it a
broad church and helped emphasise the human
situations in which software is developed. Many
have enumerated advantages to the agile approach.

The Agile Alliance’s Manifesto and Principles
set out a range of priorities and beliefs about agile
development that have struck a chord in the last few
years. They are often articulated by the foremost
proponents as a reactions to the failures of
“traditional”, heavy-process oriented ways of
developing software. Without too much hard-selling,
the promise of agile methods seems to be recognized
as being somehow right: is that because people
feature so much, or because of the intention to
improve earned value and functionally correct
systems? We believe it is because agile advocates
are helping us to make sense of what we know
works and keeps us grounded with respect our
business priorities.

Take the very name: clearly software
development approach must, to be classed as agile,
be flexible. It must impose few barriers to changing
what has already done to something else. It has been
accepted for decades (Boehm et al., 1975) that the
cost of changing an IT system increases the further

away from coding towards requirements capture the
change is needed. The Because it is difficult or even
impossible to say what is needed in modern business
environments and because the business owners may
have no facility for understanding textual or
graphical representations of needs, constraints and
effects, agility is achieved by a commitment to fast
coding and testing so that business owners can
concretely experience what is being built and make
adjustments, as the IT system is being built. An
apposite metaphor is that of sailing: the owner of a
yacht may want to get from point K to point P by a
certain time, but the crew may not be able to go for
via a route the owner has proposed. Rather than sit
down and plan everything in advance regardless of a
changing environment, it is better for small
adjustments to be made and checked with the owner
(and, as we have discussed, the ultimate destination
may be Q and not P).

With relatively few exceptions, software releases
in agile development are meant to be of business
value. To be deemed as such, by definition, means
that a representative of the client must be involved
enough in the development activities to know
whether or not a release is of business value. This is
a crucial feature that helps to keep agile projects
grounded in the client’s business. Agile software
developers implicitly promise not to confuse a
project or change program with their own agendas.
The reason for a project is the client’s business, so
the essential model of where that business wants to
be belongs to the business, not to the developer.
Consequently, if after a particular release the client
announces that the system is good enough for what
the business needs, that should be the end of a
project. Making this option a reality for clients
through review/reflection has the appealing benefit
of engendering trust between developer and client.

The close involvement of the client also brings
indirect closeness to their business’s end-user. Often
the client’s staff make up the end-user community,
but often they must act as a proxy for the end-users.
While indirectness is not ideal, it is hugely better
than developers guessing how end-users might
behave or forcing them to behave in a particular
way. Again, client involvement means keeping
control with the client, but in a way that does not
diminish the skills or responsibilities of developers.

One aspect of introducing IT systems for
business advantage (with change) is what might be
termed the ethical dimension – the extent to which
negative impact on people by IT systems in changed
environments is acceptable. Again, agile approaches
to software development tend to be better in that
deep client involvement in the small steps on the
journey signalled by multiple software releases

ICEIS 2009 - International Conference on Enterprise Information Systems

236

allows such issues to be recognized and factored into
ongoing decisions. Of course, there are considerable
benefits to be had by involving people whose whole
involvement in an enterprise is at operational level,
e.g. as espoused by lean manufacturing or other
forms of worker participation (e.g. as in Ehn, 1988).

In summary: agile development keeps a project
firmly located in the client’s world and helps us
make sense of complexities.

4 GROUNDED THEORY AND
AGILE DEVELOPMENT

In this section we will explore some of the essential
philosophy of the Grounded Theory methodologies
and where specific methods bring out different
aspects that are relevant to our views. For now we
stick to the terms from this area so as to be clear
later about the differences between agile
development and grounded theory.

Grounded theory was first described in 1967 by
Barney Glaser and Anselm Strauss. Basically, the
term describes methodologies within which a
researcher uncovers a “theory” on the matter in hand
by repeatedly conversing with those who know
about a matter and analysing the result to take it to
the next conversation. The intention of grounded
theory is “to generate or discover theory, an abstract
analytical schema of a phenomenon, that relates to a
particular situation” Creswell (1998). In this
situation, individuals engage in a process by acting
and interacting within a phenomenon. Researchers
study this engagement through collecting data,
developing and interrelating categories of
information, writing theoretical propositions, and
validating against further data collection

The main philosophy behind the original version
of grounded theory is the generation of “theory”
from data. This can be in the form of a model (which
makes it directly relevant to software-intensive
systems). A grounded theory is derived from data,
systematically gathered and analysed through a
defined research process (Glaser & Strauss, 1967;
Glaser 1978, 1992; Strauss & Corbin 1990, 1998).
Grounded theory-based research, in this sense differs
from other research methodologies mainly in that it
is concerned with constructing theory rather than
testing pre-formulated theory (or testing a
hypothesis on which a theory might depend). In
addition, this theory is derived from “real data”
rather than “logico-deductive” speculation (De
Vaus, 2002; Glaser & Strauss, 1967) – which clearly
fits with understanding what a client wants and
needs rather than forcing a solution.

Over the history of grounded theory two distinct
camps have emerged behind different philosophies

ascribed to the original proponents. Strauss and his
later co-worked Corbin were accused of “forcing”
theory from data, rather than letting it “emerge”
(Glaser, 1992). The emergent philosophy resonates
with our experience, so we concentrate on it here.

According to Glaser (1992) “Grounded Theory a
general methodology of analysis linked with data
collection that uses a systematically applied set of
methods to generate an inductive theory about a
substantive area”. More prosaically he also describes
it as “a general method to use on any kind or mix of
data” (Glaser, 1998). In short, researchers should
use a Grounded Theory approach to scientifically
work out what is going on in a particular situation a
systematic approach to analysis based usually on
data made up of recorded observations,
conversations and interviews. Crucially the
understanding of what is going on, the theory, must
be grounded in the data and emerge from it: the
researcher must not impose their worldview or
understanding based on other knowledge or
experience. (By the way, we use the term
“methodology” to refer to a family of particular
methods that adhere to the general principles of
grounded theory but differ in detail according to the
situation that we are trying to understand.)

Grounded theory methods are iterative
(obviously a similarity with agile methods).
Researchers using a grounded theory method gather
“data” (in the social-sciences sense) through
conversations, interviews, etc., then analyse the data
in a systematic way, form a putative theory and take
that into the next data gathering activity, and thence
into the next analysis activity, and so on.

The detail of the method and analysis is not
needed for the comparisons we want to make, so we
will sketch them very briefly. Since understanding
should emerge from the data, the researcher’s role is
to uncover categories, concepts and properties with
the relationships among them. The first stage in an
analysis is “open coding”. This is essentially about
identifying, naming, describing and categorizing
what has been found in the data. (Nouns and verbs
and instances of categories are explored, much as in
an object-oriented analysis.) The properties
(attributes in OOA) of categories are also discovered
in this stage. Much of this is done informally; you
don’t have to worry too much about backtracking
because subsequent data gathering and analyses will
pick up anomalies.

Next comes “axial coding”. This activity relates
categories and properties to each other. An emphasis
is placed on causal relationships and a framework of
generic relationships including intervening
conditions, action strategies and consequences.

Finally in the analysis activities is “selective

GROUNDING AND MAKING SENSE OF AGILE SOFTWARE DEVELOPMENT

237

Figure 1: Execution of Grounded Theory Inquiry.

coding” in which one of the categories is chosen as
the core and all others related to it. This provide a
single story line for fitting everything else too – in
essence, a putative theory of what is going on in the
situation being explored.

The process is then repeated, with new data
gathering and analysis that takes into account the
previously derived putative theory. The cycle stops
on “theoretical saturation”, i.e. when newly gathered
data or newly performed analysis can add anything
to the emergent theory. The general approach is
depicted in Figure 1. The cycle is repeated until
there is no further benefit to be gained from it.

As can be imagined, in a grounded theory
method fragments of the whole, emerging theory are
constantly being moved around in relation to each
other. As the core is being sorted out and possibly
revised, the various parts of the theory being put
next to each other or made distant as the
relationships between the parts are sorted out.

So, what is the possible relationship between
grounded theory and agile software development?
First, there is an obvious parallel between the
iteration in both and the intention of being
“grounded” in a potentially complex situation. But
the relationship goes much deeper and touches on
the issues raised earlier.

Let’s look at the iteration aspect. Although
iteration and feedback/feed-forward are part of what
both involve, the iteration could be seen as merely
the a practical means to uncover a model. For an
emergent model to be uncovered is clearly the
priority – the ultimate theory from a grounded
theory method or the delivered system in an agile
development. But, the iteration is much more than a
mechanism for convergence; the discrete stages
allow a reconsideration of direction (in the case of
software development for business advantage) or
consideration of new data (in the case of grounded
theory). As in the sailing metaphor, a change of tack
can help get to a prescribed goal despite
uncontrollable conditions, or may use changing
conditions to proceed to an unanticipated end-point.

Another similarity is to do with the development
of a model (a.k.a. theory) in both cases via construc-

Figure 2: A simplified view of agile development.

tion rather than via design. In a grounded theory
method, data from observations (from conversations,
etc.) is initially obtained and analysed to construct a
putative theory; subsequently new data is obtained
an analysed with the knowledge of the previous
version of the theory. A system developed in an
agile fashion could be similarly described. The
gathering of data is replaced by story telling (as in
extreme programming) or other informally
articulated narrative that describes business
situations. The analysis (theory construction) is
replaced by the building of a software release and
knowledge of the release is available in the next part
of the cycle. A grossly simplified representation is in
the Figure 2.

A grounded theory cycle is repeated until there is
no further benefit to be gained from another
iteration. It should be the case in agile methods that
the production of software releases stops when there
is no further business value to be gained –
completion of an agile development should be
exactly analogous to theoretical saturation.

We have taken the feedback/forward aspect of
agile development comfortably into grounded
theory, devising and beneficially using a variant that
included the released software as part of the
emergent theories. This supports our view that
grounded theory underpins agile development.

Figure 3: Cynefin “domains”.

5 THE CYNEFIN FRAMEWORK
AND AGILE DEVELOPMENT

We now explore “sense-making”. It is a

ICEIS 2009 - International Conference on Enterprise Information Systems

238

methodology that was first developed in the early
1970s, and so has a long pedigree. It is
fundamentally about communication between
humans. Based on considerable evidence its
proponents have concluded that the dominant
models of communication and information systems
do not work.

Sense-making is a “methodology disciplining the
cacophony of diversity and complexity without
homogenizing it” (Dervin, 1998). According to
Dervin, there are three main assumptions:

1. That it is possible to design and implement
communication systems and practices that are
responsive to human needs.

2. That it is possible for humans to enlarge
their communication repertoires to pursue this
vision.

3. That achieving these outcomes requires
the development of communication-based
methodological approaches.

Like grounded theory, sense making generates
“theory”. However, concepts emerge from
ambiguous interactions and communication within a
situation, rather than from more distinct steps like in
grounded theory. Sense-making identifies patterns
within a complex (unordered) system.

We have been struck by the useful analysis of
Kurtz & Snowden (2003) who have proposed the
Cynefin sense-making framework to help make
sense of complex systems. The word is Welsh,
which means “habitat”, but more richly includes
notions of the rich multiple experiences that people
use in aspects of their lives. These experiences are a
complex mixture of, the personal, the wider cultural
and the business-based or work-place based. Cynefin
is based on the notion that “humans use patterns to
order the world and make sense of things in complex
situations”. Cynefin originated in the practice of
knowledge management with the aim of helping
managers to “break out of old ways of thinking and
to consider intractable problems in new ways”.

One of the most striking aspects of Kurtz and
Snowden’s ideas is that they divide situations into
what they call “domains” as in Figure 3. The nature
if these domains is very different: the right-hand
domains are those of order, i.e. known and knowable
cause and effects whereas the left-hand domains are
those of un-order, i.e. complex relationships and
chaos, and in the centre is the domain of disorder.
These domains help understand different possible
situations in development.
Known Causes and Effects. Kurtz and Snowden
argue that in this ordered domain repeatability
allows for predictive models to be created, because –
cause and effect– relationships are “generally linear,

empirical in nature, and not open to dispute”. Their
model in this state of the system is based on (a)
sensing incoming data, (b) categorising that data,
and then (c) responding in accordance with
predetermined practice. In this domain, knowledge
is explicit and can be captured and embedded in
structured processes to ensure consistency, through
artefacts such as field manuals and operational
procedures.

This is where IT systems which depend heavily
on known physical properties and behaviours are
based. Medium- and heavy-weight processes with an
emphasis for documentation may be appropriate
here.
Knowable Causes and Effects. according to the
Cynefin framework in this ordered domain
“entrained patterns” allow for structured models
based on assumptions, because –cause and effect–
relationships may not be fully known, or may be
known only by a limited group of people.
Everything in this domain is capable of movement to
the known domain depending on affordances. Their
model in this state of the system is based on (a)
sensing incoming data, (b) analysing that data, and
then (c) responding in accordance with expert advice
or interpretation of that analysis. In this domain,
knowledge is tacit, yet to be “externalised” from
experts, or people who possesses it. Kurtz and
Snowden argue that this is the domain of “systems
thinking, the learning organization, and the adaptive
enterprise, all of which are too often confused with
complexity theory”.

Our experience and use of Cynefin-like thinking
makes us believe that agile method are of huge use
here. A characteristic behaviour of this domain is
sense-analyze-respond, which corresponds closely to
grounded theory and to agile development with its
attendant short-cycle releases.
Complex Relationships. in this un-ordered domain
“emergent patterns” can be perceived but not
predicted, because while –cause and effect–
relationships exist between “agents”, “both the
number of agents and the number of relationships
defy categorization or analytic techniques”. Their
model in this state of the system is based on (a)
probing to make the patterns or potential patterns
more visible, (b) sensing those patterns, and then (c)
responding by stabilizing those patterns that we find
desirable, by destabilizing those we do not want, and
by seeding the space so that patterns we want are
more likely to emerge. In this domain, knowledge is
embedded in multiple perspectives of the system.
Different narrative techniques such as story telling
are proposed to capture these perspectives.

The dominant pattern in this domain is probe-

GROUNDING AND MAKING SENSE OF AGILE SOFTWARE DEVELOPMENT

239

sense-respond. The lack of explicit analysis makes it
an unsuitable comparator for agile development.
However, incremental, value-enhancing releases
could be taken to be probes and analysis an implicit
part of response. To be crystal clear about the use of
agile development in these domains would take
further exploration of this sense-making framework,
possibly leading to a variation of it. Our gut feeling
is that at lease near the boundary of the knowable,
ordered domain, agile approached will work.
Chaos. in this un-ordered domain there are no
perceivable relations, because the system is
turbulent. Their model in this state of the system is
based on (a) acting quickly and decisively, to reduce
the turbulence; and (b) sensing immediately the
reaction to that intervention, then (c) responding
accordingly. In this domain, knowledge cannot be
captured or perceived until the system moves to one
of the previously mentioned domains. However,
according to the Cynefin framework chaos is a
domain for innovation, thus we can intentionally
enter it to create the conditions for innovation.
The Domain of Disorder. Kurtz and Snowden state
that “the central domain of disorder is critical to
understanding conflict among decision makers
looking at the same situation from different points of
view”. People tend to pull “disorder” towards the
domain where they feel most empowered by their
own capabilities and perspectives. In the Cynefin
way of thinking “the reduction in size of the domain
of disorder as a consensual act of collaboration
among decision makers is a significant step toward
the achievement of consensus as to the nature of the
situation and the most appropriate response”.

In these last two domains other approaches are
needed. We believe that a method (we have used
grounded theory in this respect) can help an ordered
part of a chaotic situation to emerge with which
agile works well. Having used Cynefin to choose
what type of software development approach to use
with clients, we see powerful commonalities
between it and practices in agile development.

6 CONCLUSIONS

Those of us who work in uncertain, unpredictable
business situations, either know or are prepared to
believe that agile methods of software development
work. Usually such knowledge is enough. Fast-
changing situations demand pragmatic action rather
than leisurely scholarly reflection. However, to
understand is to be capable of improving or
adapting. This is why we have conjectured as we
have – that the basically human-centric practices of

agile software development are remarkably similar
to those of both grounded theory and the Cynefin
sense-making framework.

The relationship between agile development and
grounded theory is fundamentally to do with being
firmly situated in the problem being dealt with – e.g.
a business IT systems for agile development. Both
approaches construct models for use and to further
deepen understand the problem. Both are iterative
and aim to converge and work by committed human
involvement.

The relationship between the Cynefin sense-
making framework is fundamentally to do with how
the framework provides a language and thinking
tools for determining where agile development is
appropriate and when it is not. We believe agile
methods have little use in ordered, known domains,
in unordered, chaotic domains and in disordered
domains. They are probably highly effective in
ordered, knowable domains, but greatest benefit may
be along the border between the knowable and
chaotic, where successful entrepreneurial businesses
may operate.

Whatever the accuracy of our conjectures, we
believe that the comparison deepens understanding
and efficacy of the all the methods concerned.

REFERENCES

Boehm, B.W., McClean, R.K. & Urfrig, D. B., 1975,
Some Experience with Automtaed Aids to the Design
of Large-Scale Reliable Systems. IEEE Trans. on
Software Engineering, Vol. 1, No. 1 1975 pp 125-133

Cockburn, A. 2001 Agile Software Development, Addison-
Wesley, Reading, Massachusetts.

Creswell, J. W., 1998, Qualitative inquiry and research
design: choosing among five traditions. Sage.

Dervin, B., 1999, On studying information seeking
methodologically: the implications of connecting
metatheory to method. Information Processing and
Management, Vol. 35, No. 6 pp.727-750.

Ehn, P., 1988, . Work-Oriented Design of Computer
Artifacts. Stockholm, Sweden: Arbetslivscentrum.

Glaser, B. G. & Strauss, A.L., 1967, The discovery of
grounded theory: strategies for qualitative research.
Chicago.: Aldine.

Glaser, B. G. 1978, Theoretical sensitivity: advances in
the methodology of grounded theory. Sociology Press.

Highsmith, J. 2002, Agile Software Development
Ecosystems, Addison-Wesley, San Francisco.

Kurtz, C., Snowden, D. 2003, , The new dynamics of
strategy: Sense-making in a complex and complicated
world, IBM Systems J., Vol. 42 No. 3, pp. 462-483.

McManemin, S. M. & Palmer J. F. , 1984, Essential
Systems Analysis, Yourdon Press.

Nash, J., 1950, “Equilibrium points in n-person games”.
Procs. of the National Academy of USA 36(1):48-9.

ICEIS 2009 - International Conference on Enterprise Information Systems

240

