
A SIMULATOR FOR TEACHING AUTOMATAS AND FORMAL
LANGUAGES

FLyA

J. Raymundo Marcial-Romero, Pedro A. Alvarez Contreras
Facultad de Ingenierı́a, Universidad Autónoma del Estado de México, Toluca, Edo. de México, México

Héctor A. Montes Venegas, J. Antonio Hernández Servı́n
Facultad de Ingenierı́a, Universidad Autónoma del Estado de México, Toluca, Edo. de México, México

Keywords: Finite automata, Context-free grammar, Web simulator, Supporting tools for teaching, Turing machine.

Abstract: Finite automata theory is taught in almost every computing program. Its importance comes from the broad
range of applications in many areas. As any mathematically based subjects, automata theory content is full
of abstractions which constructively explain theoretical procedures. In computing Engineering programs,
teaching is mainly focus on procedures to solve a variety of Engineering problems. However, to follow this
procedures using a conventional approach can be a tedious task for the student. In this paper, a computer based
software as a supporting tool to aid in teaching Automata Theory is presented. The use of an educational
methodology to design the tool, remarkably contributed to the acceptance of the software amongst students
and teachers as compared with existing tools for the same purpose.

1 INTRODUCTION

The constant demand of highly-qualified Computer
Science (CS) graduates around the world has made
necessary to continuously improve the teaching tech-
niques for different subjects. One of the strategies to
improve teaching has been the development of soft-
ware based on educational methodologies. In partic-
ular, automata theory is essential in almost every CS
curricula due to its applicability in many areas such
as compilers, robotics, circuit design, among oth-
ers. Nowadays, there exists software that helps stu-
dents to give solution to typical problems in automata
theory, however they lack an educational methodol-
ogy development which brings up some difficulties
as supporting tools for teaching. The console-type
based methodologies, for example, have the disad-
vantage of not being user friendly. They work as a
“black box”, meaning that they only show partial re-
sults due to their poor interactivity. Examples of these
tools are: Research with an automaton (Charras and
Lecrog, 1997) and Finite State Machine (FSM) Sim-
ulator (Head, 1997).

On the other hand, there are those that present
a graphical environment to interact with the user,

however they have the disadvantage of requiring ad-
ditional software to be used. They also have cer-
tain limitations such as: limited input alphabet, lim-
ited number of states and they work as well as a “
black box”. Among others things which are not de-
sirable from an educational point of view (Marqués,
1995). Among some of these tools, it can be men-
tioned: Automaton Simulator (Burch, 2001), DFA
Simulation (Budowski, 2001), Visual Automata Sim-
ulator (Bovet, 2006), JFLAP (Rodger, 2006), SE-
FALAS (Jodar, 2007).

In this work, we present an educational software
to support the teaching of automata theory in CS grad-
uate courses. We combine both educational and soft-
ware development methodologies in order to design
the application. We present two types of evaluations;
one that compares the acceptance of the new soft-
ware against JFLAP (although JFLAP was not de-
veloped under any educational methodology, it is in
constant improvement). The second evaluation con-
sist on measuring the level of learning over the first
half of a course in two different groups of students.
One of the groups did not use any supporting learning
tool, whereas the other used the supporting learning
tool presented in this work.

175
Raymundo Marcial-Romero J., A. Alvarez Contreras P., A. Montes Venegas H. and Hernández Servín J. (2009).
A SIMULATOR FOR TEACHING AUTOMATAS AND FORMAL LANGUAGES - FLyA.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Software Agents and Internet Computing, pages 175-178
DOI: 10.5220/0002011601750178
Copyright c© SciTePress



The layout of the paper is as follows. In section 2
the methodological steps for the development are de-
scribed. In section 3 two evaluations of the tool are
presented. Finally the conclusions and further work
are presented.

2 DEVELOPMENT OF FLyA

FLyA consists on three modules: the Finite Au-
tomata module (FA), the Context Free Grammar mod-
ule (CFG) and the Turing Machine module (TM). The
development of FLyA involved the combination of
two methodologies, Cataldi et al. (Cataldi et al., 2003)
and XP (Wells, 2006) which is developed based on
prototypes. The application of the methodologies to
the development of FLyA consisted of the following
steps:

• The Feasibility (FEA) Step. In this step the need
for a supporting tool to teach automata theory was
established. The proportion of student failure at
the University Autonomous of the State of Mexico
(UAEM) was 45%. The costs calculated to build
the tool were minimum including a MSc graduate
student to implement the system and the Univer-
sity hosting resources were used.

• The System Requirements Definition (SRD)
Step. During this step, several subtasks were de-
fined: the requirement of graphical interfaces, the
shape of the objects to be included and visual-
ized in the application and the details of interac-
tion between the user and the system. The min-
imum requirements for the use of the application
(web navigator and the Flash-Player 7.0 plug-in
or above) was also established.

• The Requirement Specification of Prototype
(RSP) Step. A detailed verification of the re-
quirements, the interfaces and the outputs of the
application were considered in this step. Ques-
tions such as: is the graphical interface adequate
for the kind of application?, is the interface intu-
itive enough for the end user? is the partial re-
sults shown by the application adequate? were
answered at this step.

• The Prototype Design (PD) Step.In this stage of
the software development, the design of the first
prototype was developed taking into account the
previous steps and identifying the main modules
to be developed. The FA module consisted of four
submodules, the GIC module consisted of seven
submodules and the TM was developed in three
submodules. The submodules design considered

areas for: the input alphabet, the evaluation pro-
cess, the intermediate results among others.

• The Detailed Prototype Design (DPD) Step.At
this stage the data structures employed to imple-
ment the algorithms for each of the modules were
established. The algorithms implemented were
those mentioned in Hopfcroft et al. (Hopcroft
et al., 2006) sections 2.3, 7.11, 7.13, 7.14 and 7.15
.

• The Prototype Design Codification (PDC)
Step. During the PDC step, the first “func-
tional” prototype was generated. The cod-
ing of the prototype was based on the ex-
treme programming methodology (XP) (Wells,
2006) which has short deliveries in order to
make all the necessary corrections previous to
the next step. The prototype implementation of
FLyA can be found at http://fi.uaemex.mx/aylf or
http://zervero.prohosts.org/. There is no need to
register in order to use FLyA, it is only required
to go to the above address.

• The Testing and Implementation of Prototype
(TIP) Step. Once the prototyped was concluded,
two hosting accounts were opened, one at the Uni-
versity server and the other in an external server.
According to the XP methodology short deliver-
ies should be evaluated. There were two initial
evaluations of the software, the first one carried
out by the course’s teachers and the second one
by the students. A complete explanation is given
at Section 3.

• The Iterative Improvement of Prototype (IIP)
StepThe IIP was based on the observations made
by lecturers and students registered during the
2007B term for the module at the school of En-
gineering in the UAEM (http://www.uaemex.mx),
who have made both perceptual and procedural
observations.

• Final Steps. The final steps, namely, Final Sys-
tem Design (FSD), Final System Implemetaion
(FSI), Maintenance and Operation (MO) and Re-
tired (RET) are not discussed as the FLyA soft-
ware is in constant improvement.

3 EVALUATION

In this section the evaluation of the educational appli-
cation is discussed. In section 3.1 the acceptance by
the students and the pedagogical considerations eval-
uated by the lecturers are presented. How the tool
influence the teaching-learning process in different
groups of students is discussed in section 3.2.

ICEIS 2009 - International Conference on Enterprise Information Systems

176



3.1 External Evaluation

Two instruments were designed at this stage. The first
instrument was to evaluate the acceptance by students
and the other to evaluate the pedagogical aspects of
the software. The evaluation instruments are based
on Cataldi (Cataldi et al., 2003) methodology.

The students evaluation instrument is mainly con-
cern on three aspects: how the student perceive the
application, how easy it is to use and how the proce-
dures are described. Each question of the instrument
had five possible options as answers. These are: very
easy, easy, acceptable, complicated and very compli-
cated.

The students evaluation instrument consisted of
seventeen questions each one ranked according to
Cataldi (Cataldi et al., 2003) methodology. The high-
est score been 63 points. This evaluation instrument
was applied during three terms 2007B, 2008A and
2008B at the UAEM. During term 2007B a group
of fourteen students were selected to evaluate both
JFLAP and FLyA. The average score of JFLAP was
30 points compare to 45 point of FLyA. It is worth to
mention that some of the main differences at the eval-
uation were the spanish version of FLyA (native lan-
guages of the students), the easy to install and use of
FLyA and the minimum number of buttons and com-
mands of FLyA compared to JFLAP.

At 2008A term, a groups of nine students evalu-
ated the applications. This time FLyA had incorpo-
rated suggestions made by students in the first evalu-
ation such as adding options for save, open, and print
the work done. The average score of JFLAP was 31
points in this second evaluation in comparison to 47
points of FLyA.

During 2008B term, two different groups of stu-
dents were considered. One group evaluated JFLAP
and the other FLyA. This time the average score of
JFLAP was 46.33 points compare to 50.3 points of
FLyA (we note that the highest score was 63 points).

The second evaluation instrument was answered
by nine lecturers, three of them teach at the UAEM
and the rest at other universities. All of them evalu-
ated both JFLAP and FLyA.

This evaluation instrument in comparison to stu-
dents evaluation instrument, did not consider five op-
tions as possible answers, it only allowed three. The
options were not the same for all the questions but
generally speaking they consider the better, the mid-
dle and the worst case. The highest score was 95
points. FLyA had 72.5 points compared to 49.5 points
obtained by JFLAP.

Marqués (Marqués, 2000) proposed a contextual
evaluation which determines the characteristics of the

Table 1: Contextual evaluation of JFLAP and AyLF.

Evaluation aspect Score
JFLAP AyLF

Efficiency high high
Installation and use medium high
Changeability low low
hline Audiovisual quality low high
Content quality low medium
Originality medium high
Pedagogical perpective low high
Motivational low medium
Documentation medium medium

Table 2: Students marks at the AyLF course.

Student Written
Mark

Practical
Mark

Final
mark

1 44 50 94
2 21 50 71
3 8 45 53
4 19 50 69
5 50 40 90
6 36 40 76
7 25 45 70
8 25 30 55

software developed. A summary of the results of this
evaluation to both JFLAP and FLyA are presented in
table 1. Three are the possible scores for each ques-
tion: high (totally recommended), medium (accept-
able) and low (not recommended).

3.2 Learning Evaluation

The learning evaluation was applied in two different
Universities, one in a private university and the other
in a public university.

In the first evaluation JFLAP and FLyA were in-
troduced to a group of eight students. Each one of
them had to choose among JFLAP and FLyA as its
supporting tool during the course. After two weeks of
evaluation, seven of the students decided to use FLyA.
The course consisted on two hours of oral presenta-
tion and a set of practices realized in the supporting
tool. The final marks at the end of the term (four
working months) are presented in table 2. As it can
be seen, 50% of the total marks corresponded to writ-
ten exams and the other 50% corresponded to solving
exercises and writing programs. It can also be seen
that 25% of the students failed and 75% succeeded.

In the evaluation at the public university the stu-
dents only used FLyA as their supporting tool. The

A SIMULATOR FOR TEACHING AUTOMATAS AND FORMAL LANGUAGES - FLyA

177



Table 3: Students marks during terms 2008A and 2008B
where Std=Students, WM= written marks, PM=practical
marks, FM=final mark.

Std Semester 2008B Semester 2008A
WM PM FM WM PM FM

1 18.4 60 78.4 17.6 40.4 58
2 23.2 54 77.2 4.8 52.4 57.2
3 22.4 54 76.4 22.8 42 64.8
4 31.2 60 91.2 24.4 43.6 68
5 16.8 24 40.8 10 46.4 56.4
6 28 54 82 10.4 40.4 50.8
7 17.2 39.2 56.4 28 55.6 83.6
8 18.4 48 64.4 11.2 45.2 56.4
9 3.2 51.2 54.4 6.4 28.4 34.8
10 24.8 54 78.8 16 13.6 29.6

main idea in this evaluation was to compare the marks
obtained by the students at 2008A term which did not
use a supporting tool against the marks obtained by
students at 2008B term who used FLyA as support-
ing tool. Both of the groups were taught by the same
lecturer and evaluated using the same criteria.

Similar to the case at private university, the stu-
dents at term 2008B had to solved a series of exercises
using FLyA. Columns five to seven of Table 3 show
the marks of ten students during 2008A term. In this
case 60% of the total marks correspond to written ex-
ams and 40% to exercises and programs. Columns
two to four in table 3 show the results of ten students
during 2008B term. As previously mentioned, the
evaluation criteria was equivalent in both terms, e.g.
same number of exercises, same number of exams and
same number of programs. An easy calculation shows
that there was a 21.4% increase in the success of stu-
dent with the use of FLyA as a supporting tool.

We believe that the design of the tool contributed
to the results obtained since the interface makes use
of a minimum number of controls (steps FEA, SRD,
RSP). Hence, the user need not to worry about learn-
ing the application, it only focuses its attention on the
steps to obtain the results.

4 CONCLUSIONS

Finally, it can be said that FLyA is a tool in develop-
ment, with user acceptation. It is worthy to say that
when a tool deliveries correct results besides of be-
ing accepted by the community, it is without a doubt
a tool with growing possibilities. This application to-
gether with the results are product of a methodology
for the development of educative software. There is
a special emphasis on the aceptation by of the user.

As pointed out by Marqués (Marqués, 2000), it must
be facilitated the use of educative applications and to
avoid installation and use of additional software. It
is highlighted that the user must not be saturated with
controls or menus on the display. This makes feels the
user impressed over the magnitude of the tool, leading
to the rejection of the application.

REFERENCES

Bovet, J. (2006). Visual automata simulator, aplicación de-
sarrollada en java.Online:www.cs.usfca.edu/ jbovet.

Budowski, Y. (2001). Dfa simulation, aplicación
desarrollada en visual basic. Online:www.vb-
helper.com/contestdfa.html.

Burch, C. (2001). Automaton simulator,aplicación desarrol-
lada en java.Online:www.cburch.com/proj/autosim/.

Cataldi, Z., Lange, F., Pessacq, R., and Garcia, R. (2003).
Metodologı́a extendida para la creación de software
educativo desde una visión integradora.Revista Lati-
noamericana de Tecnologı́a Educativa, 2(1).

Charras, C. and Lecrog, T. (1997). Research with an au-
tomaton, a java aplication.Online:www-igm.univ-
mlv.fr/ lecroq/string/node4.html.

Head, E. (1997). Finite state machine (fsm) simu-
lator. Online:http://www.cs.binghamton.edu/ soft-
ware/fsm/fsmdoc.html#grader.

Hopcroft, J., Motwani, R., and Ullman, J. (2006).Introduc-
tion to Automata Theory, Languages, and Computa-
tion. Addison Wesley.

Jodar, J. (2007). Software para la enseñanza de
las fases de análisis léxico y análisis sintáctico
(sefalas), aplicación desarrollada en java.On-
line:http://lsi.ugr.es/ pl/software.php.

Marqués, P. (1995). Metodologı́a para la
elaboración de software educativo. On-
line:http://www.blues.uab.es/home/material/programes/
t023151/uabdisof.htm.

Marqués, P. (2000). Diseño y evaluación de progra-
mas educativos. Online:http://www.xtec.es/ pmar-
ques/edusoft.htm.

Rodger, S. (2006). Jflap, aplicación desarrollada en java.
Online:http://www.jflap.org/.

Wells, D. (2006). Extreme programming. On-
line:http://www.extremeprogramming.org/.

ICEIS 2009 - International Conference on Enterprise Information Systems

178


