

APPLYING AN EVENT-BASED APPROACH FOR DETECTING
REQUIREMENTS INTERACTION

Edgar Sarmiento, Marcos R. S. Borges and Maria Luiza M. Campos
Graduate Program in Informatics, Federal University of Rio de Janeiro, Brazil

Keywords: Requirements Engineering, Requirements Interaction Detection, Interaction Type.

Abstract: At the software development cycle, it is in the requirements analysis phase that most of the problems that
can compromise the delivery time and the development and maintenance costs must be identified and
resolved. In general, the requirements obtained in this phase have different relationships with each other.
Some of these relationships, commonly called negative interactions, make difficult or impossible the
progress of some activities of the development process. The detection of interactions between requirements
is an important activity that may prevent some of these problems and avoid their propagation throughout the
remainder activities. Most of the existent research in this area only focuses on the requirements phase,
mainly in the identification of conflict and/or inconsistency interactions. This paper presents a semi-formal
event-based approach to model and identify the interactions between requirements, investigating the
interactions that influence the other phases of the software development process.

1 INTRODUCTION

Research in requirements engineering has
demonstrated that the requirements of a system are
not usually independent from each other. In fact,
there are different types of interactions between
them (Dahlstedt and Persson, 2003; Robinson et al.,
2003; Shehata, 2005). This happens because the
different elements that compose a system are not
isolated entities: the relationships and interactions
among these entities make possible the functioning
of the system.

Commonly the set of requirements of a complex
system have interactions. Among these interactions
exists a set of negative interactions (i.e. conflicts or
inconsistencies), which must be identified and
resolved in the initial phases of the development
cycle. The interactions identification is an important
activity that allow: to resolve eventual conflicts, to
better plan the requirements implementation, to
manage the impact of a change on other
requirements, and to plan the tests considering the
interactions. Several researches show these benefits,
however, most of them only focus on the
requirements phase (Dahlstedt and Persson, 2003;
Robinson et al., 2003).

The Requirement Interaction Problem was
introduced and well researched in the

telecommunications domain, with the name of
Feature Interaction Problem (Calder and Magill,
2000). The problem of features interaction is
generally understood as a situation where the
integration of several features in a system could
interfere or affect one another. However some
problems were identified on these methodologies.
Most of them focused on the telecommunications
domain, their use is not known in the software
domain and most of them use formal specification
languages, if used correctly they are accurate,
although difficult and expensive of using.
Requirements Interaction Management was
introduced by Robinson et al. (2003), defined as the
set of activities directed towards the discovery,
management, and disposition of critical relationships
among a set of requirements. Requirements
Interaction is similar to Features Interaction,
however, Features Interaction only considers
functional requirements.

Several methods for the identification of
interactions on the requirements analysis phase have
been proposed. Lamsweerde et al. (1998) and
Robinson et al. (2003) gave an extensive review on
the different interaction types. They focused on how
to identify and eliminate negative interactions. As
most of these approaches, they are based on formal
specification languages. Mylopoulos et al. (1999)

 225Sarmiento E., R. S. Borges M. and Luiza M. Campos M. (2009).
APPLYING AN EVENT-BASED APPROACH FOR DETECTING REQUIREMENTS INTERACTION.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
225-230
DOI: 10.5220/0002007902250230
Copyright c© SciTePress

presented an approach to discover interactions
between functional and non-functional requirements
based on dependencies graphs built in a hierarchical
way. And among the researches that focus on the
design phase, we can mention those presented by
Yuqin et al. (2006) and Zhang et al. (2006). These
approaches are based on features. A feature is
defined as a set of cohesive requirements. These
approaches consider mainly dependence interactions
(positive interactions). For their correct functioning
it is necessary to identify conflicting or inconsistent
interactions in previous phases.

Among those works more related to ours we can
mention IRIS (Shehata, 2005) and BPA (El-Ansary,
2002). IRIS is a semi-formal approach to detect
requirements interactions. This approach uses tables
and graphs together with scenarios of interaction. A
system is considered a compound of static and
dynamic requirements and their resources, each one
of these elements consisting of attributes.

BPA (Behavioural Pattern Analysis) is an
approach in which events are considered as primary
entities of the models of the world. This approach
proposes the representation of requirements based
on the actions and events of the system, and the
relationships between them.

This paper proposes an approach for specifying
and identifying the different interactions between
requirements, using a semi-formal method based on
events. It is based on events, because the flow of
events describes the behavior of the system through
a set of interactions between objects. Our approach
considers the most interaction types described in the
literature and supports the identification of
interactions with less effort and complexity.

This paper is structured as follows. Section 2
presents the interaction definitions, the attributes
used for specification and subsequent requirements
interaction identification. Section 3 presents the
interaction types considered in our approach and the
detection rules for each type. Section 4 presents the
proposed approach. Section 5 presents an example
of application of the approach. Finally, in Section 6
we present our conclusions so far and the directions
for future work.

2 REQUIREMENT
INTERACTION

There is an interaction when two or more
requirements have some effect on each other. These
interactions can be caused by different viewpoints of
stakeholders, change or re-use of requirements,

component-based development, among others. Some
definitions of interactions can be found in (Dahlstedt
and Persson, 2003; Robinson et al., 2003).

2.1 Basic Attributes of Requirements

The dynamic models in the Object Oriented
Approach represent the behaviour of the system, i.e.,
the interactions among the different objects of the
system and their environment. These interactions are
caused mostly by the presence of events produced
by another object or some external entity. These
events stimulate and control the functioning of the
system.

The identification of events during the
requirements analysis phase allows to reveal the
different interactions that exist among the set of
requirements, and subsequently, to know the set of
interactions among the different objects. The events
are important because the implementation of a
requirement produces a result (event) and the events
cause the implementation of a requirement.

In our approach a requirement is described and
represented as a set of attributes that consists of:
events, action, states and resources. (Table 1)

Some of the concepts presented in this section
were extracted from (BPMN, 2006) and (El-Ansary,
2002; Shehata, 2005).

Table 1: Attributes of Requirements.

Attribute Description
IDR The identifier of the requirement.
Description The description of the requirement
Event The incidents or facts that happened

inside or outside an object.
Action The activities carried out during the

execution of the requirement, such as
calculations, generation of events, etc.

Object The objects involved in the execution of
the requirement.

Resource The instruments or tools used by the
requirement to complete its execution.

2.2 The Role of Events in
Requirements Interaction

To investigate the possible roles of the events in the
set of interactions among requirements, it is
necessary to understand the definition and the
description of each event. Based on this observation,
we identify the need for specifying an event using
attributes. For this, each requirement has a set of
associated events, and it is necessary to specify each
one of them (Table 2).

ICEIS 2009 - International Conference on Enterprise Information Systems

226

Table 2: Attributes of Events.

Attribute Description
IDE The identifier of the event.
Description The description of the event.
IDR The identifier of the requirement.
Type Message, Time, Rule, Link, Multiple and

Cancel (BPMN, 2006).
Category Input: it stimulates some action.

Output: it’s generated by some action.
Action The Action that produces or is stimulated by

the event.
Object The event causes changes of state of objects:

Pre-state and Next-state.
Resource The resources stimulated by the event.

Figure 1 illustrates the role of the events and
actions in the interactions among requirements.
Requirement R1 executes action R1A1; R1A1
produces (output) the event R1E1. In another side
Requirement R2 executes action R2A1; R2A1 is
stimulated by R1E1 (input).

R1
R1A1 R1E1 R2

R2A1

: Output

: Input

: Action

: Event

Figure 1: The Role of the Events.

3 INTERACTION TAXONOMY

Among these interactions it is possible to identify
two types of general interactions, positive and
negative ones. Positive interaction types are
relationships of intrinsic dependence (Requirement
R1 requires R2), while negative interaction types
mainly include conflicting interactions.

Numerous classifications were generated to
represent requirements interactions types (Dahlstedt
and Persson, 2003; Shehata, 2005; Yuqin et al.,
2006; Zhang et al., 2006; Pohl, 1996). Lamsweerde
et al. (1998) present an extensive review
aboutinconsistency interactions. The classification
presented in this work was generated considering the
types founded in the literature. We considered the
basic types that have a significant effect in the
remainder of the software development process,
especially in the software design phase. A more
detailed description of the different interaction types
is showed in Table 3 and Table 4.

Consider the requirements Rx and Ry. Rx is
different of Ry and RC is a resource.

Table 3: Negative Interactions.

Negative
Interaction

Description

Conflict Set Rx and Ry, there is a condition B (event)
that can cause a conflict.

Cancel When the execution of Rx overrides and
cancels the execution of Ry.

Negative
Impact

When the execution of Rx overrides, but it
does not cancel the execution of Ry.

Resource
Conflict

Rx and Ry simultaneously access to the same
resource RC.

Resource
Blocking

When the execution of Rx takes completely
and blocks RC.

Table 4: Positive Interactions.

Positive
Interaction

Description

Require Rx requires Ry for functioning.
Inform Rx sends a piece of information to Ry to

indicate that certain condition was reached.
Configure Rx configures RC that is accessed by Ry.
Flow Rx processes data that is passed to Ry

through a flow (Flow).
Collateral Rx and Ry are simultaneously activated to

complete the execution of Rz.

3.1 Interaction Detection Rules

For each one of the interaction types shown in Table
3 and 4, a set of rules for interaction detection was
defined and created. These rules involve each of the
attributes defined in Tables 1 and 2.

All the rules identified were built based on the
template:

WHEN <Event>
IF <Pre-condition>; it matches the objects,

events, actions and resources of two requirements.
THEN <Interaction Type>

Table 5: Require Interaction.

Interaction
Type

Require

Description When the Event produced in Rx stimulates
the Action executed in Ry.
Requirements: Rx and Ry; Rx != Ry.

Rule WHEN Event
IF {(Rx.Event_X = Event AND Ry.Event_Y =
Event)
 AND (Ry.Event_Y.Category = Output)
 AND (Rx.Event_X.Category = Input)
 AND (Ry.Event_Y.type != Cancel) }
THEN Rx Require Ry

In Tables 5 and 6, we present some of the rules
identified for some of the interaction types. The
other rules are listed in (Sarmiento, 2008).

APPLYING AN EVENT-BASED APPROACH FOR DETECTING REQUIREMENTS INTERACTION

227

Table 6: Cancel Interaction.

Interaction
Type

Cancel

Description When the Event that stimulates Rx cancels
the Action executed in Ry.
Rx and Ry have the same Action and
Object.
Requirements: Rx and Ry; Rx != Ry.

Rule WHEN Event
IF{(Rx.Event_X = Event AND Ry.Event_Y !=
Event)
 AND (Rx.Event_X.Type = Cancel)
 AND (Rx.Event_X.Category = Input)
 AND (Rx.Event_X.Action = Ry.Event_Y.Action
)
 AND (Rx.Event_X.Object = Ry.Event_Y.Object
)
 AND (Rx.Event_X.Object.Pre-State =
 Ry.Event_Y.Object.Pre-State)
}
THEN Rx Cancel Ry

4 DISCOVERING
INTERACTIONS

The proposed process is divided into stages. The
division in stages allows an efficient mechanism for
reviewing the results of each of the stages and to
negotiate the progress of the most important stage of
the process (Interactions Detection).

The proposed approach consists of six main steps
organized in a specific order to facilitate the
interactions detection. In each step, different tables
and graphs are produced with the purpose of
facilitating and increasing the precision of the
process. In the main step (step 4), an analyst
identifies the different interaction types based on
interactions detection rules defined in Section 3.1.
The six steps are briefly described below:
Step 1. Listing the Requirements: Initially the
requirements are listed and described textually using
natural language. The requirements are ordered
according to their complexity, and the complex
requirements are decomposed into simpler others.
Step 2. Extracting Requirements Attributes: A
requirements analyst begins the process of
identification of attributes for each one of the
requirements (events, action, objects, agents and
resources). Table 1 describes the list of attributes.
Step 3. Associating Requirements and Events:
After the requirements were decomposed in their
attributes, it begins the process of association of
each one of the requirements to its related events.
Then, the attributes of the events must be identified
(Table 2).
To facilitate and avoid unnecessary comparisons in
the detection step, the identification of the common

events is done. This is necessary because the
requirements interact mostly through events, besides
having common actions, resources and objects.
Step 4. Detecting Interactions: The set of
interaction detection rules described in Section 3.1 is
applied on these requirements.
Step 5. Validating Interactions: The interactions
identified on step 4 must be validated. A negotiation
with the users, in which the conflict or
inconsistencies interactions must be resolved, is also
part of this step.
Step 6. Specifying Requirements: The
requirements are documented with additional
information (requirements and their interactions).
This documentation will be very important in the
next stages of the software development process.

5 CASE STUDY

We have been evaluating the effectiveness of our
method in several domains (Sarmiento, 2008). To
illustrate the method we show a case study using the
Lift Control System. In this case study, a set of 14
requirements (Table 7) describes the basic operation
of a simple lift. A detailed and complete description
of this case study can be found in (Shehata, 2005).

The Lift is composed of:
 A Call Button in each floor.
 An Open-Door Button inside the Lift.
 Buttons for each floor inside the lift.

All the results produced and a more detailed
description of each one of the method steps is
presented in (Sarmiento, 2008).
Step 1. Listing the Requirements: The
requirements list is reproduced in Table 7.
Step 2. Requirements Attributes: After the
requirements are listed, their attributes are identified
(Table 8).
Step 3. Associating Requirements and Events:
Initially, the process of Identifying Common Events
is done because the requirements interact principally
through events (See Table 9).

Then, the requirements are associated with their
events, besides specifying each one of these events
(Category, Type, etc.). Tables 10 and 11 show the
attributes of events E5 and E13 listed in Table 9.
Step 4. Detecting Interactions: The method then
proceeds to the identification of the interactions.
Tables 12 and 13 show a subset of the identified
interactions, applying the interaction detection rules
described in Section 3.1.

ICEIS 2009 - International Conference on Enterprise Information Systems

228

Step 5. Validating Interactions: Table 14 shows a
summary of the interactions identified applying the
method.
Step 6. Specifying Requirements: The different
tables produced in each one of the method steps
compose the requirement specification document.

Table 7: The Lift Control System Requirements.
IDR Description
R1 The lift is called by pressing a call button, either at a floor or inside the lift.
R2 Pressing a call button is possible at any time.
R3 When the lift passes by floor K, and there is a call for this floor, then the

lift will stop at floor K.
R4 When the lift has stopped, it will open the doors.
R5 When the lift doors have been opened, they will close automatically after d

time-units.
R6 The lift only changes its direction when there are no more calls in current

direction.
R7 When there are no more calls, the lift stays at the floor last served.
R8 As long as there are unserved calls, the lift will serve these calls.
R9 When the lift is halted at floor K with the doors opened, a call from floor

K is not taken into account.
R10 When the lift is halted at floor K with door closed and receives a call from

floor K, it reopens its doors.
R11 Whenever the lift moves, the doors must be closed.
R12 The closing of a door may be prevented by pressing the open-door button.
R13 When something blocks the door, the lift interrupts the process of closing

the door and reopens the doors.
R14 When the lift is overloaded, the door will not close.

Table 8: Identifying Requirements Attributes.
ID Event Action Object Resource
R1 Pressing the call button.

The lift is called from
the floor K.

Call the lift. The lift.
The Call Button
(in/out).

R2 Pressing the call button. The Call Button
(in/out).

R3 The lift passing through
the floor K.
The lift is called from
the floor K.
The lift is stopped.

Stop the lift in the
floor K.

The lift.
The floor.

R4 The lift is stopped.
The doors are opened.

Open the doors. The lift.
The doors.

R5 The doors are opened.
The doors are closed.

Close the Doors
automatically after d
time units.

The lift.
The doors.
The time
counter.

R6 There are no more calls
in the current direction.

Change the lift
direction is possible.

The lift.
A call to lift

R7 There are no more calls.
The lift is stopped.

The lift stays at floor
last served.

The lift.
A call to lift

R8 There are calls. The lift serves the
calls.

The lift.
A call to lift

R9 The lift is called from
the floor K.
The lift is stopped.
The doors are opened.

Call the lift. The lift.
The doors.
The floor.

R10 The lift is called from
the floor K.
The lift is stopped.
The doors are closed.
The doors are opened.

Open the doors. The lift.
The doors.
The floor.

R11 The lift is moving. Close the doors. The lift.
The doors.

R12 Pressing the open-door
button.
The doors are opened.

Close the Doors
automatically after d
time units.

The lift.
The doors.
The open-door
button.

R13 Something blocks the
doors.
The doors are opened.

Close the Doors
automatically after d
time units.

The lift.
The doors.

The block
sensor.

R14 The lift is overloaded.
The doors are opened.

Close the Doors
automatically after d
time units.

The lift.
The doors.

The
Overload
sensor.

Table 9: Identifying Events.
IDE Description Related Requirements
E1 Pressing the call button. R1,R2
E2 The lift is called from the floor K. R1, R3, R9, R10
E3 The lift passing through the floor K. R3
E4 The lift is stopped. R3, R4, R7, R9, R10
E5 The doors are opened. R4, R5, R9, R10,

R12, R13, R14
E6 The doors are closed. R5, R10
E7 There are no more calls in the current direction. R6
E8 There are no more calls. R7
E9 There are calls. R8
E10 The lift is moving. R11
E11 Pressing the open-door button. R12
E12 Something blocks the doors. R13
E13 The lift is overloaded. R14

Table 10: Identifying Attributes for Event E5.

Attribute Description
IDE E5
IDR R5
Type Link
Category Input
Action Close the Doors automatically after d time units.
Object Pre-state: The Doors are opened.

Next-state: The Doors are closed.

Table 11: Identifying Attributes for Event E13.

Attribute Description
IDE E13
IDR R14
Type Cancel
Category Input
Action Close the Doors automatically after d time units.
Object Pre-state: The Doors are opened.

Next-state: The Doors are opened.

Table 12: Requirements Interaction: R3 -> R1.

Interaction Type Require. See Table 5 (require).
Requirements R3 -> R1
Explanation To stop the lift at floor K, it must be called pressing

the button.
The event produced in the requirement R1 (E2)
stimulates the execution of the action of R3.

Table 13: Requirements Interaction: R13 -> R5.

Interaction Type Cancel. See Table 6 (cancel).
Requirements R13 -> R5
Explanation Closing the doors is canceled when something

blocks the door.
The event of the requirement R13 (E12) cancels the
execution of the action of R5.

Table 14: The Identified Interactions.
Requirement Interacting Requirement Interaction Type
R8 R9 cancel
R9 R1 cancel
R12 R5 cancel
R13 R5 cancel
R14 R5 cancel
R12 R8 Negative Impact
R12 R8 Negative Impact
R12 R8 Negative Impact
R3 R1 require
R4 R3 require

APPLYING AN EVENT-BASED APPROACH FOR DETECTING REQUIREMENTS INTERACTION

229

6 CONCLUSIONS AND RESULTS

In this paper, we have presented our approach to
specify, detect, and automatically discover the
interactions among software requirements. The
approach is based on events and actions and uses a
semi-formal method. The method requires neither
the user intervention nor any external knowledge for
the identification of interactions. The method is able
to identify most interaction types described in the
literature (negative and positive interactions).

The proposed approach detected all interactions
reported by Heisel and Souquières (2001) and
Shehata (2005), besides extra interactions not
detected by other approaches (mostly positive
interactions). These are the interaction types that
allow the behaviour modelling of the system, mainly
those that enable interaction between objects. Table
15 summarises this comparison.

Table 15: Comparing Results.

Approach Positive
Interactions

Negative
Interactions

Proposed Approach 13 8
(Heisel and Souquières, 2001) - 6
(Shehata, 2005) - 7

The method reduces the human participation,
because the process of interactions detection
(applying interaction detection rules) can be
automated and implemented through a
computational support tool.

To facilitate and avoid unnecessary comparisons
during the interactions detection, the process of
identification of the common events and actions
associated to the requirements was conceived.

The knowledge of interactions allows resolving
eventual conflicts and planning the requirements
implementation (priorities) considering
dependencies interactions.

The method proposed in this paper works well if
a requirements analyst can properly identify
requirements attributes as shown in Table 7.
However, this work is less complex than to specify
the requirements using a formal specification
language.

We plan to expand the method to cover
additional interactions types, which were not
considered in this paper. Moreover, we intend to
work on the improvement of the method by
identifying and complementing the rules for
interactions detection. This will enable us to make
the algorithms more efficient and precise.

We are also working on a software prototype to
support the user to validate, improve or reject the
interactions identified by our method.

ACKNOWLEDGEMENTS

This work was partially funded by CNPq grants
311454/2006-2 and 305900/2005-6.

REFERENCES

Dahlstedt, Å.G., Persson, A., 2003. Requirements
Interdependencies - Moulding the State of Research
into a Reseach Agenda. In Proceeding of the Ninth
International Workshop on Requirements
Engineering: Foundation for Software Quality,
Austria, 2003.

Robinson, W. N., Pawlowski, S. D., Volkov, V., 2003
Requirements interaction management. In ACM
Computing Surveys 35 (2), 2003, pages 132-190.

Shehata, M., 2005. Detecting Requirements Interactions
using Semi-Formal Methods. PhD. Thesis (Doctor of
Philosophy), Department of Electrical and Computer
Engineering, Calgary University, Canada, 2005.

Yuqin, L., Chuanyao, Y., Chongxiang, Z., Wenyun, Z.,
2006. An Approach to Managing Feature
Dependencies for Product Releasing in Software
Product Lines, In Proc. of the International
Conference on Software Reuse, LNCS 4039, 2006,
pages 127-141.

Zhang, W., Mei, H., Zhao, H., 2006. Feature-driven
Requirement Dependency Analysis and High-level
Software Design, Requirements Engineering Journal,
volume 11, number 3, 2006, pages 205-220.

El-Ansary, A., 2002. Behavioral Pattern Analysis: towards
a new representation of systems requirements based on
actions and events. In The ACM Symposium on
Applied Computing, Madrid, Spain. 2002.

BPMN, 2006. Business Process Modeling Notation,
OMG.

Calder, M., Magill, E., 2000. Feature Interactions in
Telecommunications and Software Systems VI,
Amsterdam: IOS press, 2000.

Lamsweerde, A. V, Darimont, R., Letier, E., 1998.
Managing Conflicts in Goal-Driven Requirements
Engineering. In IEEE Trans. on Software Engineering,
volume 24, number 11, 1998, pages 908-926.

Pohl, K., 1996. Process-Centered Requirements
Engineering, John Wiley & Sons Inc.

Mylopoulos, J., Chung, L., Yu, E. 1999. From object-
oriented to goal-oriented requirements analysis.
Commun. ACM, 42, pages 31–37.

Heisel M., Souquières, J., 2001. A heuristic algorithm to
detect feature interactions in requirements. In
Language Constructs for Describing Features, M.
Ryan, Ed.: Springer-Verlag London Ltd, 2001.

Sarmiento, E.C., 2008. Detecting interactions between
requirements in software development. M.Sc.
Dissertation in preparation, Graduate Program in
Informatics, Federal University of Rio de Janeiro,
Brazil (In Portuguese).

ICEIS 2009 - International Conference on Enterprise Information Systems

230

