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Abstract: Event-driven architectures (EDA) have been proposed as a new architectural paradigm for event-based 
systems to process complex event streams. However, EDA have not yet reached the maturity of well-
established software architectures because methodologies, models and standards are still missing. Despite 
the fact that EDA-based systems are essentially built on events, there is a lack of a general event modelling 
approach. In this paper we put forward a semantic approach to event modelling that is expressive enough to 
cover a broad variety of domains. Our approach is based on semantically rich event models using ontologies 
that allow the representation of structural properties of event types and constraints between them. Then, we 
argue in favour of a declarative approach to complex event processing that draws upon well established rule 
languages such as JESS and integrates the structural event model. We illustrate the adequacy of our 
approach with relation to a prototype for an event-based road traffic management system. 

1 INTRODUCTION 

A wide range of applications is characterized by 
event-driven business processes. They must deal 
with a huge amount of different events which 
continuously arrive as streams (Luckham, 2002), 
(Babu et al., 2001). Due to the high volume of 
events and their complex dependencies, no 
predefined workflow can be specified for business 
processes. Current software architectures such as 
service-oriented architectures (SOA) do not target 
event-based systems, because they are based on a 
process-oriented control flow, which is not 
appropriate for event-driven systems.  

In recent years, event-driven architectures (EDA) 
have been proposed as a new architectural paradigm 
for event-based applications (Luckham, 2002). 
Processing events is the central architectural concept 
of EDA: streams of events are analyzed using 
Complex Event Processing (CEP) to initiate 
downstream event-driven activities, which are 
provided by software components and application 
systems for implementing domain-specific event 
handling. Event streams generated by sensors, RFID 

tags or software components contain a large volume 
of different events, which must be transformed, 
classified, aggregated and evaluated. Examples for 
EDA-based systems are logistic applications based 
on RFID events (Wang et al., 2005), (Dunkel and 
Bruns, 2008), financial trading (Adi et al., 2006), 
business activity management (Coy, 2002), click 
stream analysis in web portals (Coy, 2002) and 
traffic control systems (Dunkel et al., 2008). 

The main goal of CEP is to identify in a huge 
event cloud those patterns of events which are 
significant for the business domain. In traffic control 
systems millions of sensor-emitted events are 
analyzed to discover event patterns signifying 
upcoming traffic problems. 

Meanwhile, EDA have been used successfully 
for event-based applications (Wu et al., 2006), 
(Babcock et al., 2002) and several commercial 
products supporting EDA are available (Coral8, 
2008), (Espertech, 2008).  

Unfortunately, event-driven architectures have 
not yet the maturity of well-established software 
architectures: there is still a lack of methodologies, 
models and standards. Despite the fact that EDA-
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based systems are essentially built on events, 
existing architectures does not use any formal event 
modelling approaches. In this paper, we introduce 
Semantic Event Models using ontologies to define 
precisely the hierarchy of event types used in an 
Event-Driven Architecture. Semantic Event Models 
reflect the sequence of event processing steps and 
constitutes the software architecture by identifying 
the essential systems components and the main event 
processing steps.  

The paper is organized as follows: In the next 
section the main deficiencies of existing EDA-based 
systems are discussed. In section 3 we introduce 
semantic event models based on ontologies and 
show how they can be used subsequently in event 
processing. Finally, we summarize the most 
significant features of our approach and provide an 
outlook on future lines of research. 

2 EDA DEFICIENCIES  

One of the main deficiencies of current EDA 
approaches is the absence of decent software 
architectures. A software architecture is described by 
an abstract model defining the essential domain 
concepts and mapping them on appropriate software 
components (Evans, 2003), (SEI, 2008).  

Obviously, events are the key domain concept of 
EDA and should therefore be defined precisely by a 
formal event model. An event model should provide 
a complete understanding of the different event 
types, its properties, constraints and dependencies; 
and is therefore invaluable to derive the software 
architecture of EDA-based systems. 

 

Defining Events in Event Processing Languages. 
Surprisingly, existing event-driven architectures do 
not use any generic and comprehensive event model, 
e.g. (Adi et al., 2006), (Rozsnyai et al., 2007), 
(Wang et al., 2005), (Wu et al., 2006).  

Instead, event processing languages (EPL) are 
used, which intermingle the processing with the 
definition of events. Mostly, proprietary SQL-like 
event processing languages for continuous queries 
(CQL) are used in academic approaches (Babu et al., 
2001), (Babcock et al., 2002), and available EDA 
products (Coral8, 2008), (Esper, 2008). Event 
definitions are hidden in the SQL-like low-level 
code (Arasu et al., 2002). This approach causes the 
following drawbacks: 

 Because CQL-based system doesn’t provide 
any dedicated event model, an overview of the 

given event types is missing, which makes the 
understanding of event processing difficult.  

 Furthermore, there is a lack of explicit business 
rules in form of event constraints. Due to this 
deficiency, event processing rules can easily 
violate inherent. 

Benefits of Formal Event Models. A formal event 
model is a key issue of EDA-based systems allaying 
the above mentioned problems in providing detailed 
semantics about the given events. Furthermore, 
event models yield the basis for the overall system 
architecture. The event hierarchy corresponds with 
the sequence of event processing steps: simple 
technical events are transformed into more abstract 
and sophisticated application-specific events. Each 
transformation step is processed by event agents 
which building blocks of the software architecture 
(Dunkel et al., 2008).  

In summary, current EDA systems lack semanti-
cally rich event models which are indispensable for 
understanding the key concepts of event-driven 
systems and for deriving appropriate software 
architectures. 

3 SEMANTIC EVENT MODELS 

In our approach we distinguish two different layers 
of Event-Driven Architectures: the Structural Event 
Model and Complex Event Processing see figure 1.  
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Figure 1: EDA layers. 

The Structural Event Model serves as a formal 
event model as motivated in section 2. It defines the 
different types of events and their relations. Further-
more, it specifies general constraints defining more 
precisely the structure of events and their inter-
dependencies.  

Note that the Structural Event Model determines 
the business objects of EDA.  Its task is to specify 
the properties of events but not how they are 
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processed. In particular, the Structural Event Model 
should meet the following requirements. 

 The Structural Event Model must be formally 
defined and semantically rich to provide a 
complete understanding of the given events. It 
should define all constraints and interdepen-
dencies between events by declarative descrip-
tion mechanisms; i.e. by structural rules.  

 The specification of the Structural Event Model 
should be based on an adequate formalism to 
limit the room of interpretation and to allow 
model-driven approaches.  

Complex Event Processing is responsible for 
processing streams of continuously arriving events. 
It is based on event processing rules which define 
correlations between events and are expressed by 
event processing languages based on event algebras 
(Schiefer, 2007). The rules consist of two different 
parts: event patterns specify a certain situation of 
events; and event actions are executed when the 
event pattern is fulfilled. In particular, new events 
can be generated within the event action part. CEP 
relies completely on the Structural Event Model, 
where all events used in the event processing rules 
must be defined.  

In summary, the two layers separate domain 
knowledge: the structure of events is decoupled from 
operational knowledge, i.e. the event processing 
rules. 

3.1 Formalisms for Event Models  

Experience with EDA-based systems has led us to 
the following requirements for formalisms aimed at 
semantic event models:  

 sufficient expressiveness of the Structural 
Event Model to describe all aspects and 
interdependencies of events.  

 Complex Event Processing should integrate 
smoothly the knowledge of the Structural 
Event Model. 

 compatibility with standards to facilitate tool 
support.  

Structural Event Models. Most current EDA 
approaches specify only the types of events by using 
XML and XML Schema, as recently investigated in 
(Rozsnyai et al., 2007). But XML is not suitable for 
modelling semantics, as it lacks high-level language 
constructs that support the declarative specification 
of event interrelations and constraints.  

Some other approaches use simple UML models 
for defining event types and their relations (Coral8, 
2008), (Esper, 2008). Common UML models are not 

expressive enough, but they can be enriched by OCL 
(Object Constraint Language) constraints (OMG, 
2003) to specify more precise event models. 
However a drawback of this approach is that OCL 
cannot be easily integrated in standard rule engines 
which perform complex event processing. 

To comply with the above listed requirements, 
we decided to apply ontologies for defining 
semantically rich event models. Ontologies langua-
ges such as the Web Ontology Language (OWL) 
provide sufficient expressiveness (W3C, 2004), and 
may be easily integrated with classical rule engines 
for further processing (Dunkel et al., 2006). 

Furthermore, OWL is standardized by the W3C 
and can be viewed as a semantic extension of XML, 
RDF, and RDFS. We will use the OWL DL sub-
language that is based on description logic providing 
an adequate degree of expressiveness while still 
allowing automated consistency checking.  

Complex Event Processing must integrate the 
Structural Event Model with the event processing 
rules. For instance, the constraints of the Structural 
Event Model can be used as consistency rules for 
checking the validity of incoming event data.  

Because SQL-like continuous query languages 
doesn’t support the concept of rules, it is much 
easier to integrate a Structural Event Model with a 
general rule based system like JESS (Jess, 2008) or 
DROOLS (Drools, 2008). For instance, in (Dunkel 
et al., 2006) we have shown how OWL models can 
be mapped to facts and rules of a general inference 
engine. In section 3.3 we will show how general rule 
languages can be used for specifying event 
processing rules. 

3.2 Structural Event Models 

In this section we show that OWL-DL is an 
appropriate formalism for specifying Structural 
Event Models. To illustrate our approach, we refer 
to the prototype of a Decision Support Systems for 
traffic management, which has been modelled using 
an EDA (Dunkel et al., 2008).  

In high capacity road networks, as the one of 
Bilbao in Spain, sensors installed in the roads emit 
events when cars are passing. The Decision Support 
System transforms the sensor events into more 
abstract and sophisticated domain events for 
evaluating the actual traffic situation and initiating 
appropriate traffic control actions.  

In the following we will derive an ontology-
based event model for to illustrate how different 
aspects of Structural Event Models can be modelled 
in OWL. Figure 2 shows the simplified OWL event 
ontology.  
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Figure 2: Part of the OWL event ontology. 

Event Instances and Event Types. Every situation 
that may require a reaction of the system forms an 
Event Instance. An Event Instance is atomic and 
instantaneous, i.e. bound to a certain point of time. 
An Event Type classifies the event instances and 
describes their conceptual features. Each Event 
Instance belongs to a certain Event Type. The Event 
Types reflect the event processing steps. 

OWL already provides mechanisms for dealing 
with Event Instances and Event Types: an OWL 
classes provide an abstraction mechanism for 
classifying individuals. An Event Instance is 
represented by an OWL instance. 

In Figure 2 each rectangle shows an OWL class 
representing an Event Type, e.g. a CarSensor-
Event is emitted by a loop detector when a car 
passes. The particular situation that a car passes the 
sensor at a certain time forms an Event Instance. The 
decision support system transforms the Sensor 
Events into more meaningful Traffic and Problem 
Events. 

Event Hierarchies. Event Types usually constitute a 
hierarchy – defining an Event Type as a subclass of 
other types. (Note that OWL allows multiple inheri-
tance.) In figure 2 the ProblemEvent has two 
subtypes: a CongestionEvent and an Accident-
Event. 

Event Type Construction. Furthermore, OWL 
offers some constructors to build classes out of other 
classes, which are useful for event type definitions. 
In particular, in OWL the operators union, 
intersection and complement are defined, 
which represent the AND, OR and NOT operators on 
classes. 

Event Context. Each Event Instance is 
characterized by some data: general metadata (event 
ID, time) is common to all Event Types; event-
specific data describes the context, in which the 

event occurs. Because event data is type-specific, it 
can be used to infer the Event Type. OWL allows 
attributes of class instances: OWL data properties 
describe event data, and OWL object properties 
specify relationships between event instances. 

In figure 2, a relation between TrafficEvent 
and SensorEvent is defined by OWL object 
properties. The TrafficEvent aggregates some 
SensorEvents: it calculates its attributes densi-
ty, (average) speed and occupancy using data 
from the corresponding sensor events. Thus, the 
TrafficEvent can be considered as a complex 
event which aggregates correlated (sensor) events. 

Event Constraints. With the hitherto presented 
OWL language constructs the basic structure of an 
event model can be specified. For defining events 
more precisely, we need to inject further semantics 
into our models.  

The domain and the range of an object property 
specify which classes are linked. In figure 2, the 
property yields has a TrafficEvent as range and 
a ProblemEvent as domain.  

Additionally, logical restrictions can put more 
semantics to the relations between Event Types. 
OWL provides the symmetricProperty, inverseOf 
and transitiveProperty constructs for logical 
restrictions: dependsOn is a symmetricProperty 
between ProblemEvents; requires and 
eliminates are inverse; dependsOn is a 
transitiveProperty. 

Furthermore, OWL allows formulating con-
straints on Classes by so-called OWL class axioms. 
For instance, two classes are disjoint if they have 
no instances in common, such as SensorEvent and 
ProblemEvent.  

Notation of Time. Event Instances are (partially) 
ordered according to their times of occurrence and 
most event patterns define a certain sequence of 
events. Therefore, the concept of time is a key issue 
for event models.  However, time is not explicitly 
defined in OWL. A possible solution is modelling 
time in a dedicated abstract type, here: 
AbstractEvent. This class contains meta data 
which is common to all events types, i.e. the 
occurrence time and an eventId. All Event Types 
inherit from this class to provide them with these 
concepts. Note that recently some work has been 
proposed extending OWL with temporal aspects 
(Marwaha et al., 2007). 

In summary, OWL ontologies can be used to 
develop semantically rich event models. Especially 
OWL constraints can enrich event models with more 
semantics. 
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3.3 Complex Event Processing 

In this section we show how to use general rule 
languages for specifying event processing on the 
basis of the Structural Event Model. Note that the 
Structural Event Model just represents the 
knowledge about the event types and their 
properties, but not how these events are processed.  

CEP and Structural Event Model. Complex Event 
Processing depends heavily on the Structural Event 
Model: All event types and data used in the event 
processing rules must be defined in the event 
ontology as OWL classes or OWL properties.  

Note that the expressiveness of OWL is not 
sufficient for specifying processing rules: OWL 
lacks the language constructs for formulating 
complex event patterns and does not allow any data 
processing as required in the action part.  

A key issue of our approach is the smooth 
integration of the OWL ontology with the event 
processing rules. In (Dunkel et al., 2006) we have 
outlined how OWL models can be mapped to facts 
and rules of a general inference engine. In particular, 
we used the OWL Inference Engine tool (OWL 
inference engine, 2008) to load OWL ontologies and 
OWL instances into a JESS knowledge base. 

Event Patterns. In the following, we show how 
general rule languages like JESS can serve as event 
rule language. The key issue is their capability of 
defining event patterns, which can be characterized 
by the following elements (Zimmer et al., 1999): 
 Event Patterns are based on event types, i.e. 

they define a sequence of event types that must 
be matched. Events sequences can be defined by 
some basic operators of an underlying algebra: 
the sequential operator E1 ; E2, a conjunction 
operator E1∧E2, the disjunction operator E1∨ 
E2 and a negation operator ¬E1.The following 
example shows a pattern that identifies an 
accident as the cause of a specific congestion. 
(defrule Congestion_DependsOn_Accident 
   (AccidentEvent (time ?tacc) (location ?pos)) 
  (CongestionEvent (time ?tcon)(location ?pos)) 
  (test (> ?tcon ?tacc)) 
  (not (and (ProblemEvent (time ?tprob)) 
                (test (and (> ?tprob ?tacc)(< ?tprob ?tcon))))) 
=>  ... 
) 

 Event Patterns contain context conditions, i.e. 
restrictions on the data context of an event 
instance. Context conditions are specified by 
means of relational operators, which depend on 
the data types of the corresponding event 

properties. Data context allows the definition of 
correlation sets, e.g. correlating all sensor 
events belonging to one road segment. The next 
rule is used to aggregate the speed measured by 
the two sensors of a road section.  
(defrule DataAggregation 
  (CarSensorEvent (sensorId ?sId1)(speed ?v1)) 
  (CarSensorEvent (sensorId ?sId2)(speed ?v2)) 
  (test (<> ?sId1 ?sId2)) 
  (sensor (sensorId ?sId1)(location ?sec)) 
  (sensor (sensorId ?sId2)(location ?sec)) 
=> 
  (assert (TrafficEvent (eventId (gensym*))(time (time)) 
                       (speed (/ (+ ?v1 ?v2) 2))(section ?sec))) 
) 

 Finally, the event instance selection must be 
determined: the event patterns just specify the 
required event types. In the next example, we 
need to select the last AlertEvent to show its 
message property in the information panel. The 
first conditional pattern matches any alert event, 
but the second requires the absence alert events 
with a timestamp higher than the first one. So, 
the rule only fires for the most recent Alert 
Event, sending it to the panel. 
(defrule SelectMessageToShow 
  (AlertEvent (time ?ta)(message ?m)) 
  (not (and (AlertEvent (time ?tpre)) 
                (test (> ?tpre ?ta)))) 
=> 
  (assert (sendMessageToPanel ?m)) 
) 

Event Handling. If an event pattern is matched, i.e. 
if a rule fires, a certain action is executed. The event 
rules should allow defining arbitrary handling code. 
In particular, the data of those event instances that 
match the pattern must be processed and new event 
instances must be created. Furthermore, actions must 
be able to invoke business-level activities which 
implement domain-specific event handling.  

4 CONCLUSIONS 

Though EDA-based systems are essentially built on 
events, current approaches do not use formal event 
models. Instead, event processing languages (EPL) 
are used, which intermingle processing and 
definition of events. Generally, there is a lack of 
comprehensive and precise event models.  

In this paper, we have put forward a semantic 
approach to event modelling for EDA-based 
systems. A Structural Event Model defines all event 
types with their constraints and interdependencies 
and can be described by ontology languages. We 
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showed how to use OWL to express semantically 
rich event models that can be reused in subsequent 
event processing steps straightforwardly. Complex 
Event Processing defines the operational behaviour 
of EDA on base of the Structural Event Model. For 
instance, the constraints of the Structural Event 
Model can be used as consistency rules for checking 
the validity of incoming event data.  

To integrate the structural with the operational 
model we chose well established rule language as 
JESS and showed how they can be used for 
specifying event processing rules. Furthermore, we 
have illustrated the adequacy of our approach with 
relation to a prototype for an event-based road traffic 
management system. 

In contrast to other works (Adi et al., 2006), 
(Rozsnyai et al., 2007), (Wang et al. 2005), (Wu et 
al., 2006), we used a model-based approach for 
deriving EDA, which separates the structural (i.e. 
event types and constraints) from operational know-
ledge (i.e. event processing rules). The proposed 
models yield the basis for the software architecture 
and can be used for model-driven software 
development approaches.  

For the future, we intend to derive explicit 
architectural guidelines and design patterns from the 
semantic event models. For this purpose, we also 
plan to integrate a reference architecture that we 
have developed for structuring CEP reasoning 
(Dunkel et al., 2008) into our approach. 
Furthermore, we intend to explore the potential 
benefits and drawbacks of combing OWL-based 
ontologies with SQL-based EPLs. Finally, we want 
to apply model-driven software development 
approaches to generate event processing rules from 
semantic event models and to simplify the 
development of low-level event processing rules. 
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