Agile Release Planning through Optimization

Akos Sz6ke

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary

Abstract. Agile software development represents a major approach to software
engineering. Agile processes offer numerous benefits to organizations including
quicker return on investment, higher product quality, and better customer satisfac-
tion. However, there is no sound methodological support of agile release planning
— contrary to the traditional, plan-based approaches. To address this situation, we
present an agile release planning model and a heuristic optimization algorithm as
a solution. Four real life data sets of its application and evaluation are drawn from
the lending sector. The experiment demonstrates that this approach can provide
more informed and established decisions and support easy optimized release plan
productions. Finally, the paper analyzes benefits and issues from the use of this
approach in system development projects.

1 Introduction

Development governance covers the steering of software development projects. Tradi-
tional governance usually applies command-and-control approaches which explicitly
direct development teams. Experiences with these approaches — such as Control Objec-
tives for Information-Related Technology (CobiT) [1], and the Organizational Project
Management Maturity Model (OPM) [2] — show that they are too heavy in practice
for many organizations, although they provide a wealth of advice [3]. As a reaction to
so-callecheavyweighiethodologies [4], many practitioners have adopted the ideas of
agility [5]. Agile approaches are quickly becoming the norm, probably because recent
surveys showed agile teams are more successful than traditional ones [6, 7]. Several
studies pointed out 60% increase in productivity, quality and improved stakeholder
satisfaction [7, 8], and0% and40% reduction in pre-, and post-release defect rates [9].

In recent years, several agile methods have emerged. The most popular methods are
Extreme Programming (XP) [1GJ§%), Scrum [11]¢3%), and Feature Driven Devel-
opment (FDD) [12]5%) [13]. Despite variety of methods all of them share the common
principles and core values specified in thgile Manifestd5].

Release planning is an activity concerned with the implementation of the selected
requirements in the next version of the software. Agile release planning is usually based
on a prioritized list of requirements (typically User stories) and is made up of the fol-
lowing major steps: the team i) performs estimation on every requirement, ii) deter-
mines the number and the length of iterations using historical iteration velocity (i.e.
how much work can be done during each iteration), iii) distributes requirements into
iterations considering constraints (Figure 1).

Szoke A. (2009).

Agile Release Planning through Optimization.

In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 149-160

DOI: 10.5220/0001865001490160

Copyright © SciTePress



150

Legend: / Data Process | ~control / Project constraints /
User Prioritizing and Determinin Distributing User Distributed
. estimating User (= b N 9 —P Stories into User
stories ) iterations . - 3
Stories iterations Stories

Fig. 1. Release planning in agile software development.

Problems. The essential aim of release planning is to determinemtimal execu-
tion plan of development respect to scarcity of availabEoueces and dependencies
between requirements. However, distributions of requinets are iteratively selected
and assignedianuallyinto iterations (see Figure 1). As a consequence, the fallpw
factors are managed implicitl?.1) precedence@emporal constraints between require-
ments)P2) resource capacitiegesource demands during iterations), &3 priorities
(importance of each requirement delivery). Thereforeipaglity of plans (i.e. maximal
business value or minimal cost) is heavily based on the ma&fsagght senses — never-
theless optimized project plans are crucial issues fronetdomomic considerations of
both customer and developer sides.

Objectives. Our proposed method intends to mitigate previous problétis3 by i)
formulating release planning task asa@ptimization modethat considers all the previ-
ous factors and ii) providing a solution to this model blgeristic algorithmto easily
produce release plans.

Outline. The rest of the paper arranged as follows: Sec. 2 presentmmoomotions
of agile planning; Sec. 3 introduces our optimization maatel algorithm; Sec. 4 de-
scribes experiences; Sec. 5 discusses our solution; Secuéds on related work; Sec. 7
concludes the paper.

2 Agile Release Planning

In this section, we introduce agile release planning to jkthe necessary background
information for the proposed method.

2.1 Requirements Specification

Common to all software development processes in any psojedhe need to capture
and share knowledge about the requirements and designmfdtiect, the development
process, the business domain, and the project status.a@ptarthe traditional methods
(e.g. waterfall), agile methods advocapest enoughdocumentations where the fun-
damental issue is communication, not documentation [4,Ti8 agreed requirements
not only drive the development, but direct planning of petge provide basis for ac-
ceptance testing, risk management, trade-off analysi€hadge control [14]. In agile
methoddJser storiesFeaturesandUse case¢see XP [10], FDD [12]) are the primary
models of requirements and the source of effort estimation.

Estimating Effort. Agile teams focus ongood enoughestimates and try to optimize
their estimating efforts. A good estimation approach tadtest time, and can be used



151

for planning and monitoring progress [15]. Effort estimatimodels usually based on
size metrics: Story points [16], Feature points [12], and tisse points [17]. These met-
rics are abstract units, express the whole size of developama usually not directly
convertible to person hours/days/months.

User Stories and Story Points. The most popular requirements modeling technique
in agile methods is the User story technique [16]. User esaaire usually materialized
on electronic or paper Story cards with the description ¢fié feature demanded by
stakeholders, ii) the goal of the customers, and iii) thé@resed size of the develop-
ment work is expressed by a Story point and interpreted aspetay effort (usually
classified into Fibonacci-like effort sequence: 0.5, 1,,5,3, 13) [15].

Dependencies.The complexity of scheduling arises from the interactiotween re-
quirements (User stories) byplicit andexplicit dependencies. While the previous is
given by the scarcity of resources, the latter one is emdrgeudifferent precedences
between tasks’ realizations [18, 19]:

i) Functional Implication; demands to function),
ii) Cost-based Dependen¢yinfluences the implementation cost fifso useful to
realizei earlier),
iii) Time-related Dependenégxpresses technological and/or organizational demands)

3 Optimized Release Planning

In this section we point out release planning can be chaiaeteas a special bin-
packing problem. Then we formulate a bin-packing-relatgiihaization model for re-
lease planning, and present a solution to this model in thre & a heuristic algorithm.

3.1 Mapping to Bin-packing

Generally, a bin-packing problem instance is specified bst @kitems and a standard
bin size. The objective is to pack every item in a set of bingevminimizing the total
number of bins used [20, 21]. The analogy between releasmipig and bin-packing
problem can be explained as follows.

The team'’s resource capacity in an iteration stands for aik@ while a require-
ment’s resource demand represents an item size. In theroesoonstrained project
scheduling problem (RCPSP) context, we can view each iberatithin release as a
bin into which we can pack different deliverable requiretselVithout loss of gener-
ality, we can ensure that the resource demand of each rewgtas less than team’s
resource capacity in an iteration. Then minimizing makagpa. finding the minimum
time to completion) of this RCPSP is equivalent to minimizthe number of bins used
in the equivalent bin-packing problem [22].

We extend this ordinary bin-packing problem and intergietewith the following
elements to provide further computational capabilitiesvi@e-ranging release plan-
ning situations (c.fP1-3): i) precedences between items (requirements) (c.f. £)1),
varying capacities of bins (iterations), and iii) item piies. From now on we call this
extended problem as bin-packing-related RCPSP (BPR-RLPSP



152

3.2 Formulating BPR-RCPSP Model

Henceforth, without loss of generality, we focus on the Wsery technique to be more
concrete. Given a set of deliverable User stoji€¢s € A : |A| = n) with required ef-
fortsw;, and iterations with differentcapacities; (¢ € {1, 2, ..., n}) within a release.
Let assign each User story into one iteration so that théredgaired effort in iteration
1 does not exceed and the number of iteration used as a minimum while preceslenc
relation (matrix)P; ;; € {0,1} (whereP; ;; = 1if j precedeg’, otherwiseP; ;; = 0—
c.f. 2.1) holds. A possible mathematical formulation is:

Minimize z :Zyi (1a)
i=1
SUbjeCt to ijxi,j < cy; (1b)
j=1
i —i> de'/ 1Ty = T = 1 (1c)
> @iy =1 (1)
i=1
wherey; = 0or1, andz; ; =0or1(i,j € N), and
1 if j is assigned to iteration
0 otherwise
1 if iteration i is used
Yi = . (2b)
0 otherwise

The equations denote minimization of iteration count otask (1a), resource con-
straints (1b), temporal constraints (1c), and an iferan be assigned to only one itera-
tion (1d). We will suppose, as is usual, that the effarfsare positive integers. Without
loss of generality, we will also assume that

¢; is a positive integer (3a)

w; < ¢ forvi,jeN (3b)
If assumption (3a) is violated; can be replaced bly; |. If an item violates assumption
(3b), then the instance is treated as trivially infeasiBler. the sake of simplicity we

will also assume that, in any feasible solution, the lowedtked iterations are used,
|ey2 > Yit1 fori = 1,2,...,n—1.

3.3 Solving the BPR-RCPS Problem

For the previously formulated optimization model we depeld aBinschedulinglgo-
rithm (Algorithm 1). It is a constructive heuristic algdrih, which iteratively selects



153

Algorithm 1 : Binschedalgorithm with BF strategy.

Require:
w; € N [* weights of each User story*/
P; ;i €0,1APj; =0A Pis DAG I* precedences */
pj € N,c; € N [* priority values and capacity of each iteration */
Ensure: X;,; € 0,1 AV X;; =1
1: n < length(w) * schedulable User stories */
2: X« 1[0],, [* assignment matrix initialization */
Irec /* residual capacities of each iteration */
4; rlist < 0 I* 'ready list' initialization */
5: slist < 0 [* 'scheduled list’ initialization */
6: for fj =0tondo
7:  pot < findNotPrecedentedItems (P)
8: rlist < pot \ slist [* construct ready list */
9:  if rlist == @ then
10: print ’ I nf easi bl e schedul e!”’
11 return 0
12:  endif

13: j < min{p;}:j € rlist
14: i < selectBestFittingBin (wj,r)

150 X, ;<1 * assign User story to iteration: */
16: 7 <=1 —wj [* decrease residual capacity */
17:  slist < slist U {j}

18: Pq,ny,; =0 /* delete scheduled User story */
19: end for

20: return X

and schedules an iterty§er story into aniteration— where it fits best. In the program
listing lowercase and uppercase letters with indices denote vectors and matrices (e.g.
ci, P; ;). While bold-faced letters show concise (without indices) forms @ ).

In the require section the preconditions are given. Eachis the weight (required
effort) for User storyj in Story point. Precedences between User stories can be repre-
sented by a precedence matrix wheétg, = 1 means that User storyprecedes User
story j/, otherwiseP; ;; = 0. Both conditionsP; ; = 0 (no loop) andP is directed
acyclic graph (DAG) ensures that temporal constraints are not trivially unsatisfiable.
Prioritiesp; express stakeholders’ demands and are used by the scheduler algorithm
as a rule when choosing between concurrent schedulable User stories. Capacities of
iterations are calculated by taking the historical values of iteration velocities into con-
sideration. Thesnsuresection prescribes the postcondition on the return vakKig (
every User story has to be assigned to exactly one iteration

During scheduling steps, first the initial values are set (line 5). The iteration
value () is equal to the number of User stories (line 1). The residual capacity denotes
the remained capacity of an iteration after a User story is assigned — so it is initially set
to capacity (line 3). The algorithm useseady list(rlist) and ascheduled lis{slist)
to keep track of schedulable and scheduled User stdt@entiallyschedulable items
(pot) are unscheduled items from which the algorithm can choose in the current con-



154

trol step without violating any precedence constraing(fih Previously assigned items
are extracted from potentially schedulable items to forenrtady list (line8). As long
as the ready list contains schedulable items, the algornithmoses items from that list
— otherwise the schedule is infeasible (Ii)e The minimum priority item is selected
from the ready-list to schedule (line3). To find the proper iteration term for the se-
lected item, thebest fit(i.e. having the smallest residual capacity) strategye(lit) is
applied, and an item is assigned to iteratioi(i.e. X; ; = 1). As a consequence resid-
ual capacity of iteratior is decreased by item weight; (line 16). Finally, scheduled
list (slist), is updated with scheduled item (lin&%), and no longer valid precedence
relations are also deleted frofmafter scheduling of the given item (liné8). Iteration
proceeds until all items are assigned to iterations (lil®%-

After termination,X contains the User story assignments to iterations, where th
number of nonzero columns denotes the packed iteratians (i.

z <= length (nonZeros (Z?Zl wj:ciyj)) —c.f. (1a)).

There can be used several strategies (érgtFit, BestFi) to find the appropriate
release plan, but we used only one (tiest fi) for simple demonstration (ling4). This
greedy strategy makes a series of local decisions, sejeatisach point the best step
without backtracking or lookahead. As a consequence, lieeikions miss the global
optimal solution, but produce quick (time complexity isarlly O(nlogn) and usually
sufficient results for practical applications [21].

Figure 2 illustrates the packing concept. This example shitv post-mortem re-
lease planning result of a real life development situatisingithe previous algorithm.

9 3F

9t a =]
8 2

8 = 25 :nis

7

7t — T
il 20t 3

2 2 i maw
= il o 3

5 ° g 15f e

s] 4 S

05 1 2 3 5 8 13 1
Story point Iteration
Schedulable User stories)( User story assignmentsX(¢_ ;)

Fig. 2. Release plan applying the BPR-RCPSP approach.

Figure 3.3 demonstrates the histogram of schedulable ltées Ther-axis enumer-
ates Story point categories (weights), whjlexis shows how many User stories fall
into these categories. Figure 3.3 depicts planning reputtduced byBinschedalgo-



155

rithm in stacked bar chart form: the schedulable User st@ie packed into four iter-
ations (-axis) with capacitieg0, 30, 29, and28 (y-axis). Bar colors on the Figure 3.3
point out how Story points are distributed on Figure 3.3.

4 Experimentation

To obtain a proof-of-concept we implemented a prototype ssh&duling toolbox in
Matlab [23]. Four past release data sets — extracted froimetbidog of IRIS application
developed by Multilogic Ltd [24] — were compared against thgults of simulations
applying the same inputs [25].

4.1 Context and Methodology

IRIS is a client risk management system (approx. 2 millio®@8l) for credit institutions
for analyzing the non-payment risk of clients. It has beentiomal evolution since
its first release in the middle of 90s. The system was writteXisual Basic and C#
the applied methodology was a custom agile process. Thaselplanning process
were made up of the following steps. First, the project managed intuitive rule for
selecting User stories from the backlog into a release. Tieteam estimated on every
User story and determined the number and the length of iv@satvithin the release
— based on iteration velocity. Finally, the team distriloutéser stories into iterations
considering priorities and precedences.

4.2 Data Collection and Results

Four data sets (Collateral evaluation, Risk assumptiomaidian deal flow I/l — re-
spectivelyR4 — Rp) were selected to make a comparison between the algorithmic
method and the manual release planning carried out prdyiat#ultilogic. The R4
data set is used to present the concept in the previous egdfiglure 2). All the re-
leases had same project membérsiévelopers), iteration lengt2 (veeks), iteration
velocity (30 Story point), domain, customer, and development methagplout they
were characterized by different User story coubt§'(C), Iteration countsi{C), Buffer
per releasesKpR) (for contingencies), and delivered Story point per it@rafS F;).
Table 1 summarizes the variables®f — Rp collected from the company’s Microsoft
SharePoint-based backlog.

To determine the usefulness of our proposed method, we uskxdital data as in-
put of the Binsched algorithm (Algorithm 1). This method radigpossible to compare
performance of the algorithmic (optimized) approach astaihe manual one. Com-
puted valuesRk* — R7},) are shown in Table 2 (sindéSC, IC, BpR were the same
as Table 1 they are not shown).



156

Table 1. Historical release plan value®t — Rp).

Usc ic BpR SP, SPy SPs SPy SPs Y2 SP;
Ra 33 4 30 28.0 35.0 240 30.0 0.0 117.0
Rp 25 3 45 33.0 345 18.0 0.0 0.0 85.5
Rc 27 5 12.5 315 33.0 23.0 26.0 24.0 137.5
Rp 27 4 35 29.5 33.0 27.0 27.0 0.0 116.5

Table 2. Optimized release plan valueR} — Rp).
sp; sp; sp; Sp; sp;

R, 30.0 30.0 29.0 28.0 0.0
R} 30.0 285 27.0 0.0 0.0
R 29.5 30.0 30.0 29.0 19.0
R} 29.5 30.0 30.0 27.0 0.0
4.3 Analysis

The analysis goal was to compare the manual and the optirajzg@ebaches using the
sameinput variables The following key questions were address@d: What are the
staffing requirements over timeQ2: How many iterations do we need per release?
andQ3: How buffers for contingencies are allocated?

To answer to these questions, 1) we carried out Exploratatg Bnalysis (EDA) [26,
27] to gaining insight into the data sets, then 2) we perfarmescriptive statistical
analysis to compare the main properties of the two appr@ache

Qualitative Analysis. The following EDA techniques (called 4P EDA) are simple,
efficient, and powerful for the routine testing of undertyimssumptions [26]:

1. run sequence pldfy; versus iteration)

2. lag plot(Y; versusy; — 1)

3. histogram(counts versus subgroups B}

4. normal probability plot(orderedY” versus theoretical orderéad)

wherey; £ 2?21 w;x; 4 (1.e. sum of assigned Story point of each iteration (c.f. 1b)
were identified asesult variabledo test or questiong)1-3).

The four EDA plots are juxtaposed for a quick look at the chemastics of the data
(Figure 3). The assumptions are addressed by the graphics:

Al: The run sequence plots indicate that the data do not haveigmificant shifts in
location but have significant differences in variation otiere.

A2: The upper histogram depicts that the data are skewed tofthénlere do not ap-
pear to be significant outliers in the tails, and it is readtmto assume the data are
from approximately a normal distribution. Contrary, loveere shows asymmetric-
ity (skewed to the left heavily), data are more peaked thamtirmal distribution.
Additionally, there is a limit in the data() that can be explained by the subject of
the optimization (c.f. 1b).

A3: The lag plots do not indicate any systematic behavior pattethe data.



157

Run sequence plot Histogram Lag plot Normal probability plot
40 3 40 0.98 7
N dl - i . o0 0.95 ft ;
30 Al . 30 R i 0.90 ol
o I o [ £2 o® 0 Zor5 | :
L ne —_ o =
£20 L o T 20 . §0.50 /
k) 24 > 0025 5
010 10 Tg10 St :
0.05 |4
0 0 0 0.02
0 10 20 10 20 30 40 0 20 40 20 25 30 35
Iterations Groups Y(i) Data
30 ——p— — 15 40 0.98 7
W % ‘
30 : +
20 | £10 L Z0.75
3 2 T20 “ 8050
© @ = 8
o 10 o5 2025 o
10 010 M
0.05 |- s
0 0 H 0 0.02 .
0 10 20 15 20 25 30 0 20 40 20 25 30
lterations Groups Y(i) Data

Fig. 3. 4P of historical (upper) and optimized (lower) plans

A4: The normal probability plot in upper approximately follossaight lines through
the first and third quartiles of the samples, indicating rardistributions. On the
contrary, normality assumption is in fact not reasonabléerright.

From the above plots, we conclude that there is no correlaimong the dataA@),
the historical data follow approximately a normal disttibn (A4), and the optimized
approach yields more smooth release padding and less varfah,A2).

Quantitative Analysis. Due to A3 data sets could be analyzed with summary (de-
scriptive) statistics (Table 3), and hypothesis test. @@bshows important differences
between the historical and optimized data:

D1: in the optimized case sample standard deviation is appteisn halved, which
SupportsAl,

D2: despite of the fact that iteration velocity waé Story points the release plan pre-
scribed35 in the historical case which result@@% resource overload (c.A2),

D3: relatively large skewness of the optimized case (histograRigure 3) can be in-
terpreted by the capacity constraints of the optimizatsae(1b),

D4: relatively large kurtosis of the optimized case (histogiarfrigure 3) can be ex-
plained by the subject of the optimization (see 1a).

After statistical analysis, Lilliefors test is carried dotquantify the test of normality
(c.f. Ad) ata = 95% significance level: historical data comes from a normatitistion
(Ho : F(Y;) = O(Y;)), against the alternative hypothest§,(: F(Y;) # O(Y;)).



158

Table 3. Comparison with descriptive statistics.

Mean Min Max Std.dev. Skewness Kurtosis
Ra_B 28.53 18.0 35.0 4.78 -0.48 2.50
Ry _p 28.53 19.0 30.0 2.75 -2.82 10.35

The result yieldeg-value =0.5 (observed significance level). Asvalue> (1 — «)
so historical data follow normal distribution (96, was accepted &5% significance
level). Since the sample was relatively small, the Lillisftest was adequate [26].

Finally, maximum likelihood estimation (MLE) proceduresvacomplished to find
the value ofu (expected value) and (standard deviation) parameters of the normal dis-
tribution. The estimation resulted= 28.53 ando = 4.63 values [27].

As a consequence, in the optimized case: staffing requirsngesf. Q1) showed
more smooth release padding, with less variance and an lippertherefore consti-
tuted less risk level regarding resource overload; iteratiounts per releases (032)
did not exhibit any differences contrary to the historicata] finally release buffers (c.f.
Q3) were moved from the end of iterations to the end of releaséshamore advisable
to mitigate risks [28].

5 Discussion and Related Work

Without loss of generality, we have selected User story asrbst popular agile re-
guirements modeling technique as a subject of releaseiplgrigser stories have many
advantages including i) comprehensible to both customeddtze developers, ii) em-
phasize verbal rather than written communication, iiiyesent a discrete piece of func-
tionality, iv) work for iterative development, and finally iight sized for estimating (i.e.
Story points [16]) and planning [10, 15].

We applied the popular Story point method to estimate retdin duration of each
User story. Up to now, several case studies reported thabtibny point is a reliable
method to estimate the required effort at the release ptarptiase [6, 7, 16].

Then we formulated release planning as BPR-RCPSP to pralgaeithmic User
story distribution considering i) team’s resource capaiitan iteration and ii) mini-
mizing the number of iteration used scheduling objectiver @roposed BP-RCPSP is
an extension of bin-packing optimization model to coveravidnging release planning
situations with the expression of: i) precedences betwegnirements (c.f. 2.1), ii)
varying capacities of iterations, and iii) requirement®pties (c.f. P1-3). This inter-
pretation makes it possible to adapt extremely successturistic algorithms applied to
solving bin-packing situations. Generally, bin-packimgldems are combinatorial NP-
hard problems to which a variety approximation and only a éxact algorithms are
proposed. The most popular heuristics in approximatioorélyns areFirst-Fit (FF),
Next-Fit Decreasing (NFD), First-Fit Decreasing (FFD),emithe time complexity is
O(nlogn) — considering the worst-case performance ratio of the algof21].

We developed a bin-packing algorithiigsched for the BP-RCPSP model which
illustrated the iteration capacities are filled more smbyaftf. Q1) and release buffers
are adjusted to the end of the last iterations @3) to prevent slippage of schedule
by the optimal usage of buffers [28]. Metrics indicated ttheg algorithmic approach



159

balanced the workload by halved the dispersion (coeffiméneriation ¢, = o/u):
chist = 0.17 > coP'™ = (.09) therefore provided less risky release plans besides satis
fying the same constraints. Moreover, the easy and fast atatipn allows the user to
generate alternative selections and what-if analysidltr the best plan for the specific
project context and considering the stakeholders’ feddbbyg altering constraints, ca-
pacities and priorities.

The growing pressure to reduce costs, time-to-market amapoove quality cat-
alyzes transitions to more automated methods and tooldtinas@ engineering to sup-
port project planning, scheduling and decisions [14]. 8clieg requirements into the
upcoming release version is complex and mainly manual gsde order to deal with
this optimization problem some method have been proposaap@red to the exten-
sive research on requirements priorization [29, 30], tiependencies [19, 18], and es-
timation [17], only few researches performed requiremeealsase planning. In [19]
release planning was formulated as Integer Linear Progiagh(iLP) problem, where
requirement dependencies were treated as precedenceaduissihe ILP technique is
extended with stakeholders’ opinions in [31], and with sananagerial steering mech-
anism that enabled what-if analysis [32]. In [33] a cases&ltbwed that integration
of requirements and planning how significantly 60%) can accelerate UML-based
release planning. Furthermore, all the previous methddterto the traditional RCPSP.

6 Conclusions

Up to our best knowledge, the proposed optimized model ftatian of agile release
planning is novelin the field. Although, there are some teteimanual planning [6, 15]
algorithmic solution could not be found. To evaluate our gl@dsimulation was carried
out that demonstrated the method could easily cope withriagqusly manually man-
aged planning factors i.e. precedences, resource cantstaid priorities (c.fP1-3)
besides providing optimized plans. Additionally, this eqgech provides more informed
and established decisions with application of what-if gsial and mitigates risks with
more smooth and limited requirements allocation and witlving buffers to the end
of releases. We believe the results are even more impraaginere complex (more of
constraints, user stories etc.) situations.

We think that our proposed method is a plain combination efgtesent theories
and methods, that is demonstrated by the empirical inveg#tig and the prototype. It
lead us to generalize our findings beyond the presentediexgets.

References

1. Information Systems Audit and Control Association: Cohobjectives for IT and related
technology. http://www.isaca.org/ (2008) Accessed on 2§ 12008.

2. Project Management Institute: Organizational pm  msturi model.
http://msdn2.microsoft.com (2003) Accessed on 28 May 2008

3. etal., S.A.: Best practices for lean development gover@aThe Rational Edge (2007)

4. Chau, T., Maurer, F., Melnik, G.: Knowledge sharing: &gitethods vs. tayloristic methods.
(2003) 302—-307

5. Manifesto, A.: Manifesto for agile software developmettRL: www.agilemanifesto.org
(2001) Accessed on 27 Feb 2008.



160

10.
11.
12.
13.
14.
15.

17.

18.

19.
20.
21.
22.
23.
24,
25.
26.

27.

29.

30.

31.
32.

33.

. Dyba, T., Dingsayr, T.. Empirical studies of agile scite development: A systematic re-

view. Information and Software Technology 50 (2008) 833-85

. Ambler, S.W.: Survey says: Agile works in practice. Dridb& Journal (2006)
. Layman, L., Williams, L., Cunningham, L.: Motivationschmeasurements in an agile case

study. Journal of Systems Architecture 52 (2006) 654—667

. Layman, L., Williams, L., Cunningham, L.: Exploring estne programming in context: An

industrial case study. ADC '04: Proceedings of the Agile &epment Conf. (2004) 32—-41
Beck, K., Andres, C.: Extreme Programming Explained bEaoe Change (2nd Edition).
Addison-Wesley Professional (2004)

Schwaber, K., Beedle, M.: Agile Software Developmerthv8crum. Prentice Hall PTR,
Upper Saddle River, NJ, USA (2001)

Palmer, S.R., Felsing, M.: A Practical Guide to Feafbrigen Development. Pearson
Education (2001)

Chow, T., Cao, D.B.: A survey study of critical succesgdes in agile software projects.
Journal of System and Software 81 (2008) 961-971

Nuseibeh, B., Easterbrook, S.: Requirements engimgeagiroadmap. In: ICSE - Future of
SE Track. (2000) 35-46

Cohn, M.: Agile Estimating and Planning. Prentice HIIRPNJ, USA (2005)

. Cohn, M.: User Stories Applied For Agile Software Depetent. Addison-Wesley (2004)

Anda, B., Dreiem, H., Sjgberg, D.I.K., Jgrgensen, M.tirkating software development
effort based on use cases - experiences from industry. hnindérnational Conference on
the UML. Lecture Notes in Computer Science, Springer (2@@7)-502

Li, C., van den Akker, J.M., Brinkkemper, S., Diepen, Gategrated requirement selection
and scheduling for the release planning of a software ptodocREFSQ. Volume 4542 of
Lecture Notes in Computer Science., Springer (2007) 93-108

et al.,, P.C.: An industrial survey of requirements idégrendencies in software product
release planning. (2001) 84

Hartmann, S.: Packing problems and project scheduliodgets: an integrating perspective.
Journal of the Operational Research Society 51 (1 Septepi€)) 1083—-1092(10)
Martello, S., Toth, P.: Knapsack problems: algorithmd eomputer implementations. John
Wiley & Sons, Inc., New York, NY, USA (1990)

Schwindt, C.: Resource Allocation in Project ManageimeBpringer-Verlag Berlin and
Heidelberg GmbH & Co. K (2005)

Mathworks: Matlab homepage. (2008) Accessed on 28 Mag.20

Multilogic: Multilogic homepage. URL: http://www.mtillogic.hu (2008)

Kellner, M., Madachy, R., Raffo, D.: Software procesaidation modeling: Why? what?
how? Journal of Systems and Software 46 (1999) 91-105

Martinez, W.L.: Exploratory Data Analysis with MATLABComputer Science and Data
Analysis). Chapman & Hall/CRC (2004)

Shao, J.: Mathematical Statistics: Exercises and iBokit Springer (2005)

. Tukel, O.l.,, Rom, W.O., Eksioglu, S.D.: An investigatiof buffer sizing techniques in

critical chain scheduling. European Journal of Operati®esearch 172 (2006) 401-416
Berander, P., Andrews, A.: Requirements Prioritizatidn: Engineering and Managing
Software Requirements. Springer-Verlag, Inc., SecalddisUSA (2005) pp.69-94
Karlsson, L., Thelin, T., Regnell, B., Berander, P., WotC.: Pair-wise comparisons versus
planning game partitioning—experiments on requiremernitsifisation techniques. Empiri-
cal Software Engineering 12 (2007) 3-33

Ruhe, G., Saliu, M.: The art and science of software selgganning. Software, |IEEE 22
(Nov.-Dec. 2005) 47-53

Marjan van den Akker, Sjaak Brinkemper, G.D.J.V.: Saftvproduct release planning
through optimization and what-if analysis. Technical ReéjpiJ-CS-2006-063 (2006)
Szoke, A.: A proposed method for release planning froencase-based requirements. In:
Proceedings of the 34th Euromicro Conference. Euromictd/SParma, Italy, IEEE Com-
puter Society (2008) 449-456 ISBN: 978-0-7695-3276-9.



