
LEARNING TO PROGRAM
From Pear-Shaped to Pairs

Donna Teague and Paul Roe
Queensland University of Technology, Brisbane, Australia

Keywords: Pair programming, Collaborative learning, Learning to program.

Abstract: The consistently high failure rate in Queensland University of Technology’s introductory programming
subject reflects a similar dilemma facing other universities worldwide. Experiments were conducted to
quantify the effectiveness of collaborative learning on introductory level programming students over a
number of semesters, replicating previous studies in this area. A selection of workshops in the introductory
programming subject required students to problem-solve and program in pairs, mimicking the eXtreme
Programming concept of pair programming. The failure rate for the subject fell from what had been an
average of 30% since 2003 (with a high of 41% in 2006), to just 5% for those students who worked
consistently in pairs.

1 INTRODUCTION

Like many universities internationally, in recent
years enrolments in Queensland University of
Technology’s (QUT) Information Technology (IT)
degree course have taken a dramatic nose dive,
leveling off more recently but with little promise of
gaining significant ground in the near future.
Attrition from IT courses is historically high
(Kinnunen, P., Malmi, L. 2006; Biggers, M., Brauer,
A. et al. 2008), particularly for women and other
minority groups for whom there is often poor
representation to begin with (Cohoon, J.M. 2002;
Fisher, A., Margolis, J. 2002; Lewis, S., McKay, J.
et al. 2006; Murphy, L., McCauley, R. et al. 2006;
Reges, S. 2006; Varma, R. 2006; Vilner, T., Zur, E.
2006).

Commonly offered as a first year core subject,
introductory programming subjects have an alarming
failure rate (Sheard, J., Hagan, D. 1998; Robins, A.,
Rountree, J. et al. 2003). The serial nature of
programming with sequential dependencies between
topics has a bottleneck effect on a student’s
progression through a subject or course of subjects
(eg from CS1 to CS2) if foundation or prerequisite
skills are not acquired.

Since 2003 an average of 31% of students were
failing QUT’s introductory programming subject.
Attrition from this Australian university’s IT courses
was increasing and enrolments poor. These abysmal

statistics prompted research into the barriers to first
year students learning to program.

This paper documents the results of pair-
programming experiments conducted over two
semesters at QUT to quantify the effectiveness of
collaborative learning on introductory level
programming students. A selection of workshops in
the introductory programming subject required
students to problem-solve and program in pairs,
mimicking the eXtreme Programming concept of
pair programming (Beck, K. 2005).

In the final semester of the experiment, only 5%
of the paired students failed the subject, compared to
a failure rate of 20% for non-paired students.
Students participating in the experiment not only
achieved better overall results in the subject, but
they also performed better in the subject’s final
exam.

These results indicate that the paired students
were able to independently apply their knowledge to
new problems, contrary to the observations in a
similar study (McDowell, C., Werner, L. et al.
2002),. However, our results concur with more
recent findings that students who pair-programmed
were more likely to complete the course successfully
(Braught, G., Eby, L.M. et al. 2008).

151
Teague D. and Roe P. (2009).
LEARNING TO PROGRAM - From Pear-Shaped to Pairs.
In Proceedings of the First International Conference on Computer Supported Education, pages 151-158
DOI: 10.5220/0001855901510158
Copyright c© SciTePress

2 BARRIERS TO LEARNING

Literature indicates that first year students in
particular face not only cognitive challenges with
complex topics like programming, but also a range
of social and cultural issues during their transition
into university (Cohoon, J.M. 2002; Fisher, A.,
Margolis, J. 2002; Lahtinen, E., Ala-Mutka, K. et al.
2005). These barriers are likely to impede the
students’ full potential being realized or have more
significant negative effects on their learning
outcome resulting in failure or withdrawal from the
unit, or withdrawal from IT degree entirely.

Collaborative learning is known to provide
benefits to students including generating enhanced
interest in the material, engagement in the learning
environment, greater overall achievement and a
more enjoyable learning experience (Wilson, J.D.,
Hoskin, N. et al. 1993; Gokhale, A.A. 1995;
Williams, L., Kessler, R.R. 2000; McKinney, D.,
Denton, L.F. 2006).

Consistently in first year IT subjects at QUT,
attendance levels at scheduled lectures, tutorials and
workshops dramatically decline through the
semester. In the first week of semester 1 2007, the
introductory programming subject saw on average
80% of students attending workshops, and by the
end of semester the average attendance rate at
workshops was only 16%. Subsequent semesters
experienced a similar pattern of attendance.

It seems to the authors that introductory
programming students (at least at QUT) are reluctant
to seriously embrace the advice offered by academic
staff for successfully completing the subject. During
our experiment, those students who attended
scheduled lectures on average spent about half the
recommended time per week studying the
programming subject. Each week, on average only
about half the students attending lectures could say
they had studied or practised the material introduced
in the previous week’s lecture at all. These
responses suggest that a ‘devil may care’ attitude
may be responsible for students deferring any
significant effort or focus in the course material until
the last possible moment. Not unexpectedly, many
of them end up struggling to complete complex
programming projects in a very limited amount of
time. They find themselves with little of the
working knowledge required to solve the assessment
task. Elevated stress levels compound the problem
often resulting in the student’s inability to
successfully complete the assessment item in time.

Poor grounding in the ‘building block’ basics of
programming like variable declaration, function

definition and parameter passing in the early weeks
of semester make the more advanced topics of loops,
recursion and abstract data types almost impossible
to grasp. Even with the ‘wake-up’ call of a failed
first assessment item and a renewed enthusiasm for
putting in some real effort, there is all too often little
chance to catch up on the workload in time to
salvage a decent grade for the subject. The student
is in danger of losing confidence in their own ability
and disengaging from the subject altogether.

Why do students fail to engage in the first place?
One possibility is the stark contrast between the
closely monitored high school environment and the
adult world of university. Adolescence is
characterised by growing dissatisfaction with, and
resistance to, authority (White, A.M. 2004), and it is
during this stage that students find themselves with
the sole responsibility for their learning. This could
present the immature student with the opportunity to
make poor judgement calls in terms of their
commitment to, and organisation and planning of
their university obligations (Begley, S. 2000).

But it is not only school-leavers who fail to
engage. Those students who don’t fit the IT student
stereotype include not only women, but mature-age
students and others who see studies in IT as
complementary to their career aspirations, rather
than the focus thereof (Vilner, T., Zur, E. 2006;
Peckham, J., Stephenson, P.D. et al. 2007). These
students may initially have a better study ethic, but
can struggle with a lack of supporting social
structure in the learning environment (Cohoon, J.M.
2002) and disinterest in or inability to relate to the
learning material (Fisher, A., Margolis, J. 2002).

2.1 Engaging Students

“I hear and I forget. I see and I remember. I do and I
understand.” [Confucius]

The literature on CS education embraces the notion
that lots of hands-on practice and experimentation is
especially important for novice programmers
(Hassinen, M., Mäyrä, H. 2006), because their
knowledge of programming is not passively
absorbed through texts and lectures, but rather
actively constructed via their own practical
experiences (Bruner, J. 1990; Ben-Ari, M. 1998;
Huitt, W. 2003).

Collaborative learning establishes an
environment conducive to learning and addresses the
social and cultural barriers facing first year students
and enhances their learning experience (Wilson,
J.D., Hoskin, N. et al. 1993; Gokhale, A.A. 1995;

CSEDU 2009 - International Conference on Computer Supported Education

152

Williams, L., Kessler, R.R. 2000; McDowell, C.,
Werner, L. et al. 2002; Gehringer, E.F., Deibel, K. et
al. 2006). Students benefit from peer support while
learning, and at the same time are motivated by peer
pressure and a sense of purpose and belonging
(McKinney, D., Denton, L.F. 2006).

To further support this literature, first year IT
students at QUT were surveyed in 2007 and an
overwhelming number responded that they believed
learning programming collaboratively would not
only have a positive influence on their confidence
and ability to develop sound programming skills, but
would also make studying programming more
engaging and fun (Teague, D., Roe, P. 2008). Hanks
(2006) had also reported that the attitude of students
to pair programming was mostly positive, and
particularly beneficial to women.

Using pair programming in the learning
environment has been documented as having
significant educational benefits including active
learning and improved retention, program quality,
and confidence in the solution (McDowell, C.,
Werner, L. et al. 2002; Williams, L., Wiebe, E. et al.
2002; Nagappan, N., Williams, L. et al. 2003;
McDowell, C., Werner, L. et al. 2006; Mendes, E.,
Al-Fakhri, L. et al. 2006). Students also find
programming in pairs creates a social rather than
competitive environment which promotes interaction
and lends twice as much brain power and an extra
set of eyes to a programming exercise (Simon, B.,
Hanks, B. 2007).

3 GOING PAIR-SHAPED

Following the 2007 survey and aiming to develop a
collaborative learning environment to support novice
programmers (Werner, L.L., Hanks, B. et al. 2004;
Keefe, K., Sheard, J. et al. 2006; Bagley, C.A.,
Chou, C.C. 2007) an experiment was conducted over
two semesters involving introductory level
programming students at QUT

The hypothesis tested was that pair-programming
style collaborative learning has a positive effect on
students’ learning outcome.

3.1 The Experimental Environment

The experiments were conducted over two
semesters, each of 13 weeks.

ITB001 (Problem Solving and Programming) is
a core programming subject of QUT’s IT Bachelor
degree and is perhaps the equivalent of CS1 in the
US. This subject is offered by the university every

semester, but is normally undertaken by students in
the first semester of their degree course. Students
enrolling in this subject in the second semester of
any year consist mainly of a small number starting
their course mid-year and those who initially fail the
subject and are forced to repeat it.

ITB001 represented 25% of a full-time study
workload, and during the experiment weekly contact
consisted of a two hour lecture and a two hour
workshop. Workshops involved students
completing programming exercises to reinforce in a
practical way the material previously introduced in a
lecture. Attendance at workshops was strongly
encouraged but was neither obligatory nor counted
towards final grades. Apart from lectures and
workshops, all students were expected (according to
university guidelines) to dedicate an extra 8 hours
per week to self-directed study for a total of 12
hours study per unit per week.

The assessment for this unit consisted of two or
three individual assignments of increasing difficulty
(total of 50%) and an end of semester written exam
(50%).

Workshops for semester 2, 2007 were conducted
without the use of computers, where students
concentrated more heavily on the analysis, problem
solving and design of their exercise solutions on
paper. 2008 saw workshops conducted in
laboratories with exercises completed on computers.

The experimental subjects were those students
who had previously self-allocated to any one of a
number of workshops where the first author was on
the teaching staff. These students were instructed on
the logistics of pair programming during class and
were also encouraged to continue collaboration with
their partner outside normal class times.

The control group became those students in other
workshops, in which no collaborative learning
support was given. It is worth noting that although
the first author was tutoring the paired students,
items of assessment for grading were distributed to
teaching staff on a random basis and therefore that
author would have been responsible for grading both
students from the paired as well as unpaired
workshops over the course of the experiment.

3.2 Pair Selection

Pairs were determined by self-selection. For some
students, the prospect of being able to work with a
friend throughout semester was something they
relished. Others were initially more reluctant to pair
because they either had not formed friendships with
anyone in the workshop or they simply preferred to

LEARNING TO PROGRAM - From Pear-Shaped to Pairs

153

Figure 1: QUT Student Failure Rates - First Year Subjects.

work alone. These students were asked to discuss
their computing and programming experience (if
any), and the teaching assistant then helped them
pair with someone of similar skill levels.

Initially all students were paired in the
workshops where the experiment was undertaken.
However, workshop numbers were large and
attendance fluctuated dramatically. As the semester
progressed, it proved more difficult to manage the
pairs as inevitably one or other of them was away
and/or had dropped out. If students resisted the
pairing– or their partner deserted them and they
expressed a preference to work alone, they were
allowed to do so. A small number (9%) of the
students, who regularly attended workshops where
the experiment was conducted, worked individually
and were included in the control group.

A student was considered to be a “paired” if they
attended six or more of the weekly workshops
during semester (ie approximately half). It is
reasonable to assume that these students would have
at least been exposed to the pair programming
pedagogy, and had experienced studying in a
collaborative environment. Results of the
experiment may easily have been skewed in favour
of pairing, had the subjects been only those paired
students who attended most of the workshops, as
regularly attending workshops could be a
contributing factor for success. All other students
completing ITB001 during the two semesters of the
experiment were considered to be “non-paired”.

3.3 Pair Programming

Students in these workshops formed pairs from the
first week of semester and were provided with
literature concerning the benefits of collaborative
learning. They were also given verbal and written
instructions on pair-programming together with
background information to read. Teaching assistants
instructed on the logistics of collaborating with their
partner according to the eXtreme Programming
concept of pair programming (Williams, L., Kessler,
R. 2003). Each student in the pair assumed a
different role for each exercise (or in the case of
larger exercises, the roles were swapped at intervals
of 15 minutes or so):
– the “driver” took control of the keyboard/pen:

eg recording the algorithm; writing code;
debugging and executing the code

– the “observer” was responsible for thinking
strategically, asking questions, watching for
errors, suggesting alternatives, and providing
technical input

Each week these students were reminded of the
distinct roles each partner in the pair was to play.
Teaching assistants directed the students at regular
intervals to swap roles and encouraged intensive and
continuous interaction between the paired students.

The pairing experiments were formally
conducted during the two hour weekly workshop
and continued for the duration of each semester.
Students were encouraged to continue their paired
collaboration outside the workshops by completing
unfinished workshop exercises and work on the
analysis and problem-solving of their assignments.

CSEDU 2009 - International Conference on Computer Supported Education

154

Figure 2: Distribution of grades.

As all assignments were for individual submission,
collaboration between students was forbidden past
the design stage.

Table 1: Pairing experiment student numbers.

Semester ITB001 Workshops Number of Students
 Paired Non-Paired Paired Non-Paired

2, 2007 2 4 16 77
1, 2008 4 14 64 274

4 RESULTS

4.1 Grades Awarded

Figure 1 plots student grades awarded at QUT for
the first four core subjects of its Bachelor of IT
degree from 2003. ITB005, ITB004 and ITB002 are
subjects normally undertaken concurrently with
ITB001. The ITB001 data shown in this figure
represents the entire cohort of ITB001 students
(paired and non-paired), while ITB001 PAIRED
show the results for paired students only.

Prior to the pairing experiment, ITB001’s failure
rate averaged 30%, with a peak in 2006 of 41%.

Amongst the paired student population, there
was a dramatic fall in failure rate for ITB001 in both
semesters of the experiment, dropping to just 5% in
semester 1, 2008 (n = 431, p < .001). At the other
end of the spectrum, 70% of paired students
achieved a grade of 6 or 7 on a scale of 1 (low) to 7
(high).

Figure 2 summarises the distribution of grades
awarded for the entire cohort of ITB001 students,
paired and non-paired ITB001 students during the
experiment.

4.2 Exam Results

Paired students not only achieved better overall
grades than the non-paired students, but they
significantly outperformed the control groups in all
sections of the final exam which included
comprehension, tracing, problem solving and code
writing questions (n = 431, p < .001).

4.3 Predicting Results without Pairs

In order to estimate what grades the paired students
may have achieved had they not participated in the
pairing experiment, a comparison is made between
ITB001 and another subject of a comparable level
technical nature, ITB004 Database Systems.
ITB004 teaches database design, the concepts and
terminology relating to databases, and involves
writing data manipulation statements in Structured
Query Language (SQL). Each week, ITB004
conducted a two hour lecture and two hours of
workshops. Although small group discussion was
encouraged during one hour of the workshops, no
formal collaborative learning structure was in place
for these students. Assessment for ITB004 consists
of individual assignments (total 35%) and a final end
of semester exam (55%), with a further 10%
awarded for workshop participation.

Final results for students who completed these
two subjects consecutively during the experiment
period (whether they paired or not) were compared.
Therefore, it is reasonable to assume that that study
of each of these subjects was influenced to a similar
degree for example by family and social
commitments, employment, competing study

LEARNING TO PROGRAM - From Pear-Shaped to Pairs

155

Figure 3: Difference in grades for two units for paired and non-paired students during experiment period.

commitments as well as attitude to and motivation
for study.

Figure 3 shows the relationship between
students’ grades for both subjects, by graphing the
variation in grade between ITB001 and ITB004.
There were a similar number of unpaired students
who achieved a higher grade in ITB004 as those
who performed better in ITB001. This is evidenced
by the symmetry of the grades curve for that subject.

Of those 105 unpaired students, 42% achieved a
similar result in both subjects, and were awarded the
same grade for both. 28.5% performed better in
ITB004 and 29.5% performed better in ITB001.

By comparison, a greater proportion of students
who took part in the pairing experiment (the paired
students) achieved a better grade in ITB001 than in
ITB004. Although a significant number (52%)
attained the same grade for both subjects, more than
38% of students performed better in ITB001 while
just under 10% performed better in ITB004.

This comparison of student grades for two
similarly technical subjects further supports the
theory that learning programming in a collaborative
environment involving pair-programming had a
positive effect on student results. One might also
expect that students who enjoyed the benefits of
pair-programming in ITB001 may well have
employed those collaborative learning skills to their
ITB004 studies and had a positive effect on their
grade for ITB004 too. Had the experiment been able
to eliminate any copy-cat effect in ITB004, the
results shown in the comparison of these two
subjects may well have been even more convincing.

5 CONCLUSIONS

The failure rate of students in the introductory
programming subject involved in this experiment
enjoyed a dramatic fall from a high of 41% to just
5%. Although it is acknowledged that other factors
may have contributed to this improvement including
teaching staff, subject content, programming
language and student cohort, paired students
performed significantly better than those who were
not paired in the same semester, with exposure to the
same subject structure.

Furthermore, given results data from another
subject undertaken concurrently by the same
students, it is reasonable to suggest that the paired
students achieved greater than expected had they not
had the support of the pair-programming learning
environment.

Students exposed to pair-programming and
supported by a collaborative learning environment
outperformed the control group of students who
worked independently throughout semester in the
final exam as well as overall subject results.

6 OBSERVATIONS

“Engaging” in the pair programming experiment
involved the students firstly selecting, and then
establishing a rapport with another student. Where
there existed no significant conflict or imbalance in
terms of language, work ethic or skills level,
successful social engagement between students had
a positive follow-through effect on the business end
of the programming tasks each week.

CSEDU 2009 - International Conference on Computer Supported Education

156

By virtue of their social interaction, the paired
students established a productive learning
environment for each other on their level. The ego-
charged stereo-typical student was given the
opportunity to flex his IT muscles for a peer who
may speak the same lingo and appreciate the display
of competitive prowess. Alternatively, the student
who may have harboured reservations about their
ability was able to develop a non-threatening
learning environment by pairing with a peer of
similar experience and level of confidence in the
course material.

Once relationships were formed between the
pair, the students unwittingly tended to maintain a
two-way support structure by having a more
personal reason to attend the workshop and engage
in the material: a sense of obligation to their partner.
They were provided with not only an opportunity to
discuss the work and contribute to the pair’s
progress but there was also an expectation by their
partner to do so. This peer pressure seems to have
more of an influence on the motivation of the novice
student than any amount of pressure from the
teaching staff. The students’ obligation to, and stake
in their partner’s learning experience had at least as
high a priority as any sense of obligation to their
own learning outcome. Because it is difficult to play
a very passive role in a pair (as opposed to a larger
group) students seemed to develop a commendable
study ethic while paired.

Collaborative learning generally worked so
effectively that it seemed unfortunate that students
were not given the opportunity to continue pair-
programming throughout development of their
assignments. The requirement that ‘group
assignments’ not be incorporated in the subjects’
assessment on the basis that they may not accurately
reflect an individual’s level of acquired skill and
contribution may be misplaced. The better
performance in the final exam shows that paired
students did acquire the necessary problem solving
and programming skills. Incorporating peer
evaluation into a paired assignment could exploit the
sense of obligation that developed in well-formed
pairs to ensure students contributed adequately,
while oral presentation or written examination of the
assignment could further ensure that marks are
awarded fairly.

7 FURTHER WORK

Further pair-programming experiments over a longer
time period would be useful to further support the

theory that collaborative learning has a positive
effect on student outcome.

In future work, analysis of workshop attendance
rates may be useful in order to determine any
correlation between such attendance and student
outcome.

REFERENCES

Bagley, C.A., Chou, C.C., 2007. Collaboration and the
Importance for Novices in Learning java Computer
Programming. ITiCSE Conference '07. Dundee,
Scotland.

Beck, K., 2005. Extreme programming explained :
embrace change Boston, MA, Addison-Wesley.

Begley, S., 2000. Getting Inside a Teen Brain. Newsweek.
135: 58-59.

Ben-Ari, M., 1998. Constructivism in Computer Science
Education. Twenty-ninth SIGCSE technical
symposium on Computer science education 30(1).

Biggers, M., Brauer, A., Yilmaz, T., 2008. Student
Perceptions of Computer Science: A Retention Study
Comparing Graduating Seniors vs. CS Leavers. 39th
SIGCSE technical symposium on Computer science
education, Portland, OR, USA, ACM.

Braught, G., Eby, L.M., Wahls, T., 2008. The Effects of
Pair-Programming on Individual Programming Skill.
39th SIGCSE technical symposium on Computer
science education (SIGCSE '08), Portland, OR, USA,
ACM.

Bruner, J. 1990. Constructivist Theory. Retrieved 19
July, 2007, from http://tip.psychology.org/bruner.html.

Cohoon, J.M., 2002. Recruiting and Retaining Women in
Undergraduate Computing Majors. ACM SIGCSE
Bulletin 34(2).

Cohoon, J.M., 2002. Women in CS and Biology. ACM
SIGCSE Bulletin, Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science
Education SIGCSE '02 34(1).

Fisher, A., Margolis, J., 2002. Unlocking the clubhouse:
the Carnegie Mellon experience ACM SIGCSE
Bulletin 34(2).

Gehringer, E.F., Deibel, K., Whittington, K.J., 2006.
Panel: Cooperative Learning—Beyond Pair
Programming and Team Projects. SIGCSE 2006
Technical Symposium on Computer Science
Education. Houston, Texas USA.

Gokhale, A.A., 1995. Collaborative Learning Enhances
Critical Thinking. Journal of Technology Education
7(1): 22-30.

Hanks, B., 2006. Student Attitudes toward Pair
Programming. ITiCSE 06: Proceedings of the 11th
annual conference on Innovation and technology in
computer science education.

Hassinen, M., Mäyrä, H., 2006. Learning Programming by
Programming. 6th Baltic Sea Conference on
Computing Education Research, Koli Calling.

LEARNING TO PROGRAM - From Pear-Shaped to Pairs

157

Huitt, W. 2003. Constructivism. Educational Psychology
Interactive. Retrieved 19 July 2007, 2007, from
http://chiron.valdosta.edu/whuitt/col/cogsys/construct.
html.

Keefe, K., Sheard, J., Dick, M., 2006. Adopting XP
practices for teaching object oriented programming.
ACM International Conference, Hobart, Australia,
ACM.

Kinnunen, P., Malmi, L., 2006. Why Students Drop Out
CS1 Course? 2006 international workshop on
Computing education research ICER '06.

Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M., 2005. A
Study of the Difficulties of Novice Programmers. 10th
annual SIGCSE conference on Innovation and
technology in computer science education ITiCSE '05.

Lewis, S., McKay, J., Lang, C., 2006. The Next Wave of
Gender Projects in IT Curriculum and Teaching at
Universities. Eighth Australasian Computer Education
Conference (ACE2006), Hobart, Tasmania, Australia,
ACS.

McDowell, C., Werner, L., Bullock, H., Fernald, J., 2002.
The Effects of Pair-Programming on Performance in
an Introductory Programming Course. 33rd SIGCSE
technical symposium on Computer science education.
Cincinnati, Kentucky ACM.

McDowell, C., Werner, L., Bullock, H.E., Fernald, J.,
2006. Pair programming improves student retention,
confidence, and program quality Communications of
the ACM 49(8).

McKinney, D., Denton, L.F., 2006. Developing
Collaborative Skills Early in the CS Curriculum in a
Laboratory Environment. SIGCSE 2006 Technical
Symposium on Computer Science Education.
Houston, Texas, USA.

Mendes, E., Al-Fakhri, L., Luxton-Reilly, A., 2006. A
Replicated Experiment of Pair-Programming in a 2nd-
year Software Development and Design Computer
Science Course. ITiCSE 06: Proceedings of the 11th
annual conference on Innovation and technology in
computer science education Bologna, Italy.

Murphy, L., McCauley, R., Westbrook, S., 2006. Women
Catch Up: Gender Differences in Learning
Programming Concepts. SIGCSE 2006 Technical
Symposium on Computer Science Education.
Houston, Texas USA.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang,
K., Miller, C., Balik, S., 2003. Improving the CS1
Experience with Pair Programming. 34th SIGCSE
technical symposium on Computer science

Peckham, J., Stephenson, P.D., Harlow, L.L., Stuart, D.A.,
Silver, B., Mederer, H., 2007. Broadening
participation in computing: issues and challenges.
ACM SIGCSE Bulletin, Proceedings of the 12th
annual SIGCSE conference on Innovation and
technology in computer science education ITiCSE '07
39(3).

Reges, S., 2006. Base to basics in CS1 and CS2.
SIGCSE’06, Houston, Texas, USA, ACM.

Robins, A., Rountree, J., Rountree, N., 2003. Learning and
Teaching Programming: A Review and Discussion.

Journal of Computer Science Education 13(2): 137-
172.

Sheard, J., Hagan, D., 1998. Our failing students: a study
of a repeat group. Proceedings of the 6th annual
conference on the teaching of computing and the 3rd
annual conference on Integrating technology into
computer science education: Changing the delivery of
computer science education ITiCSE '98.

Simon, B., Hanks, B., 2007. First Year Students'
Impressions of Pair Programming in CS1. Third
International Computing Education Research
Workshop. Georgia Institute of Technology, Atlanta,
GA USA, ACM.

Teague, D., Roe, P., 2008. Collaborative learning: towards
a solution for novice programmers. Proceedings of the
tenth conference on Australasian computing education.
Wollongong, NSW, Australia, ACS.

Varma, R., 2006. Making Computer Science Minority-
Friendly. Communications of the ACM 49(2).

Vilner, T., Zur, E., 2006. Once She Makes it, She is There:
Gender Differences in Computer Science Study.
ITiCSE 06: Proceedings of the 11th annual conference
on Innovation and technology in computer science
education, Bologna, Italy.

Werner, L.L., Hanks, B., McDowell, C., 2004. Pair
Programming Helps Female Computer Science
Students. Journal on Educational Resources in
Computing (JERIC) 4(1).

White, A.M. 2004. Adolescence: What, why and when?
Retrieved 26-11-2008, 2008, from
http://www.duke.edu/~amwhite/Adolescence/adolesce
nt2.html.

Williams, L., Kessler, R., 2003. Pair Programming
Illuminated. Boston, Addison-Wesley.

Williams, L., Kessler, R.R., 2000. The Effects of “Pair-
Pressure” and “Pair-Learning” on Software
Engineering Education. Proceedings of 13th
Conference on Software Engineering Education &
Training, 2000.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., Miller, C.,
2002. In Support of Pair Programming in the
Introductory Computer Science Course. Computer
Science Education 12(3): 197-212.

Wilson, J.D., Hoskin, N., Nosek, J.T., 1993. The Benefits
of Collaboration for Student Programmers. 24th
SIGCSE Technical Symposium on Computer Science
Education SIGCSE 1993, Indianapolis, Indiana US,
ACM Press.

CSEDU 2009 - International Conference on Computer Supported Education

158

