
EVALUATION OF UML IN PRACTICE
Experiences in a Traffic Management Systems Company

Michel dos Santos Soares and Jos Vrancken
Faculty of Technology, Policy and Management, Delft University of Technology

2600 GA Delft, The Netherlands

Keywords: UML, SysML, Petri nets, Empirical Software Engineering, Software Process Improvement, Action Research.

Abstract: This article is about research performed by the authors into improving the Software Engineering process at a
company that develops software-intensive systems. The company develops road traffic management systems
using the object-oriented paradigm, and UML as the visual modeling language. Our hypothesis is that UML
has some difficulties/drawbacks in certain system development phases and activities. Many of these problems
were reported in the literature normally after applying UML to one project and/or studying the language’s
formal specifications and comparing with other languages. Unfortunately, few publications are based on
surveys and interviews with practitioners, i.e., the developers and project managers that are using UML in real
projects and are frequently facing these problems. As a matter of fact, some relevant questions were not fully
addressed in past research, mainly related to UML problems in practice. The purpose of this text is to report
the main findings and the proposed improvements based on other methods/languages, or even considering
UML diagrams that are not often used. The research methodology involved surveys, interviews and action
research with a system developed in order to implement the recommendations and evaluate the proposed
improvements. The recommendations were considered feasible, as they are not proposing to radically change
the current situation, which would involve higher costs and risks.

1 INTRODUCTION

This article is about research done to improve Soft-
ware Engineering processes in practice in a com-
pany that develops software-intensive systems. More
specifically, the domain is dynamic road traffic man-
agement systems, such as road traffic monitoring and
control systems. Software process improvement has
been recognized in the literature as being capable of
reducing costs and augmenting quality and produc-
tivity (Herbsleb and Goldenson, 1996), (Rainer and
Hall, 2003), (Bannerman, 2008). The current ad-
vantages, practices and problems related to the com-
pany’s processes in general, and in particular with
UML, were evaluated.

UML (OMG, 2007) is currently thede factostan-
dard object-oriented modeling language in the soft-
ware industry. It offers good structural representa-
tion for the static part of objects and provides several
types of dynamic diagrams for behavior specification.

UML is used in projects varying from small to large
software-intensive systems, in a variety of domains.

Many studies on the application of UML were
performed in the past, and a large number of prob-
lems, limitations and drawbacks were identified. The
language is considered too informal and ambiguous
(Beneken et al., 2003), which makes it difficult to
use in automatic code generation (Henderson-Sellers,
2005). There are too many diagrams, with some
rarely used in practice (Dobing and Parsons, 2006),
making it more difficult to chose which one should
be used in a specific situation (Anda et al., 2006). In
addition, diagrams may overlap in modeling power
(Sequence and Communication diagrams, for exam-
ple), diagrams for important activities in systems de-
velopment are missing, such as designing graphical
user interfaces (Blankenhorn and Jeckle, 2004) and
representing non-functional requirements (Soares and
Vrancken, 2008b). More specifically, the language
diagrams also present problems. Behavior diagrams,

313dos Santos Soares M. and Vrancken J. (2009).
EVALUATION OF UML IN PRACTICE - Experiences in a Traffic Management Systems Company.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
313-319
DOI: 10.5220/0001850903130319
Copyright c© SciTePress



such as the Sequence diagram, cannot represent time
constraints effectively, (Soares et al., 2008), as they
are essentially untimed, expressing only chronologi-
cal order (André et al., 2007). Use Cases are too infor-
mal, with many semantic problems (Simons, 1999).
One clear semantic problem is that theincludeandex-
tend relationships are considered similar or even the
inverse of each other (Jacobson, 2004). In addition,
Use Cases can be easily misused when too many de-
tails are modeled (Agarwal and Sinha, 2003).

Many of these problems were perceived due to
experience, normally after applying UML to some
projects and/or studying OMG Specifications and
comparing with other languages. Unfortunately, few
publications are based on surveys and interviews with
practitioners, i.e., the developers and project man-
agers that are using UML in real projects and are fre-
quently facing these problems. As a matter of fact,
some relevant questions related to UML problems in
practice were not fully addressed in past research. For
instance, what do developers think of UML? How do
they use UML in their projects? What can be im-
proved? These are among the questions answered in
the research that resulted in this article. Our approach
is based on surveys and interviews with practition-
ers that have used UML for several years in many
projects.

Despite all the well-known problems, UML also
presents many advantages, and is heavily used in
the modeling of software-intensive systems both in
academia and industry. The language is a combina-
tion and adaptation of well-known methods used in
the past, which facilitates the learning process. For
instance, Class diagrams are considered a superset
of Entity-Relationship diagram (Booch et al., 2005),
Sequence diagrams are based on SDL’s Message Se-
quence Charts (Collins et al., 1996), and the State-
Machine diagram is derived from Statecharts (Harel,
1987). As a generic modeling language, UML can be
used in many different projects, domains and method-
ologies. There are many software tools to support di-
agrams drawing. By now, the language has been al-
ready used for more than 10 years. By no means it
will be easy to simply stop using UML, and this arti-
cle and research do not advocate that. This article pro-
poses that UML can be better employed, adapted and
used jointly with other languages and methods. This
avoids radical changes, which have well-known draw-
backs, such as the necessity of additional training for
employees, buying and integrating new software tools
in the process, and adapting documentation of legacy
systems.

The purpose of this paper is to present the
evaluation of how UML is used in a company

that develops software-intensive systems, the main
difficulties/disadvantages recognized by the com-
pany, and propose improvements using other meth-
ods/languages.

2 RESEARCH QUESTIONS AND
METHODOLOGY

Our hypothesis is that UML is a useful software mod-
eling language that has some difficulties/drawbacks
in certain system development phases and activities.
We want to investigate the following questions about
UML and the development process used at the com-
pany.

• Which systems engineering phases and activities
present UML-related problems?

• What drawbacks/problems are most commonly
observed?

• What can be done to solve these difficulties and
drawbacks?

• Which UML diagrams are most suitable for each
development activity?

These questions are answered for a company develop-
ing systems for a specific domain: road traffic man-
agement systems. Nevertheless, general, similar re-
sults can be inferred, as the systems considered in the
domain are software-intensive systems comparable,
in terms of complexity, to systems in other domains.

Rather then dealing only with theory to answer the
research questions, we have chosen to apply our own
theories in practice. The research methodology was
inspired by Action Research, which supports that re-
searchers should test their theories with practitioners
in real situations and real organizations (Avison et al.,
1999). Action Research combines theory and practice
through an iterative collaboration between practition-
ers and researchers. This collaboration is emphasized,
as it will help researchers understand the ill-structured
and complex environment of organizations. In each
iteration, problems are identified, intervention is per-
formed, and reflections on the results are presented.

The research approach was composed of five
steps. First, a questionnaire was performed with some
employees in order to understand the company’s de-
velopment context and processes. Then, data were
tabulated to serve as input for interviewing employ-
ees. The first two steps were crucial to understand the
current situation, otherwise every effort for process
improvement would be useless. The third step was to
present to the company managers a diagnosis of cur-
rent problems. The diagnosis was based on data from

ICEIS 2009 - International Conference on Enterprise Information Systems

314



the survey and the interviews. The next step was to
use the diagnosis as input for a series of recommenda-
tions for improvements. The final step was to actively
apply in practice the recommendations in a project in
order to be used as a model for further projects, and to
demonstrate the usefulness of the recommendations.

3 CURRENT SITUATION

The company where this study was performed is a
software development company with a long stand-
ing experience in the development of innovative traf-
fic management software, with applications in every
major traffic control center in the Netherlands. The
company develops systems according to the 4+1 view
model of software architecture (Kruchten, 1995), us-
ing UML as the modeling language for all the five
views. Implementation is performed using propri-
etary publish-subscribe middleware and a domain
specific language. The purpose of both is to raise the
abstraction level when developing applications.

In order to understand the current situation and the
difficulties faced in the development process, a survey
was proposed for developers and project managers.
The survey consisted of open questions and closed
statements, in which the respondent could give one of
the following answers: 0) Strongly disagree, 1) Dis-
agree, 2) Neutral, 3) Agree or 4) Strongly agree.

Open questions were related to the employee’s
own career, such as number of years of experience
with UML and road traffic systems. Closed state-
ments were related to:

• UML in systems development activities. Exam-
ple: “UML is useful in the requirements phase”.

• Use Case diagrams. Example: “Use Cases are
sufficient to be used as the only diagram for Re-
quirements representation”.

• UML problems in general. Example: “There are
constructions/diagrams missing in UML”.

• Development Process. Example: “I would like to
change radically the development process in order
to improve productivity/quality”.

Interviews were performed with selected respondents
in order to clarify some of their answers, receive more
information about problems in general, and even com-
ment any additional information added by the respon-
dents in the survey. Both the interviews and the sur-
vey were used to give a diagnosis of the current situa-
tion of the company’s development process.

4 DIAGNOSIS

The most important items of the produced diagnosis
are presented as follows.

1. The employees suggested simplifications in the
current process but also the inclusion of new
diagrams to model specific problems. Among
the suggested additions, better system overview,
showing a complete context of the system but
without many details, at least in the first phases
of development, was mentioned. This overview
should be related more to the customer’s view-
point and less to the software.

2. According to the employees, UML could be com-
bined with other methods/languages in order to di-
minish potential drawbacks.

3. About Use Cases.

• Use Case diagrams are used when talking to
clients and during software development. This
means that Use Cases are used for two com-
pletely different purposes in software design.
One is to present to stakeholders a high-level
model, delimiting the functional system con-
text. The other one is during design and im-
plementation.

• Use Cases shouldn’t be used as the only di-
agram for Requirements modeling. The em-
ployees think that there are some missing con-
structs that should be complemented by other
diagrams.

• For large, complex systems, it may be diffi-
cult to know to which level of detail Use Cases
should be modeled.

• Use Cases are often misused, with too much
detail added, incorrectly transforming the dia-
grams into flowcharts or making them difficult
to comprehend.

4. The employees recognize that there are some con-
structions/diagrams missing in UML, and that
they can’t model everything they need with the
language. Examples cited were:

• Difficulty of representing continuous pro-
cesses.

• Verifying important system properties, such as
absence of deadlock in models of distributed
systems, is not possible with UML diagrams.

• Representing synchronous and asynchronous
messages is not satisfactory, even with Se-
quence diagrams. Only changing the shape of
an arrow can be confusing, and this is only a
representation in a language that cannot be for-
mally checked.

EVALUATION OF UML IN PRACTICE - Experiences in a Traffic Management Systems Company

315



• Another problem with Sequence diagrams ar-
rows is that they have been changed from previ-
ous versions to UML 2.0. This can be confus-
ing because legacy systems were documented
using older versions.

• Some employees agree with the fact that UML
is not capable of representing time accurately.
The main problem is that with UML, represent-
ing important time constraints, such as initial
time and intervals of operations, is very diffi-
cult or even impossible.

5. Although problems and missing constructions that
would allow more modeling power were recog-
nized by the employees, they think that UML
should not be adapted by creating a particular pro-
file for modeling specific road traffic management
systems, or they are neutral on this point. UML is
already a complex language, and adding new spe-
cific constructs for traffic may not be so benefic.

6. Even considering the recognized problems with
UML, the employees wouldn’t like to radically
change the current situation even if that would re-
sult in a gain in productivity and/or quality. This is
an important issue when trying to improve current
processes or including new languages/methods,
because this would involve high costs with train-
ing and adapting legacy systems with new docu-
mentation.

7. It was argued that a serious problem with
new standard languages/processes/tools/methods
in Software Engineering in general is their high
rate of change. Whether a new technology will
still exist in the near future is hard to predict.
That is one important reason why industry prefers
to use proven concepts/technologies that may not
be the most advanced, but that have already been
used and tested in practice.

For each item, at least one recommendation is pro-
posed in the next section.

5 RECOMMENDATIONS

5.1 Action Planning

Based on the items in the diagnosis section, using
only UML for all the five views of the 4+1 model
of architecture was recognized as insufficient. It was
recommended that other languages/methods should
be used, combined with UML, to model specific con-
structions that are difficult with UML only. We inves-
tigated possible languages/methods or approaches in

the literature that already tries to solve UML prob-
lems. The following recommendations were pre-
sented to the company.

5.2 Action Taking

1. Use UML profiles, such as MARTE (OMG,
2008b) and SysML (OMG, 2008a), which are
conformant to the same metametamodel – MOF
(OMG, 2006), and wouldn’t radically change the
modeling language used in their development pro-
cess. SysML is a profile for systems engineering
and MARTE for real-time and embedded systems.

2. Include SysML Use Case diagrams to represent
not only software, but also systems functionali-
ties. Although having the same syntax, the se-
mantics of UML Use Case models and SysML
Use Case models are different. Within UML, nor-
mally one Use Case is specified by one or more
Sequence diagrams, which represent object com-
munication through time. Within SysML, Use
Cases normally model higher levels of abstrac-
tion, modeling communication between all types
of elements in a system, such as hardware, soft-
ware and people. Thus, a SysML Use Case, relat-
ing to the system’s view in general, may be refined
into several UML Use Cases, relating only to the
software view.

3. UML Use Cases are useful to model functional re-
quirements, but are not able to model other types
of requirements. SysML Requirements diagrams
can model other types of requirements, including
external and the many types of non-functional re-
quirements. Tracing between requirements is also
enhanced. Requirements can be related to each
other in many different ways (Robinson et al.,
2003), which can be modeled with SysML Re-
quirements diagrams and tables. Requirements
can be modeled in a tree structure, which is also
useful to decompose large systems already in the
early development phases. Whenever a require-
ment is changed or deleted, all related require-
ments are known, as well as the nature of each
relationship, providing the important tracing ac-
tivity to the designers. The other tracing mecha-
nism is to use the “trace” relationship to cross-cut
systems requirements through the whole system
development, tracing requirements and more spe-
cific/detailed models.

4. Use Activity diagrams to model flow of events.
Initially one high-level Activity diagram is used to
model the general flow. This diagram can later be
refined into more detailed specifications. At the

ICEIS 2009 - International Conference on Enterprise Information Systems

316



lowest level, Activity diagrams are used to model
complete algorithms to be implemented.

5. Avoid modeling too complicated Use Cases, try-
ing to model them at different levels of detail in-
stead of modeling all functionalities at once in
the same diagram. One Use Case can be refined,
and another Use Case diagram created based on a
higher level one.

6. Apply Petri nets (Murata, 1989) for detailed spec-
ification of the process view. The resulting mod-
els can be simulated and formally verified using
a variety of computer-based tools. This is useful
not only to model the behavior of a process, but
also to formally verify this behavior. In addition,
Sequence and Activity diagrams can be translated
into Petri nets, as shown by (López-Grao et al.,
2004), (Eichner et al., 2005) and (Soares and
Vrancken, 2008a), offering better semantics and
executable models.

7. Create small additions to UML and SysML in-
stead of creating huge specific profiles for the traf-
fic domain.

All these recommendations have as final result the in-
troduction of Petri nets and SysML into the 4+1 views
of software architecture, avoiding using only UML
for all views when designing software-intensive sys-
tems, by including a systems language and a formal
method.

6 EVALUATION AND FUTURE
WORK

Evaluation was done by applying some of the recom-
mendations in a project in the company. On purpose,
the chosen case study is a small project. The idea
was to produce current company’s documents using
the new diagrams and methods suggested in order to
demonstrate how and where they fit better and how to
use them. The development environment was exactly
the same used by other developers in other applica-
tions, depicted in figure 1. As a matter of fact, the
idea is to demonstrate that the introduced modifica-
tions are compatible with the current implementation
architecture.

The implementation view is based on a layered
software architecture, which provides improved mod-
ularity and abstraction. One important layer of this ar-
chitecture is the publish-subscribe middleware (Fiege
et al., 2006), on top of the basic software layer.
Publish-subscribe middleware provides higher levels
of abstraction, hiding the complexity of dealing with

Basic Software
(Database, Network, Operating System)

Publish-subscribe Middleware

Presentation

Generic Components

Functional Components

Hardware Infrastructure

Figure 1: Layered implementation software architecture

a variety of platforms, networks and low-level process
communication. Application developers may concen-
trate only on the current requirements of the software
to be developed, and use lower-level services pro-
vided by the middleware when necessary. In addition,
developers may use a list of existing components and
combine them as much as necessary. The Graphical
User Interface layer is used mainly only to present the
application results.

After the design and implementation, the com-
pany’s project managers gave comments on the re-
sults. According to them, it was clear that SysML
Requirements diagrams are more suitable to repre-
sent all kinds of requirements than Use Cases, and
can represent requirements in a nice structured man-
ner that helps not only during development but also in
system maintenance. In particular, the possibility of
tracing requirements through the development phases
was considered extremely useful. In addition, as the
semantics of SysML Use Cases is considered broader
than that of the UML Use Cases, improved system
overview is achieved, and the detailed specification
of software activities is considered separate from sys-
tems’ activities.

Besides the introduction of SysML, the UML di-
agrams normally used at the company (Sequence,
Class and Use Case diagrams) are still considered
useful and will keep being used. In addition, Activ-
ity diagrams will be included to the company’s de-
velopment process in two tasks: i) for the high-level
specification of processes, ii) which are later refined
into more detailed specifications to be implemented.
Another interesting comment was related to the com-
pany’s model of software architecture. The possibility
of including a new language in the 4+1 view model of
software architecture, instead of changing the model
of architecture already in use by the company for the
past ten years, was highly appreciated.

Action Research is an iterative process for chang-

EVALUATION OF UML IN PRACTICE - Experiences in a Traffic Management Systems Company

317



ing and further evaluation is necessary. The second
evaluation step is to apply the recommendations to a
series of projects and compare the results with previ-
ous projects. After experimenting the recommenda-
tions in larger projects, another survey will be per-
formed with the same employees to assess the ad-
vantages perceived by them. In addition, although
Petri nets were used for process modeling in the case
study, their introduction as a regular method was
shown to have more resistance from the company. Fi-
nally, SysML allocation tables will be used in larger
projects to represent the many relationships that map
one model element to another, as for instance, an Ac-
tivity to a Block.

7 DISCUSSION

Software process improvement has been shown to de-
liver software products with reduced cost and higher
quality. There are many proposed models to im-
prove software processes, such as ISO/IEC 15504,
PSP, CMM and CMMI. Normally they are based on
changing the way software is developed, for instance,
by introducing new methods, additional documenta-
tion, and measuring, in terms of costs, defects and de-
velopment time, the deliverables of phases and activ-
ities. Nevertheless, there are many reasons why these
software process improvement initiatives fail (Hard-
grave and Armstrong, 2005). Perhaps the most com-
mon one occurs when large changes that are not com-
patible with the company or not possible to be imple-
mented, at least at that moment, are proposed. As a
result, there will be no support from managers or even
from team members. Large changes are not welcome
in industry for many reasons: high costs and risks in-
volved, the need for additional training and the exis-
tence of legacy systems created using previous tech-
nologies. An approach with few changes, maintaining
compatibility with the current situation, is more likely
to succeed.

In general, using SysML is helpful to bring Sys-
tems and Software Engineering together. The lan-
guage is a UML profile. SysML has been adopted
by several different companies, and many vendors are
already selling software tools, even with a variety of
degrees of integration with UML. As a result, soft-
ware engineers and systems engineers can communi-
cate through the use of similar languages.

Although SysML and UML share the same name
and even syntax for some diagrams, they are not se-
mantically the same. For example, SysML Blocks can
be mapped to UML Classes. SysML Blocks are used
to model general elements in a software-intensive sys-

tem, such as all types of hardware (sensors, actuators)
and their operations, constraints, values and parts.
When the hardware is included as a software object in
the system, then it can be modeled as a UML Class.

There is still resistance to apply formal methods
in general in industry, and Petri nets are no excep-
tion. These methods normally require highly-skilled
personnel, which normally increases costs and time.
Nevertheless, some research studies were published
arguing that there are so many advantages that it is
worth trying (Davis, 2005), (Bowen and Hinchey,
2005). In particular, an advantage of Petri nets is
the wise combination of mathematical definitions and
graphical representation, which may diminish opposi-
tion to its application in practice. Therefore, Petri nets
provide many advantages, such as formally verifying
models using many different techniques, improved se-
mantics and computer-based tools that may be used to
draw and execute models.

8 CONCLUSIONS

This article presented the research performed in order
to improve Software Engineering processes in prac-
tice in a company that develops software-intensive
systems. The main idea was to try to improve cur-
rent processes without drastically changing them.

The company uses UML as the visual modeling
language. Although recognized as a language with
many drawbacks, UML is generally accepted as use-
ful for many domains and companies. The drawbacks
and problems were identified in practice, and solu-
tions were proposed and implemented in one case
study. Improvements were considered feasible, as
they are not proposing to radically change the cur-
rent situation, which would involve higher costs and
risks. Specific measures, such as the difference in
terms of project time and product quality are difficult
to give. The improvements are based on the possi-
bility of discovering errors during requirements and
design phases, the execution of scenarios by Petri net
simulation, and the improved requirements represen-
tation and tracing, through requirements modeling us-
ing SysML.

Future research will address the advantages of in-
troducing SysML and Petri nets in the company by
comparing with the former approach. In addition, cre-
ating a specific SysML profile for the company is in
study.

ICEIS 2009 - International Conference on Enterprise Information Systems

318



REFERENCES

Agarwal, R. and Sinha, A. P. (2003). Object-oriented Mod-
eling with UML: a Study of Developers’ Perceptions.
Communications of the ACM, 46(9):248–256.

Anda, B., Hansen, K., Gullesen, I., and Thorsen, H. K.
(2006). Experiences from Introducing UML-based
Development in a Large Safety-Critical Project.Em-
pirical Software Engineering., 11(4):555–581.

André, C., Mallet, F., and de Simone, R. (2007). Mod-
eling Time(s). In ACM-IEEE, editor,10th Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems (MODELS ’07), pages 559–573,
Nashville, TN, USA. Springer Verlag.

Avison, D. E., Lau, F., Myers, M. D., and Nielsen, P. A.
(1999). Action research.Communinations of the
ACM, 42(1):94–97.

Bannerman, P. L. (2008). Capturing business benefits from
process improvement: four fallacies and what to do
about them. InBiPi ’08: Proceedings of the 1st inter-
national workshop on Business impact of process im-
provements, pages 1–8, New York, NY, USA. ACM.

Beneken, G., Hammerschall, U., Broy, M., Cengarle, M. V.,
Jürjens, J., Rumpe, B., and Schoenmakers, M. (2003).
Componentware - State of the Art 2003. InProceed-
ings of the CUE Workshop Venedig.

Blankenhorn, K. and Jeckle, M. (2004). A UML Profile for
GUI Layout. In Weske, M. and Liggesmeyer, P., ed-
itors, Net.ObjectDays, volume 3263 ofLecture Notes
in Computer Science, pages 110–121. Springer.

Booch, G., Rumbaugh, J., and Jacobson, I. (2005).Uni-
fied Modeling Language User Guide, The (2nd Edi-
tion) (The Addison-Wesley Object Technology Series).
Addison-Wesley Professional.

Bowen, J. P. and Hinchey, M. G. (2005). Ten command-
ments revisited: a ten-year perspective on the indus-
trial application of formal methods. InFMICS ’05:
Proceedings of the 10th international workshop on
Formal methods for industrial critical systems, pages
8–16, New York, NY, USA. ACM.

Collins, W. D., Rasch, P. J., Eaton, B. E., Fillmore, D. W.,
Kiehl, J. T., Beck, C. T., and Zender, C. S. (1996).
Message Sequence Charts (MSC. InITU-TS Recom-
mendation Z.120, page 2002.

Davis, J. F. (2005). The affordable application of for-
mal methods to software engineering.Ada Lett.,
XXV(4):57–62.

Dobing, B. and Parsons, J. (2006). How UML is used.Com-
munications of the ACM, 49(5):109–113.

Eichner, C., Fleischhack, H., Meyer, R., Schrimpf, U., and
Stehno, C. (2005). Compositional Semantics for UML
2.0 Sequence Diagrams Using Petri Nets. InSDL Fo-
rum, pages 133–148.

Fiege, L., Cilia, M., Muhl, G., and Buchmann, A. (2006).
Publish-Subscribe Grows Up: Support for Manage-
ment, Visibility Control, and Heterogeneity.IEEE In-
ternet Computing, 10(1):48–55.

Hardgrave, B. C. and Armstrong, D. J. (2005). Software
process improvement: it’s a journey, not a destination.
Communications of the ACM, 48(11):93–96.

Harel, D. (1987). Statecharts: A Visual Formalism for
Complex Systems.Science of Computer Program-
ming, 8(3):231–274.

Henderson-Sellers, B. (2005). UML - the Good, the Bad
or the Ugly? Perspectives from a panel of experts.
Software and System Modeling, 4(1):4–13.

Herbsleb, J. D. and Goldenson, D. R. (1996). A system-
atic survey of CMM experience and results. InICSE
’96: Proceedings of the 18th International Conference
on Software Engineering, pages 323–330, Washing-
ton, DC, USA. IEEE Computer Society.

Jacobson, I. (2004). Use cases - Yesterday, today, and to-
morrow. Software and System Modeling., 3(3):210–
220.

Kruchten, P. (1995). Architectural Blueprints—The “4+1”
View Model of Software Architecture.IEEE Software,
12(6):42–50.

López-Grao, J. P., Merseguer, J., and Campos, J. (2004).
From UML Activity diagrams to Stochastic Petri nets:
application to software performance engineering. In
WOSP ’04: Proceedings of the 4th international
workshop on Software and performance, pages 25–36,
New York, NY, USA. ACM.

Murata, T. (1989). Petri nets: Properties, analysis and ap-
plications.Proceedings of the IEEE, 77(4):541–580.

OMG (2006). Meta-Object Facility (MOF) Core Specifica-
tion Version 2.0.

OMG (2007). Unified Modeling Language (UML), Super-
structure version 2.1.1.

OMG (2008a). Systems Modeling Language (SysML) Ver-
sion 1.1.

OMG (2008b). UML Profile for MARTE, Beta 2.

Rainer, A. and Hall, T. (2003). A quantitative and quali-
tative analysis of factors affecting software processes.
Journal of Systems and Software, 66(1):7–21.

Robinson, W. N., Pawlowski, S. D., and Volkov, V. (2003).
Requirements Interaction Management.ACM Com-
puting Surveys, 35(2):132–190.

Simons, A. J. H. (1999). Use Cases Considered Harmful. In
In 29th Conference on Technology of Object-Oriented
Languages and Systems, pages 194–203. IEEE Com-
puter Society.

Soares, M. S., Julia, S., and Vrancken, J. (2008). Real-
time Scheduling of Batch Systems using Petri Nets
and Linear Logic.Journal of Systems and Software,
81(11):1983–1996.

Soares, M. S. and Vrancken, J. (2008a).A Metamodeling
Approach to Transform UML 2.0 Sequence Diagrams
to Petri Nets, volume 1, pages 159–164. ACTA Press.

Soares, M. S. and Vrancken, J. (2008b). Model-Driven User
Requirements Specification using SysML.Journal of
Software, 3(6):57–68.

EVALUATION OF UML IN PRACTICE - Experiences in a Traffic Management Systems Company

319


