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Abstract: Group-based learning is overwhelmingly accepted as an important feature of current education practices. 
The success of using a group-based teaching methodology depends, to a great extent, on the quality of the 
allocation of students into working teams. We have modelled this problem as a vector packing problem and 
constructed an algorithm that combines the advantage of local search algorithms with the branch and bound 
methodology. The algorithm easily finds exact solutions to real life problems with about 130-150 students. 
The algorithm is implemented in GroupUp – a decision support tool which has been successfully used in the 
University of Warwick for a number of years. 

1 INTRODUCTION 

Group-based learning is overwhelmingly accepted as 
an important feature of education methods 
nowadays. Researchers-educationalists claim 
(Hassanien, 2006; Houldsworth and Mathews, 2000) 
that “collaborative work in groups and group 
assessment have become integral components of 
many undergraduate and postgraduate programmes 
in the UK and all over the world” (see also Thorley 
and Gregory, 1994; Gunderson and Moore, 2008, for 
the theory behind this phenomenon). 

As with many other similar courses, team-work 
plays an important role in the University of Warwick 
MSc and MBA programmes. For example, the 
students in our Management Science and 
Operational Research MSc, approximately 50 in 
number, are assigned to ‘syndicates’, small groups 
of 7 or 8 students that work together throughout their 
year at Warwick. The performance of a student’s 
group will have a great impact upon their final grade 
not merely due to the assessed component of their 
team-work but also indirectly as a result of the 
morale lost by the students in a ‘bad’ group. This 
paper describes the process of modelling this 
situation from a case study perspective, the 
algorithm that has been created to solve it, and the 
decision support tool GroupUp which has the 
algorithm embedded within it. Our work 
differentiates itself from previous work on a number 
of counts. Firstly, to the best of our knowledge, the 

algorithm is the first to find exact optimal solutions 
to this problem and is capable of finding solutions 
quickly for problems much larger than those 
described in the existing literature (Bacon, Stewart, 
and Anderson, 2001; Baker and Benn, 2001; Baker 
and Powell, 2002; Dahl and Flatberg, 2004; 
Desrosiers, Mladenovich, and Villeneuve, 2005; 
Weitz and Jelassi, 1992). Secondly, the algorithm is 
implemented in a decision support system with a 
well developed interface simplifying related data 
manipulations, again, a feature unlike previous 
methods. 

Given the nature of Operational Research 
courses and the nature of Operational Researchers it 
is hardly surprising that a sizeable body of literature 
has built up relating to the issues surrounding 
student group formation. Broadly speaking 
approaches break down into two categories, or 
schools. The Diversity School holds that groups 
should be formed to enhance the learning experience 
and this can be achieved by giving students the 
opportunity to work together with others very 
different from themselves. By contrast the Equality 
approach aims at giving each student an equal 
chance of success by making groups as identical as 
possible. Baker and Powell (2002) look in depth at 
solutions to this problem that use, as we will, binary 
data structures to represent the characteristics of 
each student. They point out that the heuristic 
objective functions used to resolve the problem, 
whether they stem from a Diversity or Equality 
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rationale, mathematically aim at the same goal. 
Insofar as this goes we agree, however we would 
argue that the data you feed into your algorithm and 
in particular the method used to encode it into a 
binary structure will differ based on whether you are 
grouping with a Diversity or Equality objective. 
Furthermore our research is not heuristic in nature 
since we search for exact solutions. Consequently 
we will state that at Warwick we approach the 
problem from an Equality perspective and rephrase 
the problem thus 

The Equitable Partitioning Problem 
Taking a pool of N items with attributes A1..N,1..S 

(of any data type) partition them into K groups such 
that one cannot say that any two groups differ for 
any non-trivial reason. 

As attributes taking into account while allocating 
students to groups, we usually consider gender, 
nationality, educational backgrounds (first degree), 
age. In fact there is no restrictions on the number 
and nature of the attributes that can be taken into 
account. One may think of adding learning styles, 
based e.g. on the well known Honey and Munford 
questionnaire (Honey and Munford, 1986) or 
personality types such as the Myers Briggs 
Personality Type Indicator (Myers and McCaulley, 
1985), etc. It is also possible to solve a problem of 
“dispersing” previously formed groups (Dahl and 
Flatberg, 2004) by adding as an attribute the “old” 
group number.  

2 DECISION SUPPORT SYSTEM 
FOR ALLOCATING STUDENTS 
TO EQUITABLE GROUPS 

The application GroupUp is an Excel Add-in for 
Microsoft Office with a simple interface in Excel.  
The engine (the main algorithm for finding an 
optimal allocation) is implemented as a DLL module 
written in C.  

In step one of the allocation process a user is 
asked to identify the data set (see Figure 1) and  then 
to choose the data columns that should be taken into 
account. 

In the next step of the allocation process the user 
is prompted to identify the sets of undistinguishable 
items within each attribute. For example, in the 
example shown in Figure 2, a set named “UK” is 
created to group items with undistinguishable 
values. For this step, all attributes with more than 
two different values need to be looked through in 
order to classify items into undistinguishable sets. 

 
Figure 1: First step in an allocation process: (1) the user is 
asked to identify the data set. 

For the attributes with numeric values there is an 
option of identifying undistinguishable groups 
automatically or by defining boundaries for the 
intervals (see Figure 3). 

In the last step 3 (see Figure 4), the user decides 
on the number of groups to be created. With a push 
of the button, the job is done! 

The results are available in different formats 
(tables and charts) and are saved in a new 
worksheet.  

To simplify the allocation process for subsequent 
occasions, an option is provided to save the auxiliary 
files enabling the customer decisions at each stage 
(undistinguishable attributes, intervals for numeric 
data, etc.) to be remembered. 

 

 
Figure 2: Second step in an allocation process: (1) all 
values of an attribute (“nationality” for this picture) are in 
the left window; (2) new set – UK – is added; (3) items 
with the chosen values of the attribute are moved into the 
new set (to be undistinguishable) – (4) and (5). 

 

GROUP UP TO LEARN TOGETHER - A System for Equitable Allocation of Students to Groups

141



 

 
Figure 3: For the attributes with numeric values there is an 
option of defining intervals (1); based on the total number 
of values (2), it is possible to decide on introducing 
partitioning points (3) (button (4) to undo the decision) or 
use an automatic split (5). 

3 INITIAL MODELLING  

Our model was created in two stages. The initial 
model is very similar to previous approaches to this 
problem as tackled by O’Brien and Mingers, 
(Mingers and O’Brien, 1995; O’Brien and Mingers, 
1997), and Baker and Benn (2001), in that it is a 
simple conversion of student attributes to a binary 
form.  

 

 
Figure 4: Decide on the number of groups (1) and push the 
button (2). That’s it! 

We then constructed the algorithm (and 
software) that we shall speak of in Section 5. During 
this early developmental stage, a number of 
weaknesses were identified in the original model and 
the algorithm. By addressing these we eventually 
developed a product satisfying us both as researchers 
and as customers of a software product. 

3.1 The Basic Model 

We begin by converting our data into a binary 
attribute matrix A where Aij = 1 if student i 
possesses attribute j. In the case of Gender and other 
naturally binary attributes this is a simple case of 
Female=1, Male=0. More complicated attributes, 
such as Nationality get broken down into multiple 
columns i.e. UK=[1,0,0] , Hong Kong=[0,1,0], 
Other=[0,0,1]. Our objective is now to get an equal 
sum for each binary attribute in each group.  

It is reasonable to question whether this 
mathematical definition squares with the loose 
definition of our objective with respect to numeric 
attributes. One of our attributes, Age, takes numeric 
values and the natural impulse might be to say that 
the most important factor from an equality 
perspective is that the mean age should be equal in 
each group. Leaving aside the added complexity this 
would add to the model we would argue that, though 
you can no doubt contrive counter-examples, the 
implicit intention of including any attribute, nominal 
or numeric, is to create an equal distribution of this 
attribute in each group and that a series of binary 
categories achieves this in a more satisfactory 
manner than means or totals. As example consider 
partitioning a set of people with the following ages 
[21, 21, 21, 21, 23, 23, 23, 23, 27, 35] in two groups. 
Using the mean you would inevitably get 
[21,21,21,21,35], [23,23,23,23,27]. Using three 
binary columns (Fresh from University, Limited 
Experience & Experienced) you would get 
[21,21,23,23,27],  [21,21,23,23,35]. Though you 
may disagree we consider the differences between 
the binary groups a lot more trivial than those that 
use the mean. 

3.2 Objective Function 

As Baker and Powell (2002) note there are many 
different metrics that can be used as heuristic 
objective functions with the aim of equalising 
groups however when one is aiming for an exact 
solution they all (or rather nearly all, a point which 
we will return to in the next section) amount to the 
same thing with little to differentiate between them 
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except for speed of calculation. The method we use 
is to minimise the integer sum of squared deviations 
across groups and attributes. To speed this we 
employ the concept of the perfect group with 
summed binary attributes t1..J. For K groups and N 
items the sum of values of attribute j can be 
represented as 

1

( )
N

ij j j j
i

A K r t r
=

= − +∑  (rj<K) 

Put another way if we are going to split 25 men 
into 7 groups we will ideally have 3 groups (K-rj) 
with 3 men (tj) in and 4 groups (rj) with 4 men (tj+1) 
in. For convenience sake we take the lower bound, 
3, as the ideal number of men in a group. Now for xik 
= 1 if item i is in group k, the objective function is 

2

1 1 1

J K N

ik ij j
j k i

Z x A t
= = =

⎛ ⎞⎛ ⎞
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Conspicuous by its absence is any scheme for 
weighting the columns such that, for example, it 
could be made equally important to split up the 
single Gender column and the 3 combined columns 
of Nationality. We come to this in the next section. 

3.3 A Perfect World 

A natural extension of the concept of the perfect 
group is the concept of a perfect grouping where 
each group has either tj or tj+1 members for each 
binary attribute. It may be the case that such a 
solution is mathematically impossible for a given 
problem and this is the reason we talk of ‘perfect’ 
solutions rather than ‘optimal’ ones. That said the 
‘perfect’ grouping provides us with a convenient 
value for the lower bound of our solution 

2 2
min

1 1
( (( 1) ) ( )( )

J

j j j j j j j
j j

J

Z r t t K r t t r
= =

= + − + − − =∑ ∑  

One of the more astonishing discoveries of this 
research is that practical instances of this problem 
are, universally in our experience, capable of perfect 
solution. It is possible to contrive data sets that are 
‘imperfect’ i.e. mathematically incapable of perfect 
solution. In fact for any number of students and 
groups as few as three binary columns of data are all 
that is required. Nevertheless we have found it is 
safe to assume that a perfect solution will arise for 
all practical data sets. This insight opens up new 
possibilities for two reasons. Firstly weighting the 
columns becomes completely unnecessary since you 
will get a perfect solution for all columns no matter 

what the weights are. Secondly, as long as one 
doesn’t go wild, it is possible to add new binary 
columns without compromising the integrity of an 
initial solution. Whilst you may do this by including 
more attributes for each student we use this ability to 
address the deficiencies in and enhance our basic 
model. 

4 FURTHER MODELLING 

4.1 Natural Binary Attributes 

During experimentation a set of results were 
produced for a group of 13 students, 6 of whom 
were male and 7 female; the students needed to be 
divided into three ‘equal’ groups. The Gender 
column for this allocation is shown in Figure 5. The 
computer claimed that the solution was perfect and 
yet Male clearly takes three different values, 
something that should not occur in a perfect result. 
After searching our code for errors it was discovered 
that the solution actually is perfect. Female was 
given the binary value 1 and is consequently 
distributed evenly with either 2 or 3 women in each 
group but because total group size can be either 4 or 
5 this meant that the total number of men in each 
group could take any of three values. Such a 
problem can be resolved by converting Gender into 
two binary columns, just as one would with a 
multiple value attribute, thus men will be 
standardised as well as women. Complicating the 
model like this is not always necessary. If each 
group was going to be exactly the same size or the 
number of women in each group was going to be the 
same, the problems of integer division would not 
arise. In this instance by making Male = 1 Gender 
would require only one binary column as men split 
evenly amongst the groups. 

 
Figure 5: The natural binary problem. 
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4.2 Group Splitting 

A similar problem to that on the MSOR programme 
exists on the Warwick MBA. In addition to the basic 
equitable partitioning requirement the MBA requires 
three iterations of the allocation process to be 
conducted, one for each term of study.  This requires 
that groupings be constructed with the condition that 
no students should be in the same group twice. 
Initially we attempted to build this into our 
algorithm using a technique based on Latin squares 
but found that, while the updated algorithm could 
handle creating one additional grouping, any further 
brought it grinding to a halt. Consequently we 
returned to an earlier idea, creating the groupings 
one by one and splitting the groups by including 
previous group numbers as attributes. “Was in 
Group 1” becomes a binary attribute and with luck 
people who were previously in Group 1 will all be 
separated. We had initially shied away from this idea 
on the basis that, since the MBA requires 14 groups 
an additional 28 attribute columns (when two 
previous groupings are taken into account) would 
mean we would end up with a non-optimal answer. 
The MBA group-splitting requirement is hard so this 
would not be acceptable. We now use a hybrid of the 
two methods with one previous grouping split up 
algorithmically and all subsequent ones split up 
using attributes.  

4.3 Sparsity 

Another aspect of the MBA problem caused us to 
add bonus columns to our data structure. The fact 
that it is a much larger problem, coupled with a 
requirement for a much finer partitioning of 
attributes leads to a situation where the basic model 
detailed above can result in groups with significant 
non-trivial differences. Mingers and O’Brien (1995) 
worked on the same MBA problem and took the 
view that, when it comes to attributes such as 
Nationality it is more important to have an equal 
number of nationalities represented in each group 
than equal numbers of students of each nationality. 
In figure 6 you can see two extreme examples which 
illustrate the fallacies of both our methods. Mingers 
and O’Brien’s (1995) model could, in theory, lead to 
an optimal grouping with six UK students in one 
group and only one in another whilst our basic 
model, on the other hand, could lead to seven 
nationalities being represented in one group and only 
three in another. 

The problem for our model arises due to integer 
division and what we term ‘sparse’ attributes, 

minorities such as Spain above where there are not 
enough people to have one in each group. To see 
how the problem arises take 3 UK students and one 
Canadian and put them into two groups. You will 
naturally get 2 UK in one group, one UK and the 
sparse Canadian in another. Add in three Chinese 
students and a sparse Spaniard and you could get 
one group with 2 UK students and 2 Chinese with 
the other group being composed of 4 different 
nationalities. 
 

 
Figure 6: The problem of sparsity. 

Of course the position might be reversed so that 
the new groups have three nationalities each but 
since there is no control mechanism in the basic 
model to ensure this, sparse columns do present a 
problem.  

We have resolved the sparse problem by taking 
into account that in a perfect grouping the number of 
nationalities represented in a group is equal to the 
number of standard categories, for there must be at 
least person from each of these categories in each 
group, plus the number of people from sparse 
categories in that group, each of which must come 
from a different nationality. Where appropriate a 
new binary attribute is added to our model for each 
column with more than one sparse category. The 
new attribute, IsSparse, takes the value 1 for all 
items that are in a sparse category. In a new perfect 
grouping the number of people from sparse groups 
will be evenly distributed, as far as integer division 
will permit, and hence the problem is resolved. It is 
true that this method does not by necessity provide 
an optimal solution in terms of Mingers and 
O’Brien’s (1995, 1997) model however the 
difference is negligible and in terms of achieving our 
overall goal, namely groups with no significant 
differences, it is difficult to see how this composite 
model could be improved upon. 
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5 CONCLUSIONS 

The problem of allocating students to equitable 
working teams is a well known practical problem – 
many Higher Education institutions throughout the 
world face this problem when trying to improve the 
learning process for their students. GroupUp is a 
simple tool to resolve this problem in practice (a trial 
version of the software is available on request from 
v.deineko@warwick.ac.uk). We are now planning to 
undertake some extensive collaborative research 
with both practitioners and researchers in the field of 
education. This collaboration will explore how 
different rules for constructing the groups influence 
both the group dynamics and the efficiency and 
effectiveness of group performance. 
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