
INCREMENTAL END-USER QUERY CONSTRUCTION FOR
THE SEMANTIC DESKTOP

Ricardo Kawase, Enrico Minack, Wolfgang Nejdl
L3S Research Center, Leibniz Universität Hannover, Appelstrasse 9a, 30167 Hannover, Germany

Samur Araújo, Daniel Schwabe
Departamento de Informática, Catholic University of Rio de Janeiro

Rua M. de S. Vicente, 222 Rio de Janeiro RJ 224530-900, Brazil

Keywords: Semantic Desktop, User interface, Visual query system, Graphical query language, Ontology, RDF,
SPARQL, Personal information management.

Abstract: This paper describes the design and implementation of a user interface that allows end-users to
incrementally construct a query over the information in the Personal Information Management (PIM)
domain. It allows semantically enriched keyword queries, implemented in the Semantic Desktop of the
NEPOMUK Project. The Semantic Desktop user is able to explicitly articulate machine-processable
knowledge, as described by its metadata. Therefore, searching this semantic information space can also
benefit from the knowledge articulation within the query. Contrary to keyword queries, where it is not
possible to provide semantic information, structured query languages as SPARQL enable exploiting this
knowledge explicitly.

1 INTRODUCTION

Whereas traditional folder-based storage and
navigation-based retrieval used to be sufficient for
our personal information management needs, the
sheer number of items on our Desktop calls for the
integration of Desktop search in its interfaces. The
paradigm of Desktop search is similar to Web
search, but shows some interesting differences:

 We typically search for items that we have
created, received or stored earlier – which
means that we try to re-locate (re-find) rather
than to find (discover) something new.

 We typically have a (most likely incomplete)
picture of how the data on our Desktop is
organized (which means that navigation might
be more apt than keyword search).

From Teevan et al. (Teevan, 2004) we know that
users use a combination of search and navigation to
relocate information on the Web. For personal
information management this is likely to be the

same, provided that the appropriate tools are
available.

To allow the personal information management
in the Desktop we first need to introduce an
ontology language that can be used to express
personal mental models – the personal information
model ontology (PIMO)1. The use of such an
ontology gives the user a better understanding of her
Desktop and her tasks, and a way to express her
knowledge about the information items. By adding
explicit, processable meta-data to the information
items in the Desktop, it becomes a “Semantic
Desktop”, a concept we will elaborate later.

As it has been identified in previous works
(Teevan, 2004) (Bates, 1989) (Belkin, 1993) a
progressive modelling search activity can provide
better results than a single, static search. Yet, strong
methods and interaction mechanisms are still
missing for searching the Desktop.

In this paper we fill this gap by presenting a
methodologically designed interface for the

1 http://www.semanticdesktop.org/ontologies/2007/11/01/pimo/

270
Kawase R., Minack E., Nejdl W., AraÃžjo S. and Schwabe D.
INCREMENTAL END-USER QUERY CONSTRUCTION FOR THE SEMANTIC DESKTOP.
DOI: 10.5220/0001825902700275
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

(Semantic) Desktop search that combines and
exploits current interaction mechanisms. It benefits
from what the user knows (the vocabulary and the
mental model), respects what the user does not know
(the data structure and query languages), to finally
give her what she wants.

In the remaining of this paper we discuss in more
details searching activities in the Semantic Desktop
and our proposed work in Section 2. In Section 3 we
describe our implementation and the architecture.
Finally, in Section 4 we draw our conclusions and
the sketch future work.

2 SEARCHING THE
SEMANTIC DESKTOP

In (Sauermann, 2005), the authors argued, that the
typical user uses the (information on the) Desktop to
complete a certain task. For this, documents that are
relevant to the user’s current task are retrieved,
processed and stored. Such documents contain
relevant information that is processed by the user,
allowing the user to generate knowledge. This
knowledge is implicitly stored in the documents.
Making this implicit knowledge explicitly
expressible and machine-processable, is one of the
goals of the Semantic Desktop. Allowing the user to
exploit knowledge for retrieval at the Semantic
Desktop, as implemented in the NEPOMUK2
project, is the goal of our proposed user interface.

The definition given by Sauermann et al.
(Sauermann, 2005) depicts, that the Semantic
Desktop paradigm brings the ideas of the Semantic
Web paradigm to the user’s personal Desktop where
the conceptualization of the personal mental model
is described in formal ontologies. The standard data
format for a common representation is RDF
(Resource Description Format). Finally, the different
Desktop applications are integrated using the same
concept of the Semantic Web, for exchanging data
and accessing resources.

The NEPOMUK project integrates research,
industrial and open source community efforts to
develop a new technical and methodological
platform: the Social Semantic Desktop. This is an
extension of the personal Desktop that aims at
collaboration and personal information management.

The NEPOMUK framework PSEW3 (P2P
Semantic Eclipse Workbench) is an integrated

2 http://nepomuk.semanticdesktop.org/
3http://nepomuk-eclipse.semanticdesktop.org/xwiki/bin/view/
Main/PSEW

environment that is based on the NEPOMUK
architecture. Since NEPOMUK still requires some
semantic knowledge from the user, user-friendly
interfaces are a crucial milestone to achieve the goal
of bringing the Semantic Desktop to the common
user. Walking in a two way path, first we aim at
designing interfaces that solve the user’s needs on
the Semantic Desktop, and on the other direction, we
design interfaces to show the user the potential of
the Semantic Desktop and still hide its complexity.
In both cases, first we take a look at the way people
think and express their mental models, so that we
understand how the Semantic Desktop can support
this (Sauermann, 2005).

As we mentioned before, we use the Personal
Information Model Ontology (PIMO) to describe
and work within the PIM in the Semantic Desktop.
The PIMO forms the basis for all custom, user-
created types and relations. It defines basic types
such as Document, a Person, a Location, etc. and
relations such as creator, hasLocation, etc. and is
intended to be extended by the user in any way he or
she likes. Note that we use the terms “type” and
“relation” throughout the paper as user-friendly
terms for RDF Class and RDF Property. We also use
these less technology-based terms consistently in our
user interface and the implementation.

The user can extend the PIMO ontology and use
it to articulate arbitrary knowledge in an explicit
way. For the task of re-finding information on the
Semantic Desktop, NEPOMUK provides two
different mechanisms. First, a type and instance
browser that is analogous to most operating system
file browsers where users type hierarchy and the
instances of each type. Alternatively, there’s a full-
text keyword search that analyses the extracted
metadata from the instances returning a relevance
sorted list classified using complex ranking
algorithms.

It happens that in both cases the potential
combination of user knowledge and system
functionality is not fully merged. The browser does
not allow the user to input her knowledge about the
instances and its relations. Conversely, the keyword
search does not permit the user to use her knowledge
of her PIMO.

Consider the case when the user is looking for an
email (or a presentation document) that was sent (or
created) by a certain person, containing a certain
information (e.g., a telephone number or a quote). In
a pure keyword-based interface, the user should
input a query such as “email sent by person
telephone number”. However, this is very unlikely,
since most purely keyword-based interfaces assume

INCREMENTAL END-USER QUERY CONSTRUCTION FOR THE SEMANTIC DESKTOP

271

the search will be made exclusively in the contents,
and it would not be expected to understand the
semantics of “sent by”, or the type of item (email).
Being able to leverage such semantic information
greatly reduces the search space, since, for instance,
only a small fraction of items in the Desktop would
have a relation “sent by”.

A similar argument can be made when the query
must span several items, e.g., “email sent by the
author of a given presentation”. In such cases,
keyword-based searches would, at best, retrieve
partial answers, that must be combined by the user
by filling in the semantic information that allows the
binding between the partial answers returned.

The user would now need to know the exact
semantic terms that are used in her semantic
repository. Recommendations help to reduce the
burden to find them, by presenting only sensible
choices of types and relations for selection.
Keyword filters further provide quick access in case
parts of the semantic terms are known.

From these observations, we developed a
modular incremental end-user query construction
interface that enables the users to build coherent
semantic queries. Our interface does not cover all
possible queries expressible in a query language
such as SPARQL (Prud'hommeaux, 2008).
However, we are confident that our user interface
allows for the construction of most of the usual
structured user queries. This can be justified by
looking at the features of the SPARQL query
language, see Section 12 of (Prud'hommeaux, 2008).

Hence, while it is not the ultimate user interface
for RDF querying, it is still a clear step ahead from
the traditional textual queries demonstrating the
benefits of knowledge-enriched queries.

2.1 Incremental Query

Our task in the development of this tool was to
provide to NEPOMUK users a mechanism for re-
finding information where the user could also reuse
her knowledge about the instances, their types and
relations. To achieve this goal we developed a
modular incremental end-user query construction
interface based on the query-by-example paradigm
(Zloof, 1977).

The crux of this paradigm is to create a query
mechanism analogous to the mental model that the
user has about the representation of data. For the
relational database model, Zloof (Zloof, 1977) used
a two-dimensional table. The query is formulated
filling the blank spaces of the table with examples of

the solution. The results are given based on the
records that match the pattern of this table.

Considering the graph properties of the RDF
model (Pérez, 2006), our solution was based on
allowing the user to create a graph visually and
incrementally, which then is translated to a graph-
matching query language. Analogous to what was
done by Zloof, we are giving to the user a visual
model where she can provides examples of the
reality it wants to get. The incremental feature of our
solution is that each new node added to the graph,
the user is able to view the intermediate result of her
query.

Below is an example of how the user can make a
query using a graph structure. Suppose you want to
get all emails sent by John. This query can be made
in 3 steps:

Figure 1: Retrieve all instances of type Email.

Figure 2: Retrieve all instances of type Email that have
been sent by instances of type Person.

Figure 3: Retrieve all instances of type Email that have
seen sent by instances of type Person whose name is John.

This graph would be translated to SPARQL as:

SELECT ?s WHERE {
 ?s <http://ontologies.opendfki.de/repos/
ontologies/pim/pimo#from> ?o.
 ?s <http://www.w3.org/1999/02/22-rdf-synta
x-ns#type> < http://ontologies.opendfki.de/r
epos/ontologies/pim/pimo#Email> .
 ?o <http://www.w3.org/1999/02/22-rdf-synta
x-ns#type> < http://ontologies.opendfki.de/r
epos/ontologies/pim/pimo#Person> .
 ?o <http://ontologies.opendfki.de/repos/on
tologies/pim/pimo#name> “John” .
}

As we can see in this translation, creating such a
query in a traditional textual query interface
demands from the users a full comprehension of the
data structure and the query language syntax,
therefore leading to a high cognitive load for less
experienced users.

Email

from

Email Person

from

Email Person
John

name

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

272

Our tool is able to query all instances of a given
type, possibly restricting instances through their
relations with other instances, which in turn may
also be related to other instances, and so on,
recursively. Since NEPOMUK users only instantiate
PIMO types, this kind of query is enough to allow
them to find them, for example, to find the author of
a presentation mentioned in a given email .

While not being able to build completely
arbitrary queries, the allowed ones enable the user to
leverage her knowledge about the ontology in the
incremental query construction interface. The
system recommends only valid types and relations
for the user, thus constraining her to formulate valid
queries within the domain of the instances. In short,
this system allows the user to:

 apply the knowledge about her PIMO,
 formulate a query visually without recurring to

a textual language,
 formulate a query step-by-step

2.2 Proposed Interface

As discussed before, our system is based on a
complex semantic architecture that establishes an
integrated Semantic Desktop. However, the
functionality of its architecture would be blurred by
the conventional user interface paradigm or by
ordinary developers’ semantic interfaces present on
most of semantic systems so far.

Figure 4: The structured query builder interface in
NEPOMUK.

Our interface is divided into three main
canvases: the construction area, the instances
container and the properties/relations container
(Figure 4).The graphic representation of the
instances and relations is straightforward and similar

to the modelling language. We have a box
representation for the instances containing its name
and an icon (e.g. the “Email” box at the left of
Figure 5). The incoming and outgoing relations are
represented by oriented arrows (e.g. the “from”
arrow in Figure 5). Note that both instances and
properties may be an unlabeled item representing
“any type” and “any relation”.

For the literal values required we use the HTML
text input box. And to structure the query visualiza-
tion we incrementally build a horizontal tree where
the branches are visually grouped by a curly bracket.
This arrangement allows indefinitely number of
relations on the query, moreover, it’s visually clean
and of easy recognition.

Figure 5: The graphic representation of a constructed
query.

For the query construction interactions steps, the
user begins with a node of any type. This node is
select in the construction canvas and the possible
recommendations are listed in their respective
canvas. Optionally, the user can filter out some
items using a dynamic text filter. Once the user
clicks on a type, the selected node is set to be of the
clicked type. Clicking on a relation adds both, the
relation and a new target node or a literal input text
box.

Our first designs focused on the core functionali-
ties of the incremental query construction and the
recommendations algorithms having the features and
usability fulfilling the user needs within the
NEPOMUK project context. In this context we
assume that the user is trying to apply her
knowledge to reduce the number of results and to
raise the precision of her query. The neatness of the
interface, the usability and the clear-cut interactions
are possible due to the underlying recommendation
system discussed in the next session. Moreover, the
interface implementation uses HTML, Javascript
and Cascading Style Sheets (CSS) to style all
components. This simple implementation brings the
benefit of modularity of the interface and easy
design tailoring possibilities.

2.3 Type and Relation
Recommendations

We argued for the usefulness of type and relation
recommendations in the user interface. In order to
control the amount of information and options that
have to be processed by the user, good

INCREMENTAL END-USER QUERY CONSTRUCTION FOR THE SEMANTIC DESKTOP

273

recommendations are essential. In case of
sufficiently large ontologies, a type can have
hundreds of possible (sub- or super-) types. This
occasionally large list can be reduced to:

1. direct super- / subtypes
2. only the types that actually have instances
3. closest super- / subtypes that have instances
4. only meaningful types
5. etc...

However, reducing the number of options per
step to a handy list, even if then the number of steps
for the complete query construction increases is a
desirable goal. The proposed keyword filter is a first
helpful feature to handle such large collections of
options.

On top of that, ordering can push more relevant
types to the top of the list and thus push them faster
into the awareness of the user. Such an ordering
could be based on:

i. number of according instances
ii. utility estimation metrics
iii. usage frequency during previous queries
iv. etc...

The fact that the subtypes and subrelations form
a hierarchy is exploited to reduce the number of
choices per step. While (1) decomposes any level of
super- or subtypes into a single step, (2) and (3)
reduce this number to useful target types. However,
if all intermediate types have instances, this leads to
the same number of steps.

3 IMPLEMENTATION

We decided for a two layer architecture which
separates the upper presentation layer from the lower
query construction model layer. The lower layer
wraps the data and its schema, and implements the
iterative query construction based on the given data
and schema. The upper presentation layer uses the
functions of the lower layer to provide query
construction options to the user. It collects and
forwards feedback to the query construction layer in
order to proceed with to the next construction step.
This separation allows for easily plugging different
presentation layer implementations (i.e. Graphical
User Interfaces) on top of the same query
construction layer. Further, the GUI does not need
any knowledge about the data itself, it only needs to
know the idea of the graphical query and its
construction process. The query construction in
return does not need to care about presentation of
recommendations and graphical queries.

For the implementation of the proposed
interface we adopted the approach of add semantic
annotations in the HTML code to define the
behaviour of the interface widgets. To that end, we
used the Prototype4 library, which allows us to select
elements in the DOM tree by their class attribute
values - by its CSS- and link operations to interface
events like onclick, onmouseover, onkeyup, etc., of
each selected HTML elements. This technique
enables us to create dynamical interfaces for direct
manipulation.

The query construction model layer provides two
services to the upper layer. Firstly, this is the
recommendation of types and relations. Secondly,
this is the actual modification of the current
structured query based on the user’s action, as it was
described in Section 2.1. These actions are:

 set the type of a resource
 set the type of a relation
 add a relation to a resource

After each of these actions, the current structured
query object is updated and provided to the
presentation layer, which in return updates the
visualization of the query and the recommendations.
This cleanly separates visualisation and user actions
from the query construction model and the
underlying ontology.

The structure finally provides a method that
generates an equivalent SPARQL which is
syntactically correct and uses the proper ontology
elements. This query is then evaluated against the
stored data.

4 RELATED WORK

Several visual query systems (VQS) were proposed
since the QBE (Zloof, 1977) developed in 1970.
Below, we will discuss some significant works in
this area..

Harth et al. (Harth, 2006) sketch the piece-by-
piece construction of a SPARQL query, and the
possible visualization of these pieces. This is more a
graphical notation than a query construction system.
However, it is a remarkable early visualization
approach of RDF queries. Due to the piece-wise
graphical translation, this notation contains the same
technical complexity and terminology as SPARQL,
which we want to hide from the user in our system.

4 http://www.prototypejs.org/

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

274

The iSPARQL5 is powerful tool for specifying
all kinds of SPARQL queries. However, its visual
concepts are far away from the user’s mental model.
To formulate even a simple query, the user must
know technical concepts such as variable and
properties. Another tool, the NITELIGHT (Russell,
2008), is quite similar to the iSPARQL. The main
difference between them lies in the visual notations
adopted by each one. In spite of all the expressive-
ness of these tools, its visual notations are not
suitable for the profile of the NEPOMUK’s users.

SEWASIE (Catarci, 2004) uses an interface
closer to the mental model of users, allowing them
to make a limited set of queries; furthermore, the
user is guided during the query formulation by a
recommendation system based on the ontology
behind the data domain. It is a work conceptually
very similar to what we have done but little
conclusive due to limited information contained in
the paper.

To sum up, none of these tools were focused on
the scenario of a Semantic Desktop. We designed an
approach that takes into account the user’s
knowledge about her virtual belongings, and it is
simple enough to allow naïve users to perform a
query.

5 CONCLUSIONS AND
OUTLOOK

In this paper we presented a simple nevertheless
powerful interface to visually construct structured
SELECT SPARQL queries through direct
manipulation. We pondered functionality and
simplicity in real user cases and scenarios in a way
to provide the naïve user means to interact with the
ontology underneath without the usual cognition
load of a semantic querying tool. The first version of
the UI has been completed and it is available within
NEPOMUK. A usability test for evaluating the UI’s
efficiency is underway together with a full
evaluation of the project and the results will be soon
posted.

ACKNOWLEDGEMENTS

We wish to express our thanks to DLR and CNPq
for the financial support, as well as the European

5 http://demo.openlinksw.com/isparql/

Union IST fund (Grant FP6-027750, Project
NEPOMUK).

REFERENCES

Bates, M., 1989. The design of browsing and berrypicking
techniques for the online search interface. Online Review,
13: 407-424.
Belkin, N. J., 1993. Interaction with texts: Information

retrieval as information-seeking.
Catarci, T., Dongilli, P., Mascio, T. D., Franconi, E.,

Santucci, G., and Tessaris, S., 2004. An ontology
based visual tool for query formulation support, 16th
European Conference on Artificial Intelligence 2004.

Harth, A., Kruk, S. R., Decker, S., 2006. Graphical
representation of RDF queries. Proceedings of the
15th international conference on World Wide Web,
WWW 2006, Edinburgh, Scotland, UK, May 23-26,
2006.

Pérez P., Arenas M., and Gutierrez C., 2006. Semantics
and Complexity of SPARQL , 5th International
Semantic Web Conference, ISWC 2006, Athens,
Georgia, USA, November 2006.

Prud'hommeaux, E., Seaborne, A., 2008. SPARQL Query
Language for RDF. W3C Recommendation, 15 Jan.,
2008, http://www.w3.org/TR/rdf-sparql-query/

Russell, A., Smart, P. R., Braines, D. and Shadbolt, N. R.
(2008) NITELIGHT: A Graphical Tool for Semantic
Query Construction. In: Semantic Web User
Interaction Workshop (SWUI 2008), 5th April 2008,
Florence, Italy.

Sauermann, L., Bernardi, A., Dengel, A., 2005. Overview
and Outlook on the Semantic Desktop, in: Stefan
Decker, Jack Park, D.Q., Sauermann, L., eds.:
Proceedings of the 1st Workshop on The Semantic
Desktop at the ISWC 2005 Conference.

Teevan, J., Alvarado, C., Ackerman, M. and Karger, D.,
2004. The Perfect Search Engine Is Not Enough: A
Study of Orienteering Behavior in Directed Search.
Proceedings of CHI 2004, pp. 415–422. ACM Press

Zloof, M. M., 1977. Query-by-example: a database
language. IBM System Journal 16, 324-343, 1977.

INCREMENTAL END-USER QUERY CONSTRUCTION FOR THE SEMANTIC DESKTOP

275

