WEB BROWSER TRANSACTIONALITY

Mark Wallis, David Paul, Frans Henskens and Michael Hannaford
Distributed Computing Research Group

School of Electrical Engineering and Computer Science
University of Newcastle, Callaghan, NSW, Australia

Keywords: Web Browser, Transaction Management.

Abstract:

As the complexity of web applications increases new challenges are faced in relation to data integrity and sys-

tem scalability. Traditional client/server fat applications allow for a high level of transactionality between the
client and server, due largely to transactional protocols and tight coupling between components. Transactional
functionality within web applications is historically limited to within the web server hosting the application.
The scope of the traditional transaction in this context does not extend outside of the web server and its attached
services. This paper proposes that web applications can achieve increased system integrity by extending the
scope of the transaction to encompass tasks performed by the web browser. An additional layer is introduced
to the standard HTTP protocol to facilitate the new functionality, and a simulator is presented as the basis for

further research.

1 INTRODUCTION

In Web 1.0 systems, the web browser’s role is that of
a thin-client (O’Reilly, 2005). As the web evolved
to Web 2.0 (McCormack, 2002) and beyond, the role
of the web browser has become increasingly compli-
cated; for example, it is now quite common to find
application code executing within the web browser
(Flanagan, 2002). This increased complexity has al-
lowed engineers to add active content functionality to
the web platform. Client-side web application code
can dynamically update interfaces with information
without having to rely on the classic request/response
round trip as was utilised in Web 1.0. This application
code can interact with the web browser environment
and also with web application components, supported
by technology such as AJAX (Garrett, 2005). The
tight coupling of the code which executes within the
web server and web browser leads to a risk of data
corruption due to inherent instability of the commu-
nication link between the server and browser. Tradi-
tionally, the way to deal with such issues was to im-
plement concepts such as transactionality (Gray and
Reuter, 1993).

‘Transactions’ in this sense relate to bracketing

Wallis M., Paul D., Henskens F. and Hannaford M.
WEB BROWSER TRANSACTIONALITY.
DOI: 10.5220/0001824300930100

tasks performed by the web application and any
utilised services to form atomic units. To date, the fo-
cus has been placed on tasks being performed on the
server side with the client-side tasks being neglected.
The HTTP protocol used to connect the server and
client sides of the web application does not have in-
herent transaction support. In contrast, fat applica-
tions that execute in other distributed models, such as
CORBA-based systems (Object Management Group,
2004), have transaction support built into their core
design.

This paper describes the investigation of exten-
sions to the web paradigm that allow code executing
within client browsers to be involved in transactions
defined by the web application code at the server side.
These enhanced web applications are built around
a component-based software architecture where the
web server is able to push code out to the web browser
for execution. These two pieces of independently exe-
cuting code essentially give a base architecture where
application components within the web server com-
municate with application components within the web
browser.

An extension to the HTTP protocol is presented,
along with the design of various software components

93

In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page

ISBN: 978-989-8111-81-4

Copyright (© 2009 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

required to fulfil end-to-end transactionality. Current
models for transactions concentrate on server side
functionality. This research essentially duplicates the
same behaviour to the client side of the system and
will eventually allow complete transaction manage-
ment to occur within the web browser. This will allow
tasks to be bracketed into atomic actions across mul-
tiple disparate web applications and web services.

Section 2 of this paper introduces a specific prob-
lem in the context of web application design. Section
3 then draws parallels between the issues found on
the client side of the web application to those iden-
tified in previous research with placing web services
in transactions. A high level design is detailed and
reviewed in section 4 before a worked example is pre-
sented in section 5. As a proof-of-concept, a proto-
type and simulation package has been developed and
various results have been collected. These are pre-
sented in sections 6, 7 and 8.

2 PROBLEM DESCRIPTION

A classic example of the problem addressed by this
paper can be seen in web applications that aggregate
multiple web services. Take, for instance, a web ap-
plication that can book the various components of a
holiday for the user. Such a web application imple-
ments multiple stages. The first stage books the flights
using an aggregated web service contract with vari-
ous airlines. The second stage allows the user to book
their accommodation and a third stage allows them to
book a hire car. Such applications provide the benefit
of a ‘one-stop-shop’ and save the user from having to
separately locate and initiate interaction with multiple
web applications to book the various elements of their
holiday. These aggregator applications are typically
available only to commercial entities such as travel
agents, and not to the general public. Their use in-
volves user interaction at the various workflow stages,
for example, to allow selection of service provider,
level of service and service options. These aggrega-
tor systems create what is essentially a single transac-
tion made up of various atomic actions that are imple-
mented either directly by the aggregator application
or through the aggregator application by contracted
web services.

Various issues can arise from including user inter-
action in the transaction. For instance, the user may
reserve a seat on a flight but then fail to complete
the transaction, essentially leaving some resources
locked. These resources remain locked for a pe-
riod of time specified by the agreed commit timeout
value. Such issues are exacerbated by high levels of

94

concurrent user activity involving the component ser-
vices. For example, the user who leaves an incom-
plete workflow may have reserved the last seat on
an otherwise fully-booked flight. During the commit
timeout period, on the basis of the seat’s unavailabil-
ity, other travellers may have booked their flight with
a competitor to the detriment of the provider with the
reserved seat.

Systems implementing transactions that include
user involvement tend to operate with a hard time
limit on the overall interaction. This ensures that re-
sources are not locked indefinitely. A hard time-limit
of, say, 20 minutes may leave resources locked for far
longer than required, especially if the user has left the
session only a few minutes into the interaction and
does not plan on returning.

This research addresses issues such as these by
providing an additional level of interaction between
the web browsers and web server. This interaction in-
volves the web browser itself in the management of
the transaction.

3 WEB APPLICATION
TRANSACTIONALITY

One of the main problems with transactions in the
web environment is that the web is inherently unre-
liable. Servers or clients can be shut down or network
connections broken at any stage and, because each
web system is autonomous, no other party can control
what happens when the system comes back online. In
order to overcome this problem, standards which re-
move some of the autonomy of the hosts have been
defined. These standards specify what should happen
in the event of a communication breakdown, so all
parties can agree on the expected state of the overall
system even when some messages fail. For example,
standards such as WS-Coordination (Cabrera et al.,
2005) and WS-Transaction (Cox et al., 2004) require
participants in a transaction to pass the decision of
whether to perform an action to a transaction coordi-
nator, and to guarantee that they will adhere to that
decision.

Currently, having the user close a web browser
(or tab) while performing a task such as filling in a
multi-page form at best leaves the task in an incom-
plete state, and at worst completes the task with in-
complete data. If the client’s browser was involved in
the management of a transaction that ensured that all
form data was completed then, when the user closed
the browser, the browser would inform the web ap-
plication to roll back the transaction. Of course, if
an unexpected event such as a network disconnection

or power outage occurred, the browser would not get
a chance to send such a message. However, the fact
that the client’s browser was included as a participant
in the transaction management would mean that, after
a specified time-out period, the transaction would roll
back so it would appear as if the client never started
the task.

Allowing the client’s web browser to participate in
the management of a transaction has the roll-on effect
of also involving the users themselves. Interactions
between the client and the web browser are inherently
unreliable and unpredictable and these problems need
to be addressed within the system design. Tradition-
ally, components in a component-based system are
able to rely on the middleware to provide a level of
guaranteed message deliverly. On the web, there is
no such guarantee and, as such, additional measures
need to be put in place to ensure end-to-end stability.

Additionally, if future support is built into the
browser, it will be possible to allow a client to leave a
task before completion and later rejoin the transaction
from the point where they left. This would be espe-
cially useful for the unexpected client disconnections
as, when the network link was re-established or sys-
tem rebooted, the client’s browser could restart and
rejoin the transaction. While it would be possible to
perform a similar action for simple tasks using tech-
nologies such as cookies (Kristol, 2001), the server
would see this as a new connection rather than the
continuation of an old workflow.

While transactions existing over multiple HTTP
request/responses are not a new concept, the defini-
tion of a component to manage these transactions at
the client side allows for greater end-to-end stability
of the system. Various other implementations that use
technologies such as Java Applets to heartbeat back
to the web application rely on these applets being able
to execute a “dying breath” function call to inform the
web application that the browser has closed.

4 THE TRANSACTION LAYER

Figure 1 shows a new system design that supports
browser-based transactional support. To involve the
web browser in a transaction there must exist a chan-
nel between the browser and application which can
be used for management of the transaction. Initially,
when the web application creates a new transaction
that involves the web browser, it must notify the web
browser of the transaction ID. The standard way for
a web application to provide such meta-information
to the browser is through the use of a HTTP header
name/value pair. As such, a new HTTP header named

WEB BROWSER TRANSACTIONALITY

“WebTransactionID” has been defined. This transac-
tion ID value is additional to any session ID value
that the application may already share with the web
browser. This allows multiple transactions to be pro-
cessed within a single user session. When the web
browser receives this header it passes the value to
a browser component responsible for transactional
management within the web browser environment.
This object is called the Web Browser Transaction
Manager (WBTM).

The WBTM is a component within the web
browser environment, similar to components that
manage tasks such as HTML rendering and cookie
storage. The WBTM’s role is to manage the tasks
performed by the web browser while within a transac-
tion. Its primary responsibility is to report back to the
web application if the transaction needs to be rolled
back. To report this, an out-of-band (OOB) connec-
tion is established between the web browser and the
web application upon creation of a new transaction.
The OOB connection is used by the browser to exe-
cute a web service to request a roll back of the trans-
action. All information passed between the WBTM
and the web application is tagged with the WebTrans-
actionID provided during the initial HTTP response.
This channel is used if the user decides to close the
web browser window while the transaction is still ac-
tive. A heartbeat occurs over this connection to al-
low the web application to time-out a disconnected
web browser. This communication has to occur out-
of-band as there is no guarantee that there will be
a HTTP request/response pair between the browser
and web application at regular enough intervals to
not introduce additional delays in the web application
knowing the state of the various transactions it is man-
aging.

The final commit of a successful transaction oc-
curs within the web server at which the transaction
originated. Once the web application has declared the
transaction complete, the final HTTP response is used
to inform the WBTM that the transaction is complete.
The WBTM then disconnects the OOB connection if
no other transactions exist for that web application.
If multiple transactions are being performed, for ex-
ample, in separate web browser tabs, then the OOB
channel stays open until all transactions have either
been completed or rolled back. Only a single OOB
channel is required per web application for each web
browser instance.

When an OOB channel closure occurs the web ap-
plication has the choice to either roll back the trans-
action or keep it alive for a pre-determined time pe-
riod. Keeping the transaction alive would allow the
user to rejoin the transaction by having the WBTM

95

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

Transaction
Manager

Transaction Management . Transaction
Control Channel Manager

Transacton |D
In HTTP header

Web Application

Senvlets

Figure 1: Proposed System Design.

re-establish the OOB connection. This would be use-
ful for instances where the OOB channel breakdown
was caused by network segmentation.

The capabilities of the WBTM component can be
extended past the realm of sub-management of trans-
actions owned by single web applications to complete
management of transactions that involve multiple web
applications. Previous research has presented this
concept in the realm of a Super Browser (Henskens,
2007) implementation.

S WORKED EXAMPLE

The sequence diagram shown in Figure 2 gives an ex-
ample in which multiple HTTP requests occur and
the transaction is successfully committed. The Web-
TransactionID is provided in the initial HTTP re-
sponse as an HTTP header and is then passed with
each subsequent HTTP request/response belonging to
that transaction. Once the transaction is committed
the HTTP header in the final response is appended
with a flag that identifies the transaction as complete.
This allows the WBTM to free any resources being
used to manage the transaction, such as the OOB
channel.

In a situation where the user closes the web
browser in the middle of the transaction, the WBTM
receives a notification from the web browser envi-
ronment informing it that the browser page has been
closed. It then uses the OOB channel to notify the
transaction manager within the web application so it
can then roll back the transaction.

Analysis of existing client/server interactions have
identified the risks associated with extending a trans-

96

action over multiple HTTP request/response calls.
These risks include:

1. The user closing their browsing tab during the
transaction.

2. The user closing their browser during the transac-
tion.

3. The user losing network connectivity to the server
during the transaction.

4. The user’s machine crashing during the transac-
tion.

While various techniques exist to mitigate some
of these risks, the proposed system allows a cen-
tralised method for addressing all four issues. If
the user closes the browser tab mid-transaction then
the WBTM is made aware of the fact by monitor-
ing events within the web browser. It then uses the
OOB connection to roll back the transaction. A de-
constructor in the WBTM caters for the user closing
the web browser completely during a transaction. The
WBTM is then able to notify any web applications
that currently have active transactions that they need
to be rolled back. If the user loses network connectiv-
ity with the web application server during a transac-
tion then the heartbeat running over the OOB connec-
tion will expire and the web application waits until
a time-out before rolling back the transaction. The
same occurs if the user’s machine crashes and the
OOB connection is not cleanly terminated.

WEB BROWSER TRANSACTIONALITY

Web Application Wab Application
WBTM
Web Browser Servlets Transaction Manager

| | | I
: L1, initial HTTP request -l !

I
| | 1 2. create |
| | | transaction |
: : :-1—3 fransaction ID—:
l g | 4. HTTP response with | |
I [WebTransaction|D ! |
| I | |
| |

I
L 5 handoff of |
| transaction : |
I | 6, Q0B channal | |
I I established | |
| | |
d I : I
| 1 7. transactional HTTP reguest |
| | with WebTransaction|D in header | |
| : : 4. intermediate response I :

L

| | : |
| | | |
: : 9. final HTTP request .,: :
: : : 10. commit :
: : :1. 11. succes :
I, | 12. response with notification of | |
I | transaction commit I |
| I | |
| |

I
L 13 transaction |
| close Il |
| | 14, Q08 channel 1 |
| | closure | |
| |

Figure 2: Worked Example Sequence Diagram.

6 PROTOTYPE

A prototype has been developed to demonstrate in-
volvement of web browsers in transaction manage-
ment. Based upon Java (Gosling et al., 2005) and the
Tomcat (Apache Software Foundation, 2008a) servlet
engine, the development of the prototype consisted of
two main tasks: enhancements to the web server, and
enhancements to the web browser.

The software enhancements at the web server in-
volve an additional layer in the web servlet engine that
allows the web developer to implement a ‘transac-
tional servlet’. The prototype implements this trans-
actional support using an additional servlet class in-
heritance layer in the Tomcat web application server.
The additional layer takes care of processing the web
developer’s request to begin and commit a transac-
tion, as well as the required protocol enhancements
to pass the transaction ID to the web browser using
HTTP headers as described in section 4. Addition-
ally, a new web service is defined and exposed from
the web server. This service manages the OOB con-
nection for each client transaction. The prototype
uses the AXIS SOAP (Apache Software Foundation,
2008b) library to implement a basic web service that

supports two commands - heartbeat() and rollback().

The web browser component of the prototype was
implemented as a software extension to the Firefox
(Mozilla, 2008) web browser. This extension has
three major functions:

1. Monitor all HTTP responses and identify any
transaction-related HTTP headers.

2. Implement the transaction manager within the
web browser.

3. Manage the OOB communication channel be-
tween the web browser and web application.

The purpose of the prototype is to experiment
with and fine tune the various methods and associ-
ated event bindings required by the proposed system
enhancements. The following messages were identi-
fied and fed into a custom developed simulation pack-
age to gather the comparative performance metrics
described in section 7.

e Message 1: The begin transaction message from
server to browser.

o Message 2: The heartbeat message from browser
to server.

97

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

e Message 3: The complete transaction message
from server to browser.

e Message 4: The rollback transaction message
from server to browser.

e Message 5: The rollback transaction message
from browser to server.

Additionally, the following new system events
were identified:

e Event 1: Server-generated web browser heartbeat
timeout.

e Event 2: Server-generated transaction commit
timeout.

7 SIMULATION

Using the messages and events identified during the
prototyping stage a simulation program was devel-
oped to collect metrics on the of the new browser-
based transaction support. The simulation program is
a combination of custom web server components and
Grinder (Grinder Open Source Project, 2008). The
Grinder software package was used to simulate the
behaviour of the web browser sessions of multiple
users. The web server hosted two servlets for simula-
tion, an application servlet and the OOB web service.
The Grinder software package was configured with
various user profiles and simulated user activity by
sending pre-defined HTTP requests to the web server
servlets, based on the web browser activity defined in
section 6. Every second the web server collected sta-
tistical information on how many resources had been
locked by the simulated web browsers.

Since the analysis in this paper is concerned with
the contention of locked resources, it suffices to re-
strict requests in this prototype to a single type of
resource rather than the heterogeneous resources re-
quired for a holiday booking application. In effect,
this places all resources in a single pool instead of
having a separate pool for each of the different re-
source types. The system behaves identically with a
single pool as it would with multiple pools, though the
differences between the various resource types have
been abstracted over.

A random set of user behaviours was defined over
a time period of 10 minutes. The random behaviours
were generated according to the distribution:

o 80% completed the transaction within 60-180 sec-
onds

o 10% exited the transaction ungracefully after 10-
100 seconds of activity

98

e 10% timed out from the transaction after 10-100
seconds of activity

A feature of the simulator is that identical user be-
haviour data can be used for each scenario: the sys-
tem flow without web browser transaction support and
the flow where the system implemented the transac-
tion support enhancements. In the absence of trans-
actional support a commit timeout of 5 minutes was
used. For the other scenario, a heartbeat interval of 30
seconds was used. Statistical resource usage informa-
tion was then analysed to define trends and investigate
the effect of the new browser-based support for trans-
actions.

8 RESULTS

The first analysis involved the level of resource
locking that occurred at the web server. Figure 3
depicts the difference in the number of resources
locked in a system system and a system that sup-
ports the browser-based transaction extensions. This
shows that the level of resource locking is decreased
when using the new browser-based transaction sys-
tem, which leads to greater availability of the server’s
resources. Thus, the experiment demonstrates the
benefit of involving the web browser in the manage-
ment of transactions.

The simulation results were also analysed from
the the point of view of user perception of resource
availability. Figure 4 depicts the users’ perception
of resource availability with the standard system ver-
sus the browser-based transactional model. Users in
this simulation were attempting to obtain between 1
and 4 resources from a pool of 80 available resources.
If resources were not available then the client’s re-
quest failed. Clients, once rejected, sought the re-
source elsewhere. Figure 4 also depicts the number
of un-booked resources (as opposed to reserved re-
sources) over time. It was found that, for the standard
model, clients believed there were no more resources
available at time 289, when in fact there were 33 re-
sources reserved but not yet firmly booked. These
un-booked resources did not become available until
well after the users had left. Under the browser based
transactional model this value was reduced to 9 un-
booked resources at time 449. In addition, with the
browser-based transactional model, those 9 resources
were then fully booked within the next 64 seconds
giving full resource utilisation due to the fast rollback
times the new model provides. These results show
a 41% increase in the number of resources booked
and demonstrates improved system utility from the
viewpoint of both resource providers, who dispense

WEB BROWSER TRANSACTIONALITY

— Transactional

Standard

60
50 e
T
2 40]
[¥]
£
n
2 30 _— f
[%]
|-
2 A
0 ..
o 20 Tadk v
& J‘wwj W \‘J‘""-v-\
10 d
W
0
W W o~ M~ ™M O BN M~ M h N~ M~ M N - M~ M N o S
ENLﬂF‘HDNLﬂmDMLﬂmHM\DmH‘t\DmHﬂ'hm
I‘: Lo I o T I I o I o AN ™ N o AN 0 T T s T s N~ L~ SN ~ = ¥ NN o S ¥y IR ¥y |
Time

Figure 3: Resources locked with and without transaction support.

a higher percentage of product, and resource con-
sumers, for whom more of the product is ultimately
available.

9 CONCLUSIONS

This paper presents research extending management
of distributed transactions to include participation of
web browsers. This extension provides greater end-
to-end stability through reliance of software com-
ponents executing both within the web application
server and the web browser. This concept is ex-
tendable to systems that use tools similar to the
‘Super Browsers’ (Henskens, 2007), which incorpo-
rates extended runtime environments for more com-
plex code execution within the web browser. The
increased power of the runtime environment within
super browsers opens up possibilities of complex
code executing at the client side in a completely
autonomous manner. The technology presented in
this paper supports a different approach to the way
in which web transactions are treated by the over-
all system. This is realised by viewing the system
as a component-based architecture with various sys-
tem components distributed across the web server and
web browser.

It is expected that browser involvement will lead
to efficient dynamic user interaction with transac-
tions. This will be particularly useful, for example,
when a user wishes to aggregate services from multi-
ple service providers in a way that is inherently trans-

actional.

The system presented in this paper allows a web
application to push transaction management code to a
web browser, where it executes independently in the
web browser’s runtime environment. The additional
responsibility placed on the web browser represents
a move towards an increasingly peer-to-peer-based
Web architecture, where the role of client and server
are blurred. The challenges of moving to a peer-to-
peer design are well established (Subramanian and
Goodman, 2005) and must be addressed, especially
in relation to connectivity between peers (Wallis et al.,
2007).

The example demonstrates one situation in which
browser-based transaction management provides en-
hanced system functionality. Ongoing research is
investigating novel technologies such as dynamic,
client defined, transactions involving autonomous
web services (Paul et al., 2008). These technologies,
which previously required the existence of dedicated
middleware such as a CORBA ORB, are made possi-
ble by the underlying research presented in this paper.

The future research will open up new possibilities
and address issues such as how to inform users that
previously unavailable resources

99

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

S0
B0
70 1
60
1]
f"d 50 1 Unbooked
a Transactional
*an A — Standard
3 33
30 |
20
9
10 1
0
1 33 B85 97 129 161 1%3 225 257 289 321 353 385 417 449 481 513
Time
Figure 4: Users competing for unique resources.
REFERENCES Grinder Open Source Project, The grinder.
http://grinder.sourceforge.net/.
Apache Software Foundation, Apache tomcat. Henskens, F. (2007). Web service transaction management.
http://tomcat.apache.org. International Conference on Software and Data Tech-
Apache Software Foundation, Web services - axis. nologies (ICSOFT).

http://ws.apache.org/axis/.

Cabrera, L. F.,, Copeland, G., Feingold, M., Freund, R. W.,
Freund, T., Johnson, J., Joyce, S., Kaler, C., Klein,
J., Langworthy, D., Little, M., Nadalin, A., New-
comer, E., Orchard, D., Robinson, I., Shewchuk, J.,
and Storey, T. (2005). Web Services Coordination
(WS-Coordination). Technical report, Arjuna Tech-
nologies Ltd., BEA Systems Inc, Hitachi Ltd., IBM
Corporation, IONA Technologies, Microsoft Corpo-
ration.

Cox, W., Cabrera, L. F., Copeland, G., Freund, T., Klein,
J., Storey, T., and Thatte, S. (2004). Web Services
Transaction (WS-Transaction). Technical report, BEA
Systems Inc, International Business Machines Corpo-
ration, Microsoft Corporation.

Flanagan, D. (2002).
O’Reilly.

Garrett, J. J. (2005). Ajax: A new approach to web applica-
tions. Adaptive Path 2005.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). Java

(TM) Language Specification. Addison Wesley, 3rd
edition.

Javascript: the definitive guide.

Gray, J. and Reuter, A. (1993). Transaction processing :
concepts and techniques. Morgan Kaufmann Publish-
ers, San Mateo, Calif.

100

Kristol, D. (2001). HTTP Cookies: Standards, Privacy, and
Politics. ACM Transactions on Internet Technology,
1(2):151-198.

McCormack, D. (2002). Web 2.0: The Resurgence of the
Internet and E-Commerce. Aspatore Books.

Mozilla, Mozilla firefox.
US/firefox/.

Object Management Group (2004). Common Object Re-
quest Broker Architecture: Core Specification.

O’Reilly, T. (2005). What is web 2.0. O’Reilly Net.

Paul, D., Wallis, M., Henskens, F., and Hannaford, M.
(2008). Transaction support for interactive web appli-
cations. In 4th International Conference on Web In-
formation Systems and Technologies (WEBIST-2008),
volume 4th of WEBIST. INSTICC.

Subramanian, R. and Goodman, B. D. (2005). Peer-to-Peer
Computing: The Evolution of a Disruptive Technol-
ogy. 1GI Publishing.

Wallis, M., Henskens, F., and Hannaford, M. (2007). A sys-
tem for robust peer-to-peer communication with dy-
namic protocol selection. The 8th International Con-
ference on Parallel and Distributed Computing, Ap-
plications and Technologies (PDCAT).

http://www.mozilla.com/en-

